首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang Y  Guo R  Li H  Zhang X  Du J  Song Z 《Marine Genomics》2011,4(3):221-228
The complete mitochondrial DNA genome of the Sichuan taimen (Hucho bleekeri) was determined by the long and accurate polymerase chain reaction (LA-PCR) and primer walking sequence method. The entire mitochondrial genome of this species is 16,997 bp in length, making it the longest among the completely sequenced Salmonidae mitochondrial genomes. It consists of two ribosomal RNA (rRNA) genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes, and one control region (CR). The gene arrangement, nucleotide composition, and codon usage pattern of the mitochondrial genome are similar to those of other teleosts. A T-type mononucleotide microsatellite and an 82 bp tandem repeat were identified in the control region, which were almost identical among the three H. bleekeri individuals examined. Both phylogenetic analyses based on 12 concatenated protein-coding genes of the heavy strand and on just the control region show that H. bleekeri is a basal species in Salmoninae. In addition, Salmo, Salvelinus and Oncorhynchus all represent monophyletic groups, respectively. All freshwater species occupied basal phylogenetic positions, and also possessed various tandem repeats in their mitochondrial control regions. These results support established phylogenetic relationships among genera in Salmonidae based on morphological and molecular analyses, and are consistent with the hypothesis that Salmonidae evolved from freshwater species.  相似文献   

2.
3.
Otter populations are declining throughout the world and most otter species are considered endangered. Molecular methods are suitable tools for population genetic research on endangered species. In the present study, we analyzed the complete mitochondrial genome (mitogenome) sequence of the Eurasian otter Lutra lutra. The mitochondrial DNA sequence of the Eurasian otter is 16,505 bp in length and consists of 13 protein-coding genes, 22 tRNAs, 2 rRNAs, and a control region (CR). The CR sequence of otters from Europe and Asia showed nearly identical numbers and nucleotide sequences of minisatellites. Phylogenetic analysis of Mustelidae mitogenomes, including individual genes, revealed that Lutrinae and Mustelinae form a clade, and that L. lutra and Enhydra lutris are sister taxa within the Lutrinae. Phylogenetic analyses revealed that of the 13 mitochondrial protein-coding genes, ND5 is the most reliable marker for analysis of phylogenetic relationships within the Mustelidae.  相似文献   

4.
Using long-polymerase chain reaction (Long-PCR) method, we determined the complete nucleotide sequence of the mitochondrial genome (mitogenome) of Phthonandria atrilineata. The complete mtDNA from P. atrilineata was 15,499 base pairs in length and contained 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The P. atrilineata genes were in the same order and orientation as the completely sequenced mitogenomes of other lepidopteran species. The nucleotide composition of P. atrilineata mitogenome was biased toward A + T nucleotides (81.02%), and the 13 PCGs show different A + T contents that range from 73.25% (cox1) to 92.12% (atp8). Phthonandria had the canonical set of 22 tRNA genes, that fold in the typical cloverleaf structure described for metazoan mt tRNAs, with the unique exception of trnS(AGN). The phylogenetic relationships were reconstructed with the concatenated sequences of the 13 PCGs of the mitochondrial genome, which confirmed that P. atrilineata is most closely related to the superfamily Bombycoidea.  相似文献   

5.
Cichlid fishes have played an important role in evolutionary biology and aquaculture industry. Nile tilapia (Oreochromis niloticus), blue tilapia (Oreochromis aureus) and Mozambique tilapia (Oreochromis mossambicus), the useful models in studying evolutionary biology within Cichlid fishes, are also mainly cultured species in aquaculture with great economic importance. In this paper, the complete nucleotide sequence of the mitochondrial genome for O. niloticus and O. aureus were determined and phylogenetic analyses from mitochondrial protein-coding genes were conducted to explore their phylogenetic relationship within Cichlids. The mitogenome is 16,625 bp for O. niloticus and 16,628 bp for O. aureus, containing the same gene order and an identical number of genes or regions with the other Cichlid fishes, including 13 protein-coding genes, two rRNA genes, 22 tRNA genes and one putative control region. Phylogenetic analyses using three different computational algorithms (maximum parsimony, maximum likelihood and Bayesian method) show O. niloticus and O. mossambicus are closely related, and O. aureus has remotely phylogenetic relationship from above two fishes.  相似文献   

6.
The complete mitochondrial genome sequence of Accipiter virgatus was determined. This mt-genome was 17,952 bp in length and consisted of 22 tRNA genes, 13 protein-coding genes, 2 rRNA genes, one control region (CR) and one pseudo-control region (CCR). Phylogenetic analyses of 14,644 bp of mitochondrial DNA (12 protein-coding genes, 2 rRNAs and 22 tRNAs) revealed the phylogenetic position of Cathartidae (Cathartes aura) was more closer to Ciconiidae (storks) than Accipitridae. To investigate the divergence times of the CCRs in Falconiformes, detailed analyses of the noncoding regions (CR and CCR) were performed. We found the recently reported novel gene order in Falconiformes had multiple independent origins and hence cannot be used to infer phylogenetic lineages. Indeed, the molecular clock suggested the CCR in Falconidae emerged about 65.4 million years (Mya), while that in Pandionidae–Accipitridae clade emerged about 19.16 Mya. The intra-genomic homology between the noncoding regions was detected in Spilornis cheela, which supporting the duplication hypothesis. Furthermore, the structure of CCR should be featured by a region containing tandem repeats as two definitely separated clusters of tandem repeats were found. The findings presented here should be considered in future phylogenetic and evolutionary studies targeting the pseudo-control regions of all Falconiformes species.  相似文献   

7.
Ixobrychus cinnamomeus is a member of the large wading bird family, known as Ardeidae. In the present study, we determined the complete mitochondrial genome of I. cinnamomeus for use in future phylogenetic analysis. This circular mitochondrial genome is 17,180 bp in length and composed of 13 protein-coding genes, 22 tRNA genes, two rRNA genes and one putative control region. Three conserved domains and a minisatellite of 17 nucleotides with 22 tandem repeats were detected at the end of the control region. Phylogenetic relationships were reconstructed using the nucleotide and corresponding amino acid datasets of 12 concatenated protein-coding genes from the mitochondrial genome. Using maximum likelihood, maximum parsimony and Bayesian inference methods, the monophyly of Ciconiidae, Ardeidae and Threskiornithidae were confirmed; however, the monophyly of traditional Ciconiiformes and Pelecaniformes failed to be recovered. Although further studies are recommended to clarify relationships among and within the orders of Ciconiiformes, Pelecaniformes, Suliformes and Phaethontiformes, our results provide preliminary exploratory results that can be useful in the current understanding of avian phylogenetics.  相似文献   

8.
The complete nucleotide sequence of the mitogenome of Bombyx mandarina strain Qingzhou was determined. The circular genome is 15,717 bp long and has the typical gene organization and order of lepidopteran mitogenomes. All protein-coding sequences are initiated with a typical ATN codon, except the COI gene, which has a 4-bp TTAG putative initiator codon. Eleven of the 13 protein-coding gene have a complete termination codon (all TAA), but the remaining two genes terminate with incomplete codons. All transfer RNAs (tRNAs) have a clover-leaf structure typical of the mitochondrial tRNAs, and some of them have a mismatch in the four-stem-and-loop structure. The length of the A + T rich region of B. mandarina strain Qingzhou is 495 bp, shorter than that of B. mandarina strain Tsukuba (747 bp) but similar to that of Bombyx mori. Phylogenetic analysis based on the whole mitochondrial genome sequences of the available sequenced species (B. mori strains C-108, Aojuku, Backokjam, and Xiafang, B. mandarina strains Tsukuba, Ankang, and Qingzhou, and Antheraea pernyi) shows the origin of the domesticated silkmoth B. mori to be the Chinese B. mandarina. Nuclear mitochondrial pseudogene sequences were detected in the nuclear genome of B. mori with the MEGA BLAST search program. A phylogenetic analysis of these nuclear mitochondrial pseudogene sequences suggests that B. mori was domesticated independently in different areas and periods.  相似文献   

9.
Insect mitochondrial genomes (mitogenomes) are of great interest in exploring molecular evolution, phylogenetics and population genetics. Only two mitogenomes have been previously released in the insect group Aphididae, which consists of about 5,000 known species including some agricultural, forestry and horticultural pests. Here we report the complete 16,317 bp mitogenome of Cavariella salicicola and two nearly complete mitogenomes of Aphis glycines and Pterocomma pilosum. We also present a first comparative analysis of mitochondrial genomes of aphids. Results showed that aphid mitogenomes share conserved genomic organization, nucleotide and amino acid composition, and codon usage features. All 37 genes usually present in animal mitogenomes were sequenced and annotated. The analysis of gene evolutionary rate revealed the lowest and highest rates for COI and ATP8, respectively. A unique repeat region exclusively in aphid mitogenomes, which included variable numbers of tandem repeats in a lineage-specific manner, was highlighted for the first time. This region may have a function as another origin of replication. Phylogenetic reconstructions based on protein-coding genes and the stem-loop structures of control regions confirmed a sister relationship between Cavariella and pterocommatines. Current evidence suggest that pterocommatines could be formally transferred into Macrosiphini. Our paper also offers methodological instructions for obtaining other Aphididae mitochondrial genomes.  相似文献   

10.
The genetics and molecular biology of the commercially important Chinese spiny lobster, Panulirus stimpsoni are little known. Here, we present the complete mitochondrial genome sequence of P. stimpsoni, determined by the long polymerase chain reaction and primer walking sequencing method. The entire genome is 15,677 bp in length, encoding the standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. The overall A + T content of the genome is 65.6%, lower than most malacostracan species. The gene order is consistent with the pancrustacean ground pattern. Several conserved elements were identified from P. stimpsoni control region, viz. one [TA(A)]n-block, two GA-blocks and three hairpin structures. However, the position of [TA(A)]n-block and number of hairpin structure are different from those in the congeneric P. japonicus and other decapods. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes do not support the monophyly of suborder Pleocyemata, which is in contrast to most morphological and molecular results. However, the position of Palinura and Astacidea is unstable, as represented by the basal or sister branches to other Reptantia species. P. stimpsoni, as the second species of Palinura with complete mitochondrial genome available, will provide important information on both genomics and conservation biology of the group.  相似文献   

11.
DNA nucleotide sequences from two mitochondrial genes (cytochrome b and NADH dehydrogenase subunit 2) and the nuclear intron 7 of β-fibrinogen were obtained to infer the phylogenetic origin of the two endemic Canarian pigeons: Bolle’s Pigeon (Columba bollii) and Laurel Pigeon (C. junoniae). Phylogenetic analyses of mitochondrial and nuclear genes based on maximum parsimony, maximum likelihood and Bayesian inference all converged into a congruent topology: C. bollii clusters together with the Wood Pigeon (C. palumbus) which is common in Europe and Asia, while C. junoniae was found near the base of the clade that includes other species of the genus Columba from the Old World. Laurel Pigeon probably represents an old lineage that might have colonized the Canary Islands a long time ago (20 My) while Bolle’s Pigeon might have arrived on the archipelago much later during the Upper Miocene (5 My). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Wang H  Zhang S  Xiao G  Liu B 《Marine Genomics》2011,4(4):263-271
The complete nucleotide sequence of the mitochondrial genome of the clam Meretrix lamarckii (Bivalvia: Veneridae) was determined. It contains 13 protein-coding genes, 2 ribosomal RNAs, 22 transfer RNAs, and a non-coding region. We also sequenced the mitochondrial genome of the sample collected from Zhejiang province, which showed morphologic discrepancy compared with classic M. lamarckii. Comparison of two complete mitochondrial DNA data demonstrated that the two sequences have a similarity as high as 99%. The complete mitochondrial genome of M. lamarckii from Hainan is 20,965nts in length and the sample from Zhejiang is 21,209nts in length. We therefore record one new locality for the M. lamarckii and thus the geographic distribution of M. lamarckii stretches from the south coast of Guangdong China to more north, arriving at the south coast of Zhejiang China.  相似文献   

13.
In this paper, the complete mitochondrial genome of Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini) is reported; a circular molecule of 15,245 bp in size. For A. issoria, genes are arranged in the same order and orientation as the complete sequenced mitochondrial genomes of the other lepidopteran species, except for the presence of an extra copy of tRNAIle(AUR)b in the control region. All protein-coding genes of A. issoria mitogenome start with a typical ATN codon and terminate in the common stop codon TAA, except that COI gene uses TTG as its initial codon and terminates in a single T residue. All tRNA genes possess the typical clover leaf secondary structure except for tRNASer(AGN), which has a simple loop with the absence of the DHU stem. The sequence, organization and other features including nucleotide composition and codon usage of this mitochondrial genome were also reported and compared with those of other sequenced lepidopterans mitochondrial genomes. There are some short microsatellite-like repeat regions (e.g., (TA)9, polyA and polyT) scattered in the control region, however, the conspicuous macro-repeats units commonly found in other insect species are absent.  相似文献   

14.
We determined the nucleotide sequence of the mitochondrial genome (mtgenome) of Spilonota lechriaspis Meyrick (Lepidoptera: Tortricidae). The entire closed circular molecule is 15,368 bp and contains 37 genes with the typical gene complement and order for lepidopteran mtgenomes. All tRNAs except tRNASer(AGN) can be folded into the typical cloverleaf secondary structures. The protein-coding genes (PCGs) have typical mitochondrial start codons, with the exception of COI, which uses the unusual CGA one as is found in all other Lepidoptera sequenced to date. In addition, six of 13 PCGs harbor the incomplete termination codons, a single T. The A + T-rich region contains some conserved structures that are similar to those found in other lepidopteran mtgenomes, including a structure combining the motif ‘ATAGA’, a 19-bp poly(T) stretch and three microsatellite (AT)n elements which are part of larger 122+ bp macrorepeats. This is the first report of macrorepeats in a lepidopteran mtgenome.  相似文献   

15.
Given the commercial and ecological importance of the Asian paddle crab, Charybdis japonica, there is a clearly need for genetic and molecular research on this species. Here, we present the complete mitochondrial genome sequence of C. japonica, determined by the long-polymerase chain reaction and primer walking sequencing method. The entire genome is 15,738 bp in length, encoding a standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes, plus the putative control region, which is typical for metazoans. The total A+T content of the genome is 69.2%, lower than the other brachyuran crabs except for Callinectes sapidus. The gene order is identical to the published marine brachyurans and differs from the ancestral pancrustacean order by only the position of the tRNA His gene. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes strongly support the monophyly of Dendrobranchiata and Pleocyemata, which is consistent with the previous taxonomic classification. However, the systematic status of Charybdis within subfamily Thalamitinae of family Portunidae is not supported. C. japonica, as the first species of Charybdis with complete mitochondrial genome available, will provide important information on both genomics and molecular ecology of the group.  相似文献   

16.
We determined the complete nucleotide sequence of the mitochondrial genome (except for a portion of the putative control region) for a deep-sea fish, Gonostoma gracile. The entire mitochondrial genome was purified by gene amplification using long polymerase chain reaction (long PCR), and the products were subsequently used as templates for PCR with 30 sets of newly designed, fish-universal primers that amplify contiguous, overlapping segments of the entire genome. Direct sequencing of the PCR products showed that the genome contained the same 37 mitochondrial structural genes as found in other vertebrates (two ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes), with the order of all rRNA and protein-coding genes, and 19 tRNA genes being identical to that in typical vertebrates. The gene order of the three tRNAs (tRNAGlu, tRNAThr, and tRNAPro) relative to cytochrome b, however, differed from that determined in other vertebrates. Two steps of tandem duplication of gene regions, each followed by deletions of genes, can be invoked as mechanisms generating such rearrangements of tRNAs. This is the first example of tRNA gene rearrangements in a bony fish mitochondrial genome. Received August 5, 1998; accepted February 19, 1999.  相似文献   

17.
18.
We characterized the complete mitogenome of Pipistrellus coromandra (Indian pipistrelle) for comparative analysis of mitogenomes and for resolving the phylogenetic relationship of four tribes in the subfamily Vespertilioninae. The mitogenome size of P. coromandra was 17,153?bp, with a control region and a typical set of 37 mitochondrial genes. The nucleotide composition of the P. coromandra mitogenome showed an AT bias with a nucleotide composition of 33.5% A, 30.7% T, 13.3% G, and 22.5% C. The mitochondrial protein-coding genes in P. coromandra use the standard start codon (ATN), two stop codons (TAA and AGA), and two incomplete stop codons (TA- and T--). The intertribal relationship of four tribes was highly resolved from the phylogenetic analysis of mitogenome sequences.  相似文献   

19.
20.
Plastid genomes of the grasses (Poaceae) are unusual in their organization and rates of sequence evolution. There has been a recent surge in the availability of grass plastid genome sequences, but a comprehensive comparative analysis of genome evolution has not been performed that includes any related families in the Poales. We report on the plastid genome of Typha latifolia, the first non-grass Poales sequenced to date, and we present comparisons of genome organization and sequence evolution within Poales. Our results confirm that grass plastid genomes exhibit acceleration in both genomic rearrangements and nucleotide substitutions. Poaceae have multiple structural rearrangements, including three inversions, three genes losses (accD, ycf1, ycf2), intron losses in two genes (clpP, rpoC1), and expansion of the inverted repeat (IR) into both large and small single-copy regions. These rearrangements are restricted to the Poaceae, and IR expansion into the small single-copy region correlates with the phylogeny of the family. Comparisons of 73 protein-coding genes for 47 angiosperms including nine Poaceae genera confirm that the branch leading to Poaceae has significantly accelerated rates of change relative to other monocots and angiosperms. Furthermore, rates of sequence evolution within grasses are lower, indicating a deceleration during diversification of the family. Overall there is a strong correlation between accelerated rates of genomic rearrangements and nucleotide substitutions in Poaceae, a phenomenon that has been noted recently throughout angiosperms. The cause of the correlation is unknown, but faulty DNA repair has been suggested in other systems including bacterial and animal mitochondrial genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号