首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ~30-kD isoform of the actin-binding/ bundling protein espin has been discovered in the brush borders of absorptive epithelial cells in rat intestine and kidney. Small espin is identical in sequence to the COOH terminus of the larger (~110-kD) espin isoform identified in the actin bundles of Sertoli cell–spermatid junctional plaques (Bartles, J.R., A. Wierda, and L. Zheng. 1996. J. Cell Sci. 109:1229–1239), but it contains two unique peptides at its NH2 terminus. Small espin was localized to the parallel actin bundles of brush border microvilli, resisted extraction with Triton X-100, and accumulated in the brush border during enterocyte differentiation/migration along the crypt–villus axis in adults. In transfected BHK fibroblasts, green fluorescent protein–small espin decorated F-actin–containing fibers and appeared to elicit their accumulation and/or bundling. Recombinant small espin bound to skeletal muscle and nonmuscle F-actin with high affinity (Kd = 150 and 50 nM) and cross-linked the filaments into bundles. Sedimentation, gel filtration, and circular dichroism analyses suggested that recombinant small espin was a monomer with an asymmetrical shape and a high percentage of α-helix. Deletion mutagenesis suggested that small espin contained two actin-binding sites in its COOH-terminal 116–amino acid peptide and that the NH2-terminal half of its forked homology peptide was necessary for bundling activity.  相似文献   

2.
The espin actin-bundling proteins, which are the target of the jerker deafness mutation, caused a dramatic, concentration-dependent lengthening of LLC-PK1-CL4 cell microvilli and their parallel actin bundles. Espin level was also positively correlated with stereocilium length in hair cells. Villin, but not fascin or fimbrin, also produced noticeable lengthening. The espin COOH-terminal peptide, which contains the actin-bundling module, was necessary and sufficient for lengthening. Lengthening was blocked by 100 nM cytochalasin D. Espin cross-links slowed actin depolymerization in vitro less than twofold. Elimination of an actin monomer-binding WASP homology 2 domain and a profilin-binding proline-rich domain from espin did not decrease lengthening, but made it possible to demonstrate that actin incorporation was restricted to the microvillar tip and that bundles continued to undergo actin treadmilling at approximately 1.5 s-1 during and after lengthening. Thus, through relatively subtle effects on actin polymerization/depolymerization reactions in a treadmilling parallel actin bundle, espin cross-links cause pronounced barbed-end elongation and, thereby, make a longer bundle without joining shorter modules.  相似文献   

3.
The espins are actin-bundling proteins of brush border microvilli and Sertoli cell-spermatid junctions. We have determined that espins are also present in hair cell stereocilia and have uncovered a connection between the espin gene and jerker, a recessive mutation that causes hair cell degeneration, deafness, and vestibular dysfunction. The espin gene maps to the same region of mouse chromosome 4 as jerker. The tissues of jerker mice do not accumulate espin proteins but contain normal levels of espin mRNAs. The espin gene of jerker mice has a frameshift mutation that affects the espin C-terminal actin-bundling module. These data suggest that jerker mice are, in effect, espin null and that the jerker phenotype results from a mutation in the espin gene.  相似文献   

4.
The Sertoli cell ectoplasmic specialization is a unique junctional structure involved in the interaction between elongating spermatids and Sertoli cells. We have previously shown that suppression of testicular testosterone in adult rats by low-dose testosterone and estradiol (TE) treatment causes the premature detachment of step 8 round spermatids from the Sertoli cell. Because these detaching round spermatids would normally associate with the Sertoli cell via the ectoplasmic specialization, we hypothesized that ectoplasmic specializations would be absent in the seminiferous epithelium of TE-treated rats, and the lack of this junction would cause round spermatids to detach. In this study, we investigated Sertoli cell ectoplasmic specializations in normal and TE-treated rat testis using electron microscopy and localization of known ectoplasmic specialization-associated proteins (espin, actin, and vinculin) by immunocytochemistry and confocal microscopy. In TE-treated rats where round spermatid detachment was occurring, ectoplasmic specializations of normal morphology were observed opposite the remaining step 8 spermatids in the epithelium and, importantly, in the adluminal Sertoli cell cytoplasm during and after round spermatid detachment. When higher doses of testosterone were administered to promote the reattachment of all step 8 round spermatids, newly elongating spermatids associated with ectoplasmic specialization proteins within 2 days. We concluded that the Sertoli cell ectoplasmic specialization structure is qualitatively normal in TE-treated rats, and thus the absence of this structure is unlikely to be the cause of round spermatid detachment. We suggest that defects in adhesion molecules between round spermatids and Sertoli cells are likely to be involved in the testosterone-dependent detachment of round spermatids from the seminiferous epithelium.  相似文献   

5.
Fimbrin belongs to a superfamily of actin cross-linking proteins that share a conserved 27-kD actin-binding domain. This domain contains a tandem duplication of a sequence that is homologous to calponin. Calponin homology (CH) domains not only cross-link actin filaments into bundles and networks, but they also bind intermediate filaments and some signal transduction proteins to the actin cytoskeleton. This fundamental role of CH domains as a widely used actin-binding domain underlines the necessity to understand their structural interaction with actin. Using electron cryomicroscopy, we have determined the three-dimensional structure of F-actin and F-actin decorated with the NH2-terminal CH domains of fimbrin (N375). In a difference map between actin filaments and N375-decorated actin, one end of N375 is bound to a concave surface formed between actin subdomains 1 and 2 on two neighboring actin monomers. In addition, a fit of the atomic model for the actin filament to the maps reveals the actin residues that line, the binding surface. The binding of N375 changes actin, which we interpret as a movement of subdomain 1 away from the bound N375. This change in actin structure may affect its affinity for other actin-binding proteins and may be part of the regulation of the cytoskeleton itself. Difference maps between actin and actin decorated with other proteins provides a way to look for novel structural changes in actin.  相似文献   

6.
We have investigated the arrangement and function of actin filament bundles in Sertoli cell ectoplasmic specializations found adjacent to junctional networks and in areas of adhesion to spermatogenic cells. Tissue was collected, from ground squirrel (Spermophilus spp.) testes, in three ways: seminiferous tubules were fragmented mechanically; segments of intact epithelium and denuded tubule walls were isolated by using EDTA in a phosphate-buffered salt solution; and isolated epithelia and denuded tubule walls were extracted in glycerol. To determine the arrangement of actin bundles, the tissue was fixed, mounted on slides, treated with cold acetone (-20 degrees C), and then exposed to nitrobenzoxadiazole-phallacidin. Myosin was localized using immunofluorescence. To investigate the hypothesis that ectoplasmic specializations are contractile, glycerinated models were exposed to exogenous ATP and Ca++; then contraction was assessed qualitatively by using nitrobenzoxadiazole-phallacidin as a marker. Actin bundles in ectoplasmic specializations adjacent to junctional networks circumscribe the bases of Sertoli cells. When intact epithelia are viewed from an angle perpendicular to the epithelial base, honeycomb staining patterns are observed. Filament bundles in Sertoli cell regions adjacent to spermatogenic cells dramatically change organization during spermatogenesis. Initially, the bundles circle the region of contact between the developing acrosome and nucleus. They then expand to cover the entire head. As the spermatid flattens, filaments on one side of the now saucer-shaped head orient themselves parallel to the germ cell axis while those on the other align perpendicularly to it. Before sperm release, all filaments course parallel to the rim of the head. Contrary to the results we obtained with myoid cells, we could not convincingly demonstrate myosin in ectoplasmic specializations or induce contraction of glycerinated models. Our data are consistent with the hypothesis that actin in ectoplasmic specializations of Sertoli cells may be more skeletal than contractile.  相似文献   

7.
Rai14 (retinoic acid induced protein 14) is an actin binding protein first identified in the liver, highly expressed in the placenta, the testis, and the eye. In the course of studying actin binding proteins that regulate the organization of actin filament bundles in the ectoplasmic specialization (ES), a testis-specific actin-rich adherens junction (AJ) type, Rai14 was shown to be one of the regulatory proteins at the ES. In the rat testis, Rai14 was found to be expressed by Sertoli and germ cells, structurally associated with actin and an actin cross-linking protein palladin. Its expression was the highest at the ES in the seminiferous epithelium of adult rat testes, most notably at the apical ES at the Sertoli-spermatid interface, and expressed stage-specifically during the epithelial cycle in stage VII-VIII tubules. However, Rai14 was also found at the basal ES near the basement membrane, associated with the blood-testis barrier (BTB) in stage VIII-IX tubules. A knockdown of Rai14 in Sertoli cells cultured in vitro by RNAi was found to perturb the Sertoli cell tight junction-permeability function in vitro, mediated by a disruption of F-actin, which in turn led to protein mis-localization at the Sertoli cell BTB. When Rai14 in the testis in vivo was knockdown by RNAi, defects in spermatid polarity and adhesion, as well as spermatid transport were noted mediated via changes in F-actin organization and mis-localization of proteins at the apical ES. In short, Rai14 is involved in the re-organization of actin filaments in Sertoli cells during the epithelial cycle, participating in conferring spermatid polarity and cell adhesion in the testis.  相似文献   

8.
An F-actin-bundling protein with Mr of 55,000 has been purified from HeLa cells by a simple method using its affinity to F-actin. Briefly, muscle actin was mixed with supernatants of HeLa cell homogenates, and the resultant actin gel was precipitated by low speed centrifugation. The 55-kDa protein in the actin gel was dissociated by depolymerization of F-actin and purified sequentially by chromatography on DEAE-cellulose and hydroxylapatite. The Stokes radius and sedimentation coefficient of the 55-kDa protein were 32 A and 4.35 (S20,w), respectively. These results suggest that the 55-kDa protein is a monomeric globular protein with a native molecular weight of 57,000. The globular form of the protein was confirmed by electron microscopy of rotary shadowed specimens. The binding of the protein to actin was saturated at an approximate stoichiometry of 4 actin monomers to one 55-kDa molecule. The protein made F-actin aggregate side-by-side into bundles as has been reported for other F-actin-bundling proteins such as fimbrin (Mr = 68,000) and fascin (Mr = 58,000). The 55-kDa protein is a new actin-binding protein based on biochemical, morphological, and immunological characterization. Skeletal muscle tropomyosin inhibited the actin-bundling activity of 55-kDa protein by competitive binding to actin, suggesting that the 55-kDa protein binding site on F-actin is in the vicinity of the tropomyosin-binding site.  相似文献   

9.
Zheng B  Wen JK  Han M 《The FEBS journal》2008,275(7):1568-1578
Human heart LIM protein (hhLIM) is a newly cloned protein. In vitro analyses showed that green fluorescent protein (GFP)-tagged hhLIM protein accumulated in the cytoplasm of C2C12 cells and colocalized with F-actin, indicating that hhLIM is an actin-binding protein in C2C12 cells. Overexpression of hhLIM-GFP in C2C12 cells significantly stabilized actin filaments and delayed depolymerization of the actin cytoskeleton induced by cytochalasin B treatment. Expression of hhLIM-GFP in C2C12 cells also induced significant changes in the organization of the actin cytoskeleton, specifically, fewer and thicker actin bundles than in control cells, suggesting that hhLIM functions as an actin-bundling protein. This hypothesis was confirmed using low-speed co-sedimentation assays and direct observation of F-actin bundles that formed in vitro in the presence of hhLIM. hhLIM has two LIM domains. To identify the essential regions and sites for association, a series of truncated mutants was constructed which showed that LIM domain 2 has the same activity as full-length hhLIM. To further characterize the binding sites, the LIM domain was functionally destructed by replacing cysteine with serine in domain 2, and results showed that the second LIM domain plays a central role in bundling of F-actin. Taken together, these data identify hhLIM as an actin-binding protein that increases actin cytoskeleton stability by promoting bundling of actin filaments.  相似文献   

10.
The degradation of ectoplasmic specialization consisting of bundles of actin sandwiched between the plasma membrane and endoplasmic reticulum of the Sertoli cell, occurs just before spermiation. For elucidation of the processes involved in this degradation, changes in fibrous actin of the rat testis were analyzed using BODIPY-phalloidin by fluorescence and electron microscopy.
Before step 17, the fluorescence of BODIPY-phalloidin was evenly distributed around the spermatid head. When the spermatids became positioned at the luminal surface, the fluorescence had condensed on the concave side of the spermatid head. At step 19, lines of fluorescence distributed at regular intervals projected at right angles from the head. Ultrastructural observation showed that the tubulobulbar complex was formed at step 19 and electron-dense material accumulated around thin tubules of the tubulobulbar complex. Immunohistochemical examination of BODIPY-phalloidin showed that the electron dense materials around the thin tubules of the tubulobulbar complex had the capacity to bind to phallotoxin. Therefore the pattern of fluorescence in the spermatid at step 19 corresponds to that of the tubulobulbar complex.
Actin bundles of the ectoplasmic specialization would thus appear to de-polymerize into actin monomers via electron dense materials around the thin tubules of the tubulobulbar complex. The tubulobulbar complex may contribute to the disorganization of actin bundles.  相似文献   

11.
We have applied correspondence analysis to electron micrographs of 2-D rafts of F-actin cross-linked with alpha-actinin on a lipid monolayer to investigate alpha-actinin:F-actin binding and cross-linking. More than 8000 actin crossover repeats, each with one to five alpha-actinin molecules bound, were selected, aligned, and grouped to produce class averages of alpha-actinin cross-links with approximately 9-fold improvement in the stochastic signal-to-noise ratio. Measurements and comparative molecular models show variation in the distance separating actin-binding domains and the angle of the alpha-actinin cross-links. Rafts of F-actin and alpha-actinin formed predominantly polar 2-D arrays of actin filaments, with occasional insertion of filaments of opposite polarity. Unique to this study are the numbers of alpha-actinin molecules bound to successive crossovers on the same actin filament. These "monofilament"-bound alpha-actinin molecules may reflect a new mode of interaction for alpha-actinin, particularly in protein-dense actin-membrane attachments in focal adhesions. These results suggest that alpha-actinin is not simply a rigid spacer between actin filaments, but rather a flexible cross-linking, scaffolding, and anchoring protein. We suggest these properties of alpha-actinin may contribute to tension sensing in actin bundles.  相似文献   

12.
Hearing and vestibular function depend on mechanosensory staircase collections of hair cell stereocilia, which are produced from microvillus-like precursors as their parallel actin bundle scaffolds increase in diameter and elongate or shorten. Hair cell stereocilia contain multiple classes of actin-bundling protein, but little is known about what each class contributes. To investigate the roles of the espin class of actin-bundling protein, we used a genetic approach that benefited from a judicious selection of mouse background strain and an examination of the effects of heterozygosity. A congenic jerker mouse line was prepared by repeated backcrossing into the inbred CBA/CaJ strain, which is known for excellent hearing and minimal age-related hearing loss. We compared stereocilia in wild-type CBA/CaJ mice, jerker homozygotes that lack espin proteins owing to a frameshift mutation in the espin gene, and jerker heterozygotes that contain reduced espin levels. The lack of espins radically impaired stereociliary morphogenesis, resulting in stereocilia that were abnormally thin and short, with reduced differential elongation to form a staircase. Mean stereociliary diameter did not increase beyond ~0.10-0.14 μm, making stereocilia ~30%-60% thinner than wild type and suggesting that they contained ~50%-85% fewer actin filaments. These characteristics indicate a requirement for espins in the appositional growth and differential elongation of the stereociliary parallel actin bundle and fit the known biological activities of espins in vitro and in transfected cells. The stereocilia of jerker heterozygotes showed a transient proximal-distal tapering suggestive of haploinsufficiency and a slowing of morphogenesis that revealed previously unrecognized assembly steps and intermediates. The lack of espins also led to a region-dependent degeneration of stereocilia involving shortening and collapse. We conclude that the espin actin-bundling proteins are required for the assembly and stabilization of the stereociliary parallel actin bundle.  相似文献   

13.
The amino acid sequences deduced from cDNA analyses revealed that human leucocyte L-plastin phosphorylated in response to interleukin 1, 2 closely resembles a chicken intestinal microvilli protein, fimbrin, that bundles actin filaments [de Arruda et al. (1990) J. Cell Biol. 111, 1069-1079]. In the present work, it was observed that unphosphorylated L-plastin isolated from human T cells bundled F-actin just as fimbrin does. L-Plastin acted on T cell beta-actin, but hardly acted on muscle alpha-actin or chicken gizzard gamma-actin, whereas fimbrin bundled muscle alpha-actin. Unlike fimbrin, L-plastin's actin-bundling action was strictly calcium-dependent: the bundles were formed at pCa 7, but not at pCa 6. Under suitable conditions, approximately one molecule of L-plastin bound to 8 molecules of actin monomer in the actin filament.  相似文献   

14.
A protein purified from cytoskeletal fractions of Dictyostelium discoideum proved to be a member of the fimbrin/plastin family of actin-bundling proteins. Like other family members, this Ca(2+)-inhibited 67-kDa protein contains two EF hands followed by two actin-binding sites of the alpha-actinin/beta-spectrin type. Dd plastin interacted selectively with actin isoforms: it bound to D. discoideum actin and to beta/gamma-actin from bovine spleen but not to alpha-actin from rabbit skeletal muscle. Immunofluorescence labeling of growth phase cells showed accumulation of Dd plastin in cortical structures associated with cell surface extensions. In the elongated, streaming cells of the early aggregation stage, Dd plastin was enriched in the front regions. To examine how the bundled actin filaments behave in myosin II-driven motility, complexes of F-actin and Dd plastin were bound to immobilized heavy meromyosin, and motility was started by photoactivating caged ATP. Actin filaments were immediately propelled out of bundles or even larger aggregates and moved on the myosin as separate filaments. This result shows that myosin can disperse an actin network when it acts as a motor and sheds light on the dynamics of protein-protein interactions in the cortex of a motile cell where myosin II and Dd plastin are simultaneously present.  相似文献   

15.
The Caenorhabditis elegans unc-87 gene product is essential for the maintenance of the nematode body wall muscle where it is found colocalized with actin in the I band. The molecular domain structure of the protein reveals similarity to the C-terminal repeat region of the smooth muscle actin-binding protein calponin. In this study we investigated the in vitro function of UNC-87 using both the full-length recombinant molecule and several truncated mutants. According to analytical ultracentrifugation UNC-87 occurs as a monomer in solution. UNC-87 cosedimented with both smooth and skeletal muscle F-actin, but not with monomeric G-actin, and exhibited potent actin filament bundling activity. Actin binding was independent of the presence of tropomyosin and the actin cross-linking proteins filamin and alpha-actinin. Consistent with its actin bundling activity in vitro, UNC-87 tagged with green fluorescent protein associated with and promoted the formation of actin stress fiber bundles in living cells. These data identify UNC-87 as an actin-bundling protein and highlight the calponin-like repeats as a novel actin-binding module.  相似文献   

16.
In cytokinesis, the contractile ring constricts the cleavage furrow. However, the formation and properties of the contractile ring are poorly understood. Fimbrin has two actin-binding domains and two EF-hand Ca(2+)-binding motifs. Ca(2+) binding to the EF-hand motifs inhibits actin-binding activity. In Tetrahymena, fimbrin is localized in the cleavage furrow during cytokinesis. In a previous study, Tetrahymena fimbrin was purified with an F-actin affinity column. However, the purified Tetrahymena fimbrin was broken in to a 60 kDa fragment of a 70 kDa full length fimbrin. In this study, we investigated the properties of recombinant Tetrahymena fimbrin. In an F-actin cosedimentation assay, Tetrahymena fimbrin bound to F-actin and bundled it in a Ca(2+)-independent manner, with a K(d) of 0.3 micro M and a stoichiometry at saturation of 1:1.4 (Tetrahymena fimbrin: actin). In the presence of 1 molecule of Tetrahymena fimbrin to 7 molecules of actin, F-actin was bundled. Immunofluorecence microscopy showed that a dotted line of Tetrahymena fimbrin along the cleavage furrow formed a ring structure. The properties and localization of Tetrahymena fimbrin suggest that it bundles actin filaments in the cleavage furrow and plays an important role in contractile ring formation during cytokinesis.  相似文献   

17.
A method is described for forming two-dimensional (2-D) paracrystalline complexes of F-actin and bundling/gelation proteins on positively charged lipid monolayers. These arrays facilitate detailed structural studies of protein interactions with F-actin by eliminating superposition effects present in 3-D bundles. Bundles of F-actin have been produced using the glycolytic enzymes aldolase and glyceraldehyde-3-phosphate dehydrogenase, the cytoskeletal protein erythrocyte adducin as well as smooth muscle alpha-actinin from chicken gizzard. All of the 2-D bundles formed contain F-actin with a 13/6 helical structure. F-actin-aldolase bundles have an interfilament spacing of 12.6 nm and a superlattice arrangement of actin filaments that can be explained by expression of a local twofold axis in the neighborhood of the aldolase. Well ordered F-actin-alpha-actinin 2-D bundles have an interfilament spacing of 36 nm and contain crosslinks 33 nm in length angled approximately 25-35 degrees to the filament axis. Images and optical diffraction patterns of these bundles suggest that they consist of parallel, unipolar arrays of actin filaments. This observation is consistent with an actin crosslinking function at adhesion plaques where actin filaments are bound to the cell membrane with uniform polarity.  相似文献   

18.
Schroeter M  Chalovich JM 《Biochemistry》2004,43(43):13875-13882
Fesselin is a proline-rich actin-binding protein that was isolated from avian smooth muscle. Fesselin bundles actin and accelerates actin polymerization by facilitating nucleation. We now show that this polymerization of actin can be regulated by Ca(2+)-calmodulin. Fesselin was shown to bind to immobilized calmodulin in the presence of Ca(2+). The fesselin-calmodulin interaction was confirmed by a Ca(2+)-dependent increase in 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid (MIANS) fluorescence upon addition of fesselin to MIANS-labeled wheat germ calmodulin. The affinity was estimated to be approximately 10(9) M(-1). The affinity of Ca(2+)-calmodulin to the fesselin F-actin complex was approximately 10(8) M(-1). Calmodulin binding to fesselin appeared to be functionally significant. In the presence of fesselin and calmodulin, the polymerization of actin was Ca(2+)-dependent. Ca(2+)-free calmodulin either had no effect or enhanced the ability of fesselin to accelerate actin polymerization. Ca(2+)-calmodulin not only reversed the stimulatory effect of fesselin but reduced the rate of polymerization below that observed in the absence of fesselin. While Ca(2+)-calmodulin had a large effect on the interaction of fesselin with G-actin, the effect on F-actin was small. Neither the binding of fesselin to F-actin nor the subsequent bundling of F-actin was greatly affected by Ca(2+)-calmodulin. Fesselin may function as an actin-polymerizing factor that is regulated by Ca(2+) levels.  相似文献   

19.
Actin-bundling proteins are identified as key players in the morphogenesis of thin membrane protrusions. Until now, functional redundancy among the actin-bundling proteins villin, espin, and plastin-1 has prevented definitive conclusions regarding their role in intestinal microvilli. We report that triple knockout mice lacking these microvillar actin-bundling proteins suffer from growth delay but surprisingly still develop microvilli. However, the microvillar actin filaments are sparse and lack the characteristic organization of bundles. This correlates with a highly inefficient apical retention of enzymes and transporters that accumulate in subapical endocytic compartments. Myosin-1a, a motor involved in the anchorage of membrane proteins in microvilli, is also mislocalized. These findings illustrate, in vivo, a precise role for local actin filament architecture in the stabilization of apical cargoes into microvilli. Hence, the function of actin-bundling proteins is not to enable microvillar protrusion, as has been assumed, but to confer the appropriate actin organization for the apical retention of proteins essential for normal intestinal physiology.  相似文献   

20.
Actin-binding proteins in bovine neutrophil plasma membranes were identified using blot overlays with 125I-labeled F-actin. Along with surface-biotinylated proteins, membranes were enriched in major actin-binding polypeptides of 78, 81, and 205 kDa. Binding was specific for F-actin because G-actin did not bind. Further, unlabeled F-actin blocked the binding of 125I-labeled F-actin whereas other acidic biopolymers were relatively ineffective. Binding also was specifically inhibited by myosin subfragment 1, but not by CapZ or plasma gelsolin, suggesting that the membrane proteins, like myosin, bind along the sides of the actin filaments. The 78- and 81-kDa polypeptides were identified as moesin and ezrin, respectively, by co-migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoprecipitation with antibodies specific for moesin and ezrin. Although not present in detectable amounts in bovine neutrophils, radixin (a third and closely related member of this gene family) also bound 125I-labeled F-actin on blot overlays. Experiments with full-length and truncated bacterial fusion proteins localized the actin-binding site in moesin to the extreme carboxy terminus, a highly conserved sequence. Immunofluorescence micrographs of permeabilized cells and cell "footprints" showed moesin co-localization with actin at the cytoplasmic surface of the plasma membrane, consistent with a role as a membrane-actin-linking protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号