首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Digestion is associated with gastric secretion that leads to an alkalinisation of the blood, termed the "alkaline tide". Numerous studies on different reptiles and amphibians show that while plasma bicarbonate concentration ([HCO(3)(-)](pl)) increases substantially during digestion, arterial pH (pHa) remains virtually unchanged, due to a concurrent rise in arterial PCO(2) (PaCO(2)) caused by a relative hypoventilation. This has led to the suggestion that postprandial amphibians and reptiles regulate pHa rather than PaCO(2). Here we characterize blood gases in the South American rattlesnake (Crotalus durissus) during digestion and following systemic infusions of NaHCO(3) and HCl in fasting animals to induce a metabolic alkalosis or acidosis in fasting animals. The magnitude of these acid-base disturbances were similar in magnitude to that mediated by digestion and exercise. Plasma [HCO(3)(-)] increased from 18.4+/-1.5 to 23.7+/-1.0 mmol L(-1) during digestion and was accompanied by a respiratory compensation where PaCO(2) increased from 13.0+/-0.7 to 19.1+/-1.4 mm Hg at 24 h. As a result, pHa decreased slightly, but were significantly below fasting levels 36 h into digestion. Infusion of NaHCO(3) (7 mmol kg(-1)) resulted in a 10 mmol L(-1) increase in plasma [HCO(3)(-)] within 1 h and was accompanied by a rapid elevation of pHa (from 7.58+/-0.01 to 7.78+/-0.02). PaCO(2), however, did not change following HCO(3)(-) infusion, which indicates a lack of respiratory compensation. Following infusion of HCl (4 mmol kg(-1)), plasma pHa decreased by 0.07 units and [HCO(3)(-)](pl) was reduced by 4.6 mmol L(-1) within the first 3 h. PaCO(2), however, was not affected and there was no evidence for respiratory compensation. Our data show that digesting rattlesnakes exhibit respiratory compensations to the alkaline tide, whereas artificially induced metabolic acid-base disturbances of same magnitude remain uncompensated. It seems difficult to envision that the central and peripheral chemoreceptors would experience different stimuli during these conditions. One explanation for the different ventilatory responses could be that digestion induces a more relaxed state with low responsiveness to ventilatory stimuli.  相似文献   

2.
Massive feeding in ectothermic vertebrates causes changes in metabolism and acid-base and respiratory parameters. Most investigations have focused on only one aspect of these complex changes, and different species have been used, making comparison among studies difficult. The purpose of the present study was, therefore, to provide an integrative study of the multiple physiological changes taking place after feeding. Bullfrogs (Rana catesbeiana) partly submerged in water were fed meals (mice or rats) amounting to approximately (1)/(10) of their body weight. Oxygen consumption increased and peaked at a value three times the predigestive level 72-96 h after feeding. Arterial PO(2) decreased slightly during digestion, whereas hemoglobin-bound oxygen saturation was unaffected. Yet, arterial blood oxygen content was pronouncedly elevated because of a 60% increase in hematocrit, which appeared mediated via release of red blood cells from the spleen. Gastric acid secretion was associated with a 60% increase in plasma HCO3(-) concentration ([HCO3(-)]) 48 h after feeding. Arterial pH only increased from 7.86 to 7.94, because the metabolic alkalosis was countered by an increase in PCO(2) from 10.8 to 13.7 mm Hg. Feeding also induced a small intracellular alkalosis in the sartorius muscle. Arterial pH and HCO3(-) returned to control values 96-120 h after feeding. There was no sign of anaerobic energy production during digestion as plasma and tissue lactate levels remained low and intracellular ATP concentration stayed high. However, phosphocreatine was reduced in the sartorius muscle and ventricle 48 h after feeding.  相似文献   

3.
Many ectothermic vertebrates ingest very large meals at infrequent intervals. The digestive processes associated with these meals, often coupled with an extensive hypertrophy of the gastrointestinal organs, are energetically expensive and metabolic rate, therefore, increases substantially after feeding (specific dynamic action, SDA). Here, we review the cardio-respiratory consequences of SDA in amphibians and reptiles. For some snakes, the increased oxygen uptake during SDA is of similar magnitude to that of muscular exercise, and the two physiological states, therefore, exert similar and profound demands on oxygen transport by the cardiorespiratory systems. In several species, SDA is attended by increases in heart rate and overall systemic blood flows, but changes in blood flow distribution remain to be investigated. In snakes, the regulation of heart rate appears to involve a non-adrenergic-non-cholinergic mechanism, which may be a regulatory peptide released from the gastrointestinal system during digestion. Digestion is also associated with a net acid secretion to the stomach that causes an increase in plasma HCO3- concentration (the 'alkaline tide'). Experiments on chronically cannulated amphibians and reptiles, show that this metabolic alkalosis is countered by an increased P(CO2), so that the change in arterial pH is reduced. This respiratory compensation of arterial pH is accomplished through a reduction in ventilation relative to metabolism, but the estimated reductions in lung P(O2) are relatively small. The SDA response is also associated with haematological changes, but large interspecific differences exist. The studies on cardiorespiratory responses to digestion may allow for a further understanding of the physiological and structural constraints that limits the ability of reptiles and amphibians to sustain high metabolic rates.  相似文献   

4.
Digestion affects acid-base status, because the net transfer of HCl from the blood to the stomach lumen leads to an increase in HCO3(-) levels in both extra- and intracellular compartments. The increase in plasma [HCO3(-)], the alkaline tide, is particularly pronounced in amphibians and reptiles, but is not associated with an increased arterial pH, because of a concomitant rise in arterial PCO2 caused by a relative hypoventilation. In this study, we investigate whether the postprandial increase in PaCO2 of the toad Bufo marinus represents a compensatory response to the increased plasma [HCO3(-)] or a state-dependent change in the control of pulmonary ventilation. To this end, we successfully prevented the alkaline tide, by inhibiting gastric acid secretion with omeprazole, and compared the response to that of untreated toads determined in our laboratory during the same period. In addition, we used vascular infusions of bicarbonate to mimic the alkaline tide in fasting animals. Omeprazole did not affect blood gases, acid-base and haematological parameters in fasting toads, but abolished the postprandial increase in plasma [HCO3(-)] and the rise in arterial PCO2 that normally peaks 48 h into the digestive period. Vascular infusion of HCO3(-), that mimicked the postprandial rise in plasma [HCO3(-)], led to a progressive respiratory compensation of arterial pH through increased arterial PCO2. Thus, irrespective of whether the metabolic alkalosis is caused by gastric acid secretion in response to a meal or experimental infusion of bicarbonate, arterial pH is being maintained by an increased arterial PCO2. It seems, therefore, that the elevated PCO2, occuring during the postprandial period, constitutes of a regulated response to maintain pH rather than a state-dependent change in ventilatory control.  相似文献   

5.
To evaluate the contribution of a change in metabolic rate to ventilatory changes after the administration of respiratory stimulants, we studied the effect of two respiratory stimulants, doxapram and theophylline, on ventilation and metabolic rate during sleep in piglets. Metabolic rate (O2 consumption and CO2 production) was measured in a metabolic chamber, and alveolar ventilation (VA) was derived from arterial PCO2 and CO2 production. We studied the animals during a baseline period and for 2 h after the administration of theophylline or doxapram. With doxapram, there was no change in VA, metabolic rate, or arterial PCO2. In contrast, with theophylline, VA increased [20 +/- 14% (SD), P less than 0.003] as a result of both an increased metabolic rate and hyperventilation. Doxapram, however, increased mean blood pressure (from 67 +/- 11 to 75 +/- 13 mmHg, P less than 0.005), whereas theophylline did not result in blood pressure changes. In summary, during quiet sleep, doxapram, unlike theophylline, does not stimulate either respiration or metabolic rate. We speculate that the previous reports of increased ventilation after the administration of doxapram are due to the general stimulation of activity in the awake state, an effect not seen during sleep.  相似文献   

6.
The oxygen uptake of Python molurus increases enormously following feeding, and the elevated metabolism coincides with rapid growth of the gastrointestinal organs. There are opposing views regarding the energetic costs of the gastrointestinal hypertrophy, and this study concerns the metabolic response to feeding after fasting periods of different duration. Since mass and function of the gastrointestinal organs remain elevated for several days after feeding, the metabolic increment following a second meal given soon after the first can reveal whether the metabolic costs relate to the upregulation of gastrointestinal organs or merely the metabolic cost of processing a meal. Eight juvenile pythons were kept on a regular feeding regime for 6 mo after hatching. At the beginning of the metabolic measurements, they were fed mice (20% of body mass), and the metabolic response to similarly sized meals was determined following 3, 5, 7, 14, 21, 30, and 60 d of fasting. Our data show that the metabolic response following feeding was large, ranging from 21% to 35% of ingested energy (mean=27%), but the metabolic response seems independent of fasting duration. Hence, the extraordinarily large cost of digestion in P. molurus does not appear to correlate with increased function and growth of gastrointestinal organs but must be associated with other physiological processes.  相似文献   

7.
Burmese pythons (Python molurus) regulate digestive performance and metabolism with the ingestion of each meal. To explore the python's postprandial responses, we monitored the concentrations of blood micronutrients and homocysteine during fasting and for 15 days after feeding. Plasma folate concentrations peaked with a 270% increase over fasting levels 3 days after feeding, whereas plasma B-12 peaked with a 66% increase within 1 day. Erythrocyte folate concentrations were highest 15 days after feeding with a 44% increase. The major plasma folate was 5-methyltetrahydrofolate during fasting and was non-5-methyltetrahydrofolate during digestion, whereas erythrocytes contained polyglutamyl forms of non-5-methyltetrahydrofolate. Plasma homocysteine concentrations peaked with a 56% increase 3 days after feeding, and were markedly greater than those of mammals. Plasma zinc and copper did not change significantly. Plasma zinc concentrations were 20 times greater than plasma copper and approximately 30 times higher than those of mammals. Pythons showed a significant postprandial decline of 25% in hematocrit. Plasma pyridoxal 5'-phosphate (coenzyme form of vitamin B-6) was not detected probably due to its tight protein binding. Most micronutrient concentrations appear to plateau 3 days after feeding, suggesting that pythons have relatively rapid homeostasis of micronutrients despite the ingestion of large meals.  相似文献   

8.
Measuring standard metabolic rate (SMR) and specific dynamic action (SDA) has yielded insight into patterns of energy expenditure in snakes, but less emphasis has been placed on identifying metabolic variation and associated energy cost of circadian rhythms. To estimate SMR, SDA, and identify metabolic variation associated with circadian cycles in nocturnally active African house snakes (Lamprophis fuliginosus), we measured oxygen consumption rates (VO2) at frequent intervals before and during digestion of meals equaling 10%, 20% and 30% of their body mass. Circadian rhythms in metabolism were perceptible in the VO2 data during fasting and after the initial stages of digestion. We estimated SMR of L. fuliginosus (mean mass=16.7+/-0.3 g) to be 0.68+/-0.02 (+/-SEM) mL O2/h at 25 degrees C. Twenty-four hours after eating, VO2 peaked at 3.2-5.3 times SMR. During digestion of meals equaling 10-30% of their body mass, the volume of oxygen consumed ranged from 109 to 119 mL O2 for SMR, whereas extra oxygen consumed for digestion and assimilation ranged from 68 to 256 mL O2 (equivalent to 14.5-17.0% of ingested energy). The oxygen consumed due to the rise in metabolism during the active phase of the daily cycle ranged from 55 to 66 mL O2 during digestion. Peak VO2, digestive scope, and SDA increased with increasing meal size. Comparisons of our estimates to estimates derived from methods used in previous investigations resulted in wide variance of metabolic variables (up to 39%), likely due to the influence of circadian rhythms and activity on the selection of baseline metabolism. We suggest frequent VO2 measurements over multiple days, coupled with mathematical methods that reduce the influence of undesired sources of VO2 variation (e.g., activity, circadian cycles) are needed to reliably assess SMR and SDA in animals exhibiting strong circadian cycles.  相似文献   

9.
Effects of acetazolamide on cerebral acid-base balance   总被引:3,自引:0,他引:3  
Acetazolamide (AZ) inhibition of brain and blood carbonic anhydrase increases cerebral blood flow by acidifying cerebral extracellular fluid (ECF). This ECF acidosis was studied to determine whether it results from high PCO2, carbonic acidosis (accumulation of H2CO3), or lactic acidosis. Twenty rabbits were anesthetized with pentobarbital sodium, paralyzed, and mechanically ventilated with 100% O2. The cerebral cortex was exposed and fitted with thermostatted flat-surfaced pH and PCO2 electrodes. Control values (n = 14) for cortex ECF were pH 7.10 +/- 0.11 (SD), PCO2 42.2 +/- 4.1 Torr, PO2 107 +/- 17 Torr, HCO3- 13.8 +/- 3.0 mM. Control values (n = 14) for arterial blood were arterial pH (pHa) 7.46 +/- 0.03 (SD), arterial PCO2 (PaCO2) 32.0 +/- 4.1 Torr, arterial PO2 (PaO2) 425 +/- 6 Torr, HCO3- 21.0 +/- 2.0 mM. After intravenous infusion of AZ (25 mg/kg), end-tidal PCO2 and brain ECF pH immediately fell and cortex PCO2 rose. Ventilation was increased in nine rabbits to bring ECF PCO2 back to control. The changes in ECF PCO2 then were as follows: pHa + 0.04 +/- 0.09, PaCO2 -8.0 +/- 5.9 Torr, HCO3(-)-2.7 +/- 2.3 mM, PaO2 +49 +/- 62 Torr, and changes in cortex ECF were as follows: pH -0.08 +/- 0.04, PCO2 -0.2 +/- 1.6 Torr, HCO3(-)-1.7 +/- 1.3 mM, PO2 +9 +/- 4 Torr. Thus excess acidity remained in ECF after ECF PCO2 was returned to control values. The response of intracellular pH, high-energy phosphate compounds, and lactic acid to AZ administration was followed in vivo in five other rabbits with 31P and 1H nuclear magnetic resonance spectroscopy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ectotherm vertebrates show physiological mechanisms that reduce metabolic costs during prolonged fasting. Once feeding, these animals adopt a wide variety of metabolic responses such as changes in gastrointestinal organ masses. Up-regulatory responses after feeding have been widely explored in infrequently feeding snakes like pythons, whereas few studies have been devoted to frequently feeding snakes. In this study, we have considered the gastrointestinal responses after feeding in a frequent feeder, the viperine snake Natrix maura, in the Ebro Delta rice fields. In this habitat, viperine snakes are exposed to long periods of food deprivation due to the lack of available prey as a consequence of the man-induced rice cycle. We weighed prey items and full gut masses, and measured length of combined esophagus and stomach, and intestine of viperine snakes belonging to a wide range of sizes. Snakes concentrate foraging activity when rice fields were flooded. In this period, gut masses increased. Likewise, intestines increased in length during the feeding period, which suggests that viperine snakes probably experience a postfeeding hypertrophy of their small intestines that contributes to their larger length. Once the intestine length was corrected for the snake size, it was shown that adults present longer intestines than immature snakes, reflecting an increase in the posterior part of the body linked to the gonads development. This study contributes to explore the physiological responses to feeding in frequently feeding snakes modelled by abrupt shifts of food availability.  相似文献   

11.
The present study investigates the integrity of the blood-brain barrier to H+ or HCO3- during acute plasma acidosis in 35 newborn piglets anesthetized with pentobarbital sodium. Cerebrospinal fluid acid-base balance, cerebral blood flow (CBF), and cerebral oxygenation were measured after infusion of HCl (0.6 N, 0.191-0.388 ml/min) for a period of 1 h at a constant arterial PCO2 of 35-40 Torr. HCl infusion resulted in decreased arterial pH from 7.38 +/- 0.01 to 7.00 +/- 0.02 (P less than 0.01). CBF measured by the tracer microsphere technique was decreased by 12% from 69 +/- 6 to 61 +/- 4 ml.min-1.100 g-1 (P less than 0.05). Infusion of 0.6 N NaCl as a hypertonic control had no effect on CBF. Cerebral metabolic rate for O2 and O2 extraction was not significantly changed from control (3.83 +/- 0.20 ml.min-1.100 g-1 and 5.7 +/- 0.6 ml/100 ml, respectively) during acid infusion. Cerebral venous PO2 was increased from 41.6 +/- 2.1 to 53.8 +/- 4.0 Torr by HCl infusion (P less than 0.02) associated with a shift in O2-hemoglobin affinity of blood in vivo from 38 +/- 2 to 50 +/- 1 Torr. Cisternal cerebrospinal fluid pH decreased from 7.336 +/- 0.014 to 7.226 +/- 0.027 (P less than 0.005), but cerebrospinal fluid HCO3- concentration was not changed from control (25.4 +/- 1.0 meq/l). These data suggest that there is a functional blood-brain barrier in newborn piglets, that is relatively impermeable to HCO3- or H+ and maintains cerebral perivascular pH constant in the face of acute severe arterial acidosis. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
This study characterized cerebral blood flow (CBF) responses in the middle cerebral artery to PCO2 ranging from 30 to 60 mmHg (1 mmHg = 133.322 Pa) during hypoxia (50 mmHg) and hyperoxia (200 mmHg). Eight subjects (25 +/- 3 years) underwent modified Read rebreathing tests in a background of constant hypoxia or hyperoxia. Mean cerebral blood velocity was measured using a transcranial Doppler ultrasound. Ventilation (VE), end-tidal PCO2 (PETCO2), and mean arterial blood pressure (MAP) data were also collected. CBF increased with rising PETCO2 at two rates, 1.63 +/- 0.21 and 2.75 +/- 0.27 cm x s(-1) x mmHg(-1) (p < 0.05) during hypoxic and 1.69 +/- 0.17 and 2.80 +/- 0.14 cm x s(-1) x mmHg(-1) (p < 0.05) during hyperoxic rebreathing. VE also increased at two rates (5.08 +/- 0.67 and 10.89 +/- 2.55 L min(-1) m mHg(-1) and 3.31 +/- 0.50 and 7.86 +/- 1.43 L x min(-1) x mmHg(-1)) during hypoxic and hyperoxic rebreathing. MAP and PETCO2 increased linearly during both hypoxic and hyperoxic rebreathing. The breakpoint separating the two-component rise in CBF (42.92 +/- 1.29 and 49.00 +/- 1.56 mmHg CO2 during hypoxic and hyperoxic rebreathing) was likely not due to PCO2 or perfusion pressure, since PETCO2 and MAP increased linearly, but it may be related to VE, since both CBF and VE exhibited similar responses, suggesting that the two responses may be regulated by a common neural linkage.  相似文献   

13.
We investigated the energy source fuelling the post-feeding metabolic upregulation (specific dynamic action, SDA) in pythons (Python regius). Our goal was to distinguish between two alternatives: (i) snakes fuel SDA by metabolizing energy depots from their tissues; or (ii) snakes fuel SDA by metabolizing their prey. To characterize the postprandial response of pythons we used transcutaneous ultrasonography to measure organ-size changes and respirometry to record oxygen consumption. To discriminate unequivocally between the two hypotheses, we enriched mice (= prey) with the stable isotope of carbon (13C). For two weeks after feeding we quantified the CO2 exhaled by pythons and determined its isotopic 13C/12C signature. Ultrasonography and respirometry showed typical postprandial responses in pythons. After feeding, the isotope ratio of the exhaled breath changed rapidly to values that characterized enriched mouse tissue, followed by a very slow change towards less enriched values over a period of two weeks after feeding. We conclude that pythons metabolize their prey to fuel SDA. The slowly declining delta13C values indicate that less enriched tissues (bone, cartilage and collagen) from the mouse become available after several days of digestion.  相似文献   

14.
The African rhombic egg eater (Dasypeltis scabra) is a colubrid snake feeding exclusively on bird eggs. Frequency of feeding is governed by the seasonal availability of bird eggs; i.e., long fasting intervals change with relatively short periods when plenty of food is available. Intermittent feeding snakes show a remarkable postprandial increase of metabolic rate and digestive organ size. The postprandial increase in metabolic rate (specific dynamic action, SDA) in snakes is affected by meal size, temperature, and meal composition. A major portion of SDA in snakes is allocated to gastric function and the breakdown of the meal. We hypothesize that SDA in egg eaters is lower than in other snake species, because egg eaters feed on “liquid” food that does not require enzymatic breakdown in the stomach. We also hypothesized that other components of the postprandial response of egg eaters (e.g., size changes of the intestine and the liver) do not differ from other snakes. The standard metabolic rate and metabolic response to feeding were measured using closed-chamber respirometry. Size changes of small intestine and liver were measured using high-resolution transcutaneous ultrasonography. Standard metabolic rates of fasting egg eaters were in the same range of mass specific values as known from other snakes. Within 24 h after feeding, oxygen consumption doubled and peaked at 2 days after feeding. At the same time, the size of the small intestine and the cross-sectional diameter of the liver increased. Within 2 days after feeding, the size of the mucosal epithelium doubled its thickness. Liver size increased significantly within 24 h reaching maximum size 2–4 days after feeding. The size of both organs returned to fasting values within 7–10 days after feeding. The postprandial response of African rhombic egg eaters shows the same pattern and dynamics as known from other snake species. However, the factorial increase of metabolic rate during SDA is the lowest reported for any snake. A comparison with literature data supports the idea that SDA is mainly determined by gastric function and that it is low in egg eaters because they do not have to break down solid meals in the stomach as other snake species do.  相似文献   

15.
Pythons exhibit a doubling of heart rate when metabolism increases several times during digestion. Pythons, therefore, represent a promising model organism to study autonomic cardiovascular regulation during the postprandial state, and previous studies show that the postprandial tachycardia is governed by a release of vagal tone as well as a pronounced stimulation from nonadrenergic, noncholinergic (NANC) factors. Here we show that infusion of plasma from digesting donor pythons elicit a marked tachycardia in fasting snakes, demonstrating that the NANC factor resides in the blood. Injections of the gastrin and cholecystokinin receptor antagonist proglumide had no effect on double-blocked heart rate or blood pressure. Histamine has been recognized as a NANC factor in the early postprandial period in pythons, but the mechanism of its release has not been identified. Mast cells represent the largest repository of histamine in vertebrates, and it has been speculated that mast cells release histamine during digestion. Treatment with the mast cell stabilizer cromolyn significantly reduced postprandial heart rate in pythons compared with an untreated group but did not affect double-blocked heart rate. While this study indicates that histamine induces postprandial tachycardia in pythons, its release during digestion is not stimulated by gastrin or cholecystokinin nor is its release from mast cells a stimulant of postprandial tachycardia.  相似文献   

16.
Potentiation of the exercise pressor reflex by muscle ischemia   总被引:3,自引:0,他引:3  
The reflex responses to static contraction are augmented by ischemia. The metabolic "error signals" that are responsible for these observed responses are unknown. Therefore this study was designed to test the hypothesis that static contraction-induced pressor responses, which are enhanced during muscle ischemia, are the result of alterations in muscle oxygenation, acid-base balance, and K+. Thus, in 36 cats, the pressor response, active muscle blood flow, and muscle venous pH, PCO2, PO2, lactate, and K+ were compared during light and intense static contractions with and without arterial occlusion. During light contraction (15-16% of maximal), active muscle blood flow increased without and decreased with arterial occlusion (+35 +/- 12 vs. -60 +/- 11%). Arterial occlusion augmented these pressor responses by 132 +/- 25%. Without arterial occlusion, changes (P less than 0.05) were seen in PO2, O2 content, PCO2, and K+. Lactate and pH were unchanged. With arterial occlusion, changes in muscle PCO2 were augmented and significant changes were seen in pH and lactate. During intense static contraction (67-69% of maximal), muscle blood flow decreased without arterial occlusion (-39 +/- 9%) and decreased further during occlusion (-81 +/- 6%). Arterial occlusion augmented the pressor responses by 39 +/- 12%. All metabolic variables increased during contraction without arterial occlusion, but occlusion failed to augment any of these changes. These data suggest that light static ischemic contractions cause increases in muscle PCO2 and lactate and decreases in pH that may signal compensatory reflex-induced changes in arterial blood pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The adequacy of intestinal perfusion during shock and resuscitation might be estimated from intestinal tissue acid-base balance. We examined this idea from the perspective of conventional blood acid-base physicochemistry. As the O(2) supply diminishes with failing blood flow, tissue acid-base changes are first "respiratory, " with CO(2) coming from combustion of fuel and stagnating in the decreasing blood flow. When the O(2) supply decreases to critical, the changes become "metabolic" due to lactic acid. In blood, the respiratory vs. metabolic distinction is conventionally made using the buffer base principle, in which buffer base is the sum of HCO(3)(-) and noncarbonate buffer anion (A(-)). During purely respiratory acidosis, buffer base stays constant because HCO(3)(-) cannot buffer its own progenitor, carbonic acid, so that the rise of HCO(3)(-) equals the fall of A(-). During anaerobic "metabolism," however, lactate's H(+) is buffered by both A(-) and HCO(3)(-), causing buffer base to decrease. We quantified the partitioning of lactate's H(+) between HCO(3)(-) and A(-) buffer in anoxic intestine by compressing intestinal segments of anesthetized swine into a steel pipe and measuring PCO(2) and lactate at 5- to 10-min intervals. Their rises followed first-order kinetics, yielding k = 0. 031 min(-1) and half time = approximately 22 min. PCO(2) vs. lactate relations were linear. Over 3 h, lactate increased by 31 +/- 3 mmol/l tissue fluid (mM) and PCO(2) by approximately 17 mM, meaning that one-half of lactate's H(+) was buffered by tissue HCO(3)(-) and one-half by A(-). The data were consistent with a lumped pK(a) value near 6.1 and total A(-) concentration of approximately 30 mmol/kg. We conclude that the respiratory vs. metabolic distinction could be made in tissue by estimating tissue buffer base from measured pH and PCO(2).  相似文献   

18.
The major objective of this study was to test the hypothesis that in ponies the change in plasma [H+] resulting from a change in PCO2 (delta H+/delta PCO2) is less under acute in vivo conditions than under in vitro conditions. Elevation of inspired CO2 and lowering of inspired O2 (causing hyperventilation) were used to respectively increase and decrease arterial PCO2 (Paco2) by 5-8 Torr from normal. Arterial and mixed venous blood were simultaneously sampled in 12 ponies during eucapnia and 5-60 min after Paco2 had changed. In vitro data were obtained by equilibrating blood in a tonometer at five different levels of PCO2. The in vitro slopes of the H+ vs. PCO2 relationships were 0.73 +/- 0.01 and 0.69 +/- 0.01 neq.1-1.Torr-1 for oxygenated and partially deoxygenated blood, respectively. These slopes were greater (P less than 0.001) than the in vivo H+ vs. PCO2 slopes of 0.61 +/- 0.03 and 0.57 +/- 0.03 for arterial and mixed venous blood, respectively. The delta HCO3-/delta pH (Slykes) was 15.4 +/- 1.1 and 17.0 +/- 1.1 for in vitro oxygenated and partially deoxygenated blood, respectively. These values were lower (P less than 0.001) than the in vivo values of 23.3 +/- 2.7 and 25.2 +/- 4.7 Slykes for arterial and mixed venous blood, respectively. In vitro, plasma strong ion difference (SID) increased 4.5 +/- 0.2 meq/l (P less than 0.001) when Pco2 was increased from 25 to 55 Torr. A 3.5-meq/l decrease in [Cl-] (P less than 0.001) and a 1.3 +/- 0.1 meq/l increase in [Na+] (P less than 0.001) accounted for the SID change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Evolution of regulatory responses to feeding in snakes   总被引:1,自引:0,他引:1  
Do animal species that normally consume large meals at long intervals evolve to down-regulate their metabolic physiology while fasting and to up-regulate it steeply on feeding? To test this hypothesis, we compared postfeeding regulatory responses in eight snake species: four frequent feeders on small meals and four infrequent feeders on large meals. For each species, we measured factorial changes in metabolic rate, in activities and capacities of five small intestinal brush border nutrient transporters, and in masses of eight organs that function in nutrient processing after consumption of a rodent meal equivalent to 25% of the snake's body mass. It turned out that, compared with frequent feeders, infrequent feeders digest that meal more slowly; have lower metabolic rates, organ masses, and nutrient uptake rates and capacities while fasting; have higher energy expenditure during digestion; and have higher postfeeding factorial increases in metabolic rate, organ masses, and nutrient uptake rates and capacities. These conclusions, which conform to the hypothesis mentioned above, remain after phylogeny has been taken into account. The small organ masses and low nutrient transporter activities during fasting contribute to the low fasting metabolism of infrequent feeders. Quantitative calculations of partial energy budgets suggest that energy savings drive the evolution of low mass and activities of organs during fasting and of large postfeeding regulatory responses in infrequent feeders. We propose further tests of this hypothesis among other snake species and among other ectotherms.  相似文献   

20.
Ventral medullary extracellular fluid pH and PCO2 during hypoxemia   总被引:1,自引:0,他引:1  
We designed experiments to study changes in ventral medullary extracellular fluid (ECF) PCO2 and pH during hypoxemia. Measurements were made in chloralose-urethan-anesthetized spontaneously breathing cats (n = 12) with peripherial chemodenervation. Steady-state measurements were made during normoxemia [arterial PO2 (PaO2) = 106 Torr], hypoxemia (PaO2 = 46 Torr), and recovery (PaO2 = 105 Torr), with relatively constant arterial PCO2 (approximately 44 Torr). Mean values of ventilation were 945, 683, and 1,037 ml/min during normoxemia, hypoxemia, and recovery from hypoxemia, respectively. Ventilatory depression occurred in each cat during hypoxemia. Mean values of medullary ECF PCO2 were 57.7 +/- 7.2 (SD), 59.4 +/- 9.7, and 57.4 +/- 7.2 Torr during normoxemia, hypoxemia, and recovery to normoxemia, respectively; respective values for ECF [H+] were 60.9 +/- 8.0, 64.4 +/- 11.6, and 62.9 +/- 9.2 neq/l. Mean values of calculated ECF [HCO3-] were 22.8 +/- 3.0, 21.7 +/- 3.3, and 21.4 +/- 3.1 meq/l during normoxemia, hypoxemia, and recovery, respectively. Changes in medullary ECF PCO2 and [H+] were not statistically significant. Therefore hypoxemia caused ventilatory depression independent of changes in ECF acid-base variables. Furthermore, on return to normoxemia, ventilation rose considerably, still independent of changes in ECF PCO2, [H+], and [HCO3-].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号