首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genome of Drosophila bifasciata harbours two distinct subfamilies of P-homologous sequences, designated M-type and O-type elements based on similarities to P element sequences from other species. Both subfamilies have some general features in common: they are of similar length (M-type: 2935 bp, O-type: 2986 bp), are flanked by direct repeats of 8 by (the presumptive target sequence), contain terminal inverted repeats, and have a coding region consisting of four exons. The splice sites are at homologous positions and the exons have the coding capacity for proteins of 753 amino acids (M-type) and 757 amino acids (O-type). It seems likely that both types of element represent functional transposons. The nucleotide divergence of the two P element subfamilies is high (31%). The main structural difference is observed in the terminal inverted repeats. Whereas the termini of M-type elements consist of 31 by inverted repeats, the inverted repeats of the O-type elements are interrupted by non-complementary stretches of DNA, 12 by at the 5′ end and 14 by at the 3′ end. This peculiarity is shared by all members of the O-type subfamily. Comparison with other P element sequences indicates incongruities between the phylogenies of the species and the P transposons. M-type and O-type elements apparently have no common origin in the D. bifasciata lineage. The M-type sequence seems to be most closely related to the P element from Scaptomyza pallida and thus could be considered as a more recent invader of the D. bifasciata gene pool. The origin of the O-type elements cannot be unequivocally deduced from the present data. The sequence comparison also provides new insights into conserved domains with possible implications for the function of P transposons.  相似文献   

2.
We have characterized Tdr1, a family of Tc1-like transposable elements found in the genome of zebrafish (Danio rerio). The copy number and distribution of the sequence in the zebrafish genome have been determined, and by these criteria Tdr1 can be classified as a moderately repetitive, interspersed element. Examination of the sequences and structures of several copies of Tdr1 revealed that a particular deletion derivative, 1250 by long, of the transposon has been amplified to become the dominant form of Tdr1. The deletion in these elements encompasses sequences encoding the N-terminal portion of the putative Tdr1 transposase. Sequences corresponding to the deleted region were also detected, and thus allowed prediction of the nucleotide sequence of a hypothetical full-length element. Well conserved segments of Tc1-like transposons were found in the flanking regions of known fish genes, suggesting that these elements have a long evolutionary history in piscine genomes. Tdr1 elements have long, 208 by inverted repeats, with a short DNA motif repeated four times at the termini of the inverted repeats. Although different from that of the prototype C. elegans transposon Tc1, this inverted repeat structure is shared by transposable elements from salmonid fish species and two Drosophila species. We propose that these transposons form a subgroup within the Tc1-like family. Comparison of Tc1-like transposons supports the hypothesis that the transposase genes and their flanking sequences have been shaped by independent evolutionary constraints. Although Tc1-like sequences are present in the genomes of several strains of zebrafish and in salmonid fishes, these sequences are not conserved in the genus Danio, thus raising the possibility that these elements can be exploited for gene tagging and genome mapping.  相似文献   

3.
We have characterized Tdr1, a family of Tc1-like transposable elements found in the genome of zebrafish (Danio rerio). The copy number and distribution of the sequence in the zebrafish genome have been determined, and by these criteria Tdr1 can be classified as a moderately repetitive, interspersed element. Examination of the sequences and structures of several copies of Tdr1 revealed that a particular deletion derivative, 1250 by long, of the transposon has been amplified to become the dominant form of Tdr1. The deletion in these elements encompasses sequences encoding the N-terminal portion of the putative Tdr1 transposase. Sequences corresponding to the deleted region were also detected, and thus allowed prediction of the nucleotide sequence of a hypothetical full-length element. Well conserved segments of Tc1-like transposons were found in the flanking regions of known fish genes, suggesting that these elements have a long evolutionary history in piscine genomes. Tdr1 elements have long, 208 by inverted repeats, with a short DNA motif repeated four times at the termini of the inverted repeats. Although different from that of the prototype C. elegans transposon Tc1, this inverted repeat structure is shared by transposable elements from salmonid fish species and two Drosophila species. We propose that these transposons form a subgroup within the Tc1-like family. Comparison of Tc1-like transposons supports the hypothesis that the transposase genes and their flanking sequences have been shaped by independent evolutionary constraints. Although Tc1-like sequences are present in the genomes of several strains of zebrafish and in salmonid fishes, these sequences are not conserved in the genus Danio, thus raising the possibility that these elements can be exploited for gene tagging and genome mapping.  相似文献   

4.
Several new families of DNA transposons were identified by computer-assisted searches in a wide range of animal species that includes nematodes, flat worms, mosquitoes, sea squirt, zebrafish, and humans. Many of these elements have coding capacity for transposases, which are related to each other and to those encoded by the IS1016 group of bacterial insertion sequences. Although these transposases display a motif similar to the DDE motif found in many transposases and integrases, they cannot be directly allied to any of the previously described eukaryotic transposases. Other common features of the new eukaryotic and bacterial transposons include similarities in their terminal inverted repeats and 8-bp or 9-bp target-site duplications. Together, these data indicate that these elements belong to a new superfamily of DNA transposons, called Merlin/IS1016, which is common in many eubacterial and animal genomes. We also present evidence that these transposons have been recently active in several animal species. This evidence is particularly strong in the parasitic blood fluke Schistosoma mansoni, in which Merlin is also the first described DNA transposon family.  相似文献   

5.
Eucaryotic transposable genetic elements with inverted terminal repeats   总被引:22,自引:0,他引:22  
S Potter  M Truett  M Phillips  A Maher 《Cell》1980,20(3):639-647
DNA carrying inverted repeats was tested for transposition within the Drosophila genome. Five Bam HI segments containing related inverted repeats were isolated from D. melanogaster and analyzed by electron microscopy and restriction mapping. Southern blot experiments using single-copy flanking sequences as probes allowed the study of DNA arrangements at specific sites in the genomes of five closely related strains. We found that in some genomes the sequences with inverted repeats were present at a particular site, whereas in other genomes they were absent from this site. These results indicated that three of the sequences are transposable genetic elements. In one case we have purified the two corresponding DNA segments, with and without the sequence containing inverted repeats, thereby confirming the mobility of this sequence. These DNA elements were found to be distinct in two ways from copia and others previously described: first, they contain inverted terminal repeats, and second, they have a more heterogeneous construction.  相似文献   

6.
7.
The genome of Drosophila bifasciata harbours two distinct subfamilies of P-homologous sequences, designated M-type and O-type elements based on similarities to P element sequences from other species. Both subfamilies have some general features in common: they are of similar length (M-type: 2935 bp, O-type: 2986 bp), are flanked by direct repeats of 8 by (the presumptive target sequence), contain terminal inverted repeats, and have a coding region consisting of four exons. The splice sites are at homologous positions and the exons have the coding capacity for proteins of 753 amino acids (M-type) and 757 amino acids (O-type). It seems likely that both types of element represent functional transposons. The nucleotide divergence of the two P element subfamilies is high (31%). The main structural difference is observed in the terminal inverted repeats. Whereas the termini of M-type elements consist of 31 by inverted repeats, the inverted repeats of the O-type elements are interrupted by non-complementary stretches of DNA, 12 by at the 5 end and 14 by at the 3 end. This peculiarity is shared by all members of the O-type subfamily. Comparison with other P element sequences indicates incongruities between the phylogenies of the species and the P transposons. M-type and O-type elements apparently have no common origin in the D. bifasciata lineage. The M-type sequence seems to be most closely related to the P element from Scaptomyza pallida and thus could be considered as a more recent invader of the D. bifasciata gene pool. The origin of the O-type elements cannot be unequivocally deduced from the present data. The sequence comparison also provides new insights into conserved domains with possible implications for the function of P transposons.  相似文献   

8.
Inverted repeats have been found to occur in both prokaryotic and eukaryotic genomes. Usually they are short and some have important functions in various biological processes. However, long inverted repeats are rare and can cause genome instability. Analyses of C. elegans genome identified long, nearly-perfect inverted repeat sequences involving both divergently and convergently oriented homologous gene pairs and complete intergenic sequences. Comparisons with the orthologous regions from the genomes of C. briggsae and C. remanei show that the inverted repeat structures are often far more conserved than the sequences. This observation implies that there is an active mechanism for maintaining the inverted repeat nature of the sequences.  相似文献   

9.
10.
Transposable elements are mobile DNA sequences that integrate into host genomes using diverse mechanisms with varying degrees of target site specificity. While the target site preferences of some engineered transposable elements are well studied, the natural target preferences of most transposable elements are poorly characterized. Using population genomic resequencing data from 166 strains of Drosophila melanogaster, we identified over 8,000 new insertion sites not present in the reference genome sequence that we used to decode the natural target preferences of 22 families of transposable element in this species. We found that terminal inverted repeat transposon and long terminal repeat retrotransposon families present clade-specific target site duplications and target site sequence motifs. Additionally, we found that the sequence motifs at transposable element target sites are always palindromes that extend beyond the target site duplication. Our results demonstrate the utility of population genomics data for high-throughput inference of transposable element targeting preferences in the wild and establish general rules for terminal inverted repeat transposon and long terminal repeat retrotransposon target site selection in eukaryotic genomes.  相似文献   

11.
12.
We have characterised from Xenopus laevis two new short interspersed repetitive elements, we have named Glider and Vision, that belong to the family of miniature inverted-repeat transposable elements (MITEs). Glider was first characterised in an intronic region of the α-tropomyosin (α-TM) gene and database search has revealed the presence of this element in 10 other Xenopus laevis genes. Glider elements are about 150 bp long and for some of them, their terminal inverted repeats are flanked by potential target-site duplications. Evidence for the mobility of Glider element has been provided by the presence/absence of one element at corresponding location in duplicated α-TM genes. Vision element has been identified in the promoter region of the cyclin dependant kinase 2 gene (cdk2) where it is boxed in a Glider element. Vision is 284 bp long and is framed by 14-bp terminal inverted repeats that are flanked by 7-bp direct repeats. We have estimated that there are about 20,000 and 300 copies of Glider and Vision respectively scattered throughout the laevis genome. Every MITEs elements but two described in our study are found either in 5′ or in 3′ regulatory regions of genes suggesting a potential role in gene regulation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Two novel families of miniature inverted repeat transposable elements (MITEs), Vege and Mar, are described from Drosophila willistoni. Based on their structures, both element families are hypothesized to belong to the hAT superfamily of transposable elements. Both elements have perfect, inverted terminal repeats and 8-bp target site duplications and were found to have inserted within fixed copies of nonautonomous P elements. Vege is present in all studied D. willistoni populations and appears to have a relatively low copy number. Mar was identified in only a single D. willistoni population, and its copy number is presently unknown. Although MITEs occupy relatively large proportions of the genomes of a broad range of organisms, this may be their first unambiguous identification in any species of the genus Drosophila.  相似文献   

14.
Putative nonautonomous transposable elements related to the autonomous transposons Tc1, Tc2, Tc5, andmariner were identified in theC. elegans database by computational analysis. These elements are found throughout theC. elegans genome and are defined by terminal inverted repeats with regions of sequence similarity, or identity, to the autonomous transposons. Similarity between loci containing related nonautonomous elements ends at, or near, the boundaries of the terminal inverted repeats. In most cases the terminal inverted repeats of the putative nonautonomous transposable elements are flanked by potential target-site duplications consistent with the associated autonomous elements. The nonautonomous elements identified vary considerably in size (from 100 by to 1.5 kb in length) and copy number in the available database and are localized to introns and flanking regions of a wide variety ofC. elegans genes. Correspondence to: W. Belknap  相似文献   

15.
In the bovine genome we found two intrachromosomal DNA fragments flanked by inverted telomeric repeats (GenBank Accession Nos. AF136741 and AF136742). The internal parts of the fragments are homologous exclusively to the human sequences and to the consensus sequence of the L1MC4 subfamily of LINE-1 retrotransposons which are widespread among mammalian genomes. We found that distribution of homologous human sequences within our fragments is not random, reflecting a complicated pattern of insertion mechanisms of and maintenance of retrotransposons in mammalian genomes. One of the possible explanations of the origin of LINE-1 truncated elements flanked by inverted telomeric repeats in the bovine genome is that extrachromosomal DNA fragments may be modified by telomerase and subsequently, transferred into chromosomal DNA.  相似文献   

16.
17.
Unexpected stability of mariner transgenes in Drosophila   总被引:6,自引:0,他引:6  
A number of mariner transformation vectors based on the mauritiana subfamily of transposable elements were introduced into the genome of Drosophila melanogaster and examined for their ability to be mobilized by the mariner transposase. Simple insertion vectors were constructed from single mariner elements into which exogenous DNA ranging in size from 1.3 to 4.5 kb had been inserted; composite vectors were constructed with partial or complete duplications of mariner flanking the exogenous DNA. All of the simple insertion vectors showed levels of somatic and germline excision that were at least 100-fold lower than the baseline level of uninterrupted mariner elements. Although composite vectors with inverted duplications were unable to be mobilized at detectable frequencies, vectors with large direct duplications of mariner could be mobilized. A vector consisting of two virtually complete elements flanking exogenous DNA yielded a frequency of somatic eye-color mosaicism of approximately 10% and a frequency of germline excision of 0.04%. These values are far smaller than those observed for uninterrupted elements. The results imply that efficient mobilization of mariner in vivo requires the presence and proper spacing of sequences internal to the element as well as the inverted repeats.  相似文献   

18.
Wallau GL  Kaminski VL  Loreto EL 《Genetica》2011,139(11-12):1487-1497
The transposable element (TE) Paris was described in a Drosophila virilis strain (virilis species group) as causing a hybrid dysgenesis with other mobile genetic elements. Since then, the element Paris has only been found in D. buzzatii, a species from the repleta group. In this study, we performed a search for Paris-like elements in 56 species of drosophilids to improve the knowledge about the distribution and evolution of this element. Paris-like elements were found in 30 species from the Drosophila genus, 15 species from the Drosophila subgenus and 15 species from the Sophophora subgenus. Analysis of the complete sequences obtained from the complete available Drosophila genomes has shown that there are putative active elements in five species (D. elegans, D. kikkawai, D. ananassae, D. pseudoobscura and D. mojavensis). The Paris-like elements showed an approximately 242-bp-long terminal inverted repeats in the 5' and 3' boundaries (called LIR: long inverted repeat), with two 28-bp-long direct repeats in each LIR. All potentially active elements presented degeneration in the internal region of terminal inverted repeat. Despite the degeneration of the LIR, the distance of 185?bp between the direct repeats was always maintained. This conservation suggests that the spacing between direct repeats is important for transposase binding. The distribution analysis showed that these elements are widely distributed in other Drosophila groups beyond the virilis and repleta groups. The evolutionary analysis of Paris-like elements suggests that they were present as two subfamilies with the common ancestor of the Drosophila genus. Since then, these TEs have been primarily maintained by vertical transmission with some events of stochastic loss and horizontal transfer.  相似文献   

19.
Intrachromosomal and interchromosomal segmental duplications account for more than 5% of the human genome. To analyze the processes resulting in the complex mosaic structure of duplicons, a draft human genome sequence was searched for duplicated segments of a genomic fragment of the pericentric region of the chromosome 21 short arm. The duplicons found consist of modules having paralogs in various genome regions. Module ends are flanked with various tandem or interspersed repeats, which are more unstable as compared with unique sequences. In most cases, the boundaries of duplicated segments exactly coincide with or are in close proximity to hot spots of various rearrangements within repeats or boundaries between repeats and unique sequences or between two different repeats. Homologous recombination between repetitive elements was assumed to be the major mechanism contributing to the mosaic structure of duplicons.  相似文献   

20.
Complete eukaryote chromosomes were investigated for intrachromosomal duplications of nucleotide sequences. The analysis was performed by looking for nonexact repeats on two complete genomes, Saccharomyces cerevisiae and Caenorhabditis elegans, and four partial ones, Drosophila melanogaster, Plasmodium falciparum, Arabidopsis thaliana, and Homo sapiens. Through this analysis, we show that all eukaryote chromosomes exhibit similar characteristics for their intrachromosomal repeats, suggesting similar dynamics: many direct repeats have their two copies physically close together, and these close direct repeats are more similar and shorter than the other repeats. On the contrary, there are almost no close inverted repeats. These results support a model for the dynamics of duplication. This model is based on a continuous genesis of tandem repeats and implies that most of the distant and inverted repeats originate from these tandem repeats by further chromosomal rearrangements (insertions, inversions, and deletions). Remnants of these predicted rearrangements have been brought out through fine analysis of the chromosome sequence. Despite these dynamics, shared by all eukaryotes, each genome exhibits its own style of intrachromosomal duplication: the density of repeated elements is similar in all chromosomes issued from the same genome, but is different between species. This density was further related to the relative rates of duplication, deletion, and mutation proper to each species. One should notice that the density of repeats in the X chromosome of C. elegans is much lower than in the autosomes of that organism, suggesting that the exchange between homologous chromosomes is important in the duplication process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号