首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organization of minicircle genes for guide RNAs in Trypanosoma brucei   总被引:23,自引:0,他引:23  
  相似文献   

2.
3.
Mitochondrial DNA of an African trypanosome   总被引:9,自引:0,他引:9  
  相似文献   

4.
5.
6.
7.
8.
9.
Animal mitochondrial DNA genomes are generally single circular molecules, 14-20 kb in size, containing a number of functional RNAs and 13 protein-coding genes. Among these, the COI, COII and COIII genes encode three subunits of cytochrome c oxidase. We have isolated and characterized these three mitochondrial genes from the mesozoan Dicyema, a primitive multicellular animal. Surprisingly, the COI, COII and COIII genes are encoded on three small, separate circular DNA molecules (minicircles) of length 1700, 1599 and 1697 bp, respectively. We estimated the copy number of each minicircle at 100 to 1000 per cell, and have shown a mitochondrial localization of the minicircles by in situ hybridization. Furthermore, we could not detect a putative "maxicircle" DNA molecule containing any combination of the COI, COII and COIII genes using either PCR or genomic Southern hybridization. Thus, our results show a novel mitochondrial genome organization in the mesozoan animal Dicyema.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
Kinetoplast DNA (kDNA) is the mitochondrial genome of trypanosomatids. It consists of a few dozen maxicircles and several thousand minicircles, all catenated topologically to form a two-dimensional DNA network. Minicircles are heterogeneous in size and sequence among species. They present one or several conserved regions that contain three highly conserved sequence blocks. CSB-1 (10?bp sequence) and CSB-2 (8?bp sequence) present lower interspecies homology, while CSB-3 (12?bp sequence) or the Universal Minicircle Sequence is conserved within most trypanosomatids. The Universal Minicircle Sequence is located at the replication origin of the minicircles, and is the binding site for the UMS binding protein, a protein involved in trypanosomatid survival and virulence. Here, we describe the structure and organisation of the kDNA of Trypanosoma copemani, a parasite that has been shown to infect mammalian cells and has been associated with the drastic decline of the endangered Australian marsupial, the woylie (Bettongia penicillata). Deep genomic sequencing showed that T. copemani presents two classes of minicircles that share sequence identity and organisation in the conserved sequence blocks with those of Trypanosoma cruzi and Trypanosoma lewisi. A 19,257?bp partial region of the maxicircle of T. copemani that contained the entire coding region was obtained. Comparative analysis of the T. copemani entire maxicircle coding region with the coding regions of T. cruzi and T. lewisi showed they share 71.05% and 71.28% identity, respectively. The shared features in the maxicircle/minicircle organisation and sequence between T. copemani and T. cruzi/T. lewisi suggest similarities in their process of kDNA replication, and are of significance in understanding the evolution of Australian trypanosomes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号