首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
达乌尔黄鼠产热的季节性变化   总被引:4,自引:2,他引:4  
达乌尔黄鼠(Citellusdauricus)的产热表现出明显的季节性变化。在非冬眠期,静止代谢率(RMR)和非颤抖性产热(NST)于春季最高,秋季次之,夏季最低。冬眠期,RMR降到极低水平,只为春季的3.0%。肝脏的线粒体蛋白含量、线粒体呼吸和细胞色素C氧化酶活力在秋季显著高于其它各季。褐色脂肪组织(BAT)的重量、线粒体蛋白含量、细胞色素C氧化酶活力和α-磷酸甘油氧化酶活力,在夏季处于一年中的最低水平,到了冬季这些指标达到一年中的最高水平。在非冬眠季节BAT产热能力升高时,NST能力也相应升高,这表明BAT产热能力的增强是NST能力提高的部分机制。达乌尔黄鼠血清T_4含量在年周期中没有明显改变,冬眠时血清T_3含量显著高于其它各季。  相似文献   

2.
Brown adipose tissue (BAT) is thought to play a significant physiological role during arousal when body temperature rises from the extremely low body temperature that occurs during hibernation. The dominant pathway of BAT thermogenesis occurs through the β(3)-adrenergic receptor. In this study, we investigated the role of the β(3)-adrenergic system in BAT thermogenesis during arousal from hibernation both in vitro and in vivo. Syrian hamsters in the hibernation group contained BAT that was significantly greater in overall mass, total protein, and thermogenic uncoupling protein-1 than BAT from the warm-acclimated group. Although the ability of the β(3)-agonist CL316,243 to induce BAT thermogenesis at 36°C was no different between the hibernation and warm-acclimated groups, its maximum ratio over the basal value at 12°C in the hibernation group was significantly larger than that in the warm-acclimated group. Forskolin stimulation at 12°C produced equivalent BAT responses in these two groups. In vivo thermogenesis was assessed with the arousal time determined by the time course of BAT temperature or heart rate. Stimulation of BAT by CL316,243 significantly shortened the time of arousal from hibernation compared with that induced by vehicle alone, and it also induced arousal in deep hibernating animals. The β(3)-antagonist SR59230A inhibited arousal from hibernation either in part or completely. These results suggest that BAT in hibernating animals has potent thermogenic activity with a highly effective β(3)-receptor mechanism at lower temperatures.  相似文献   

3.
Brown adipose tissue (BAT) thermogenic activity and growth are controlled by its sympathetic nervous system (SNS) innervation, but nerve fibers containing sensory-associated neuropeptides [substance P, calcitonin gene-related peptide (CGRP)] also suggest sensory innervation. The central nervous system (CNS) projections of BAT afferents are unknown. Therefore, we used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer used to delineate sensory nerve circuits, to define these projections. HSV-1 was injected into interscapular BAT (IBAT) of Siberian hamsters and HSV-1 immunoreactivity (ir) was assessed 24, 48, 72, 96, and 114 h postinjection. The 96- and 114-h groups had the most HSV-1-ir neurons with marked infections in the hypothalamic paraventricular nucleus, periaqueductal gray, olivary areas, parabrachial nuclei, raphe nuclei, and reticular areas. These sites also are involved in sympathetic outflow to BAT suggesting possible BAT sensory-SNS thermogenesis feedback circuits. We tested the functional contribution of IBAT sensory innervation on thermogenic responses to an acute (24 h) cold exposure test by injecting the specific sensory nerve toxin capsaicin directly into IBAT pads and then measuring core (T(c)) and IBAT (T(IBAT)) temperature responses. CGRP content was significantly decreased in capsaicin-treated IBAT demonstrating successful sensory nerve destruction. T(IBAT) and T(c) were significantly decreased in capsaicin-treated hamsters compared with the saline controls at 2 h of cold exposure. Thus the central sensory circuits from IBAT have been delineated for the first time, and impairment of sensory feedback from BAT appears necessary for the appropriate, initial thermogenic response to acute cold exposure.  相似文献   

4.
Hypothalamic neurons are regarded as essential for integrating thermal afferent information from skin and core and issuing commands to autonomic and behavioral effectors that maintain core temperature (T(c)) during cold exposure and for the control of energy expenditure more generally. Caudal brain stem neurons are necessary elements of the hypothalamic effector pathway and also are directly driven by skin and brain cooling. To assess whether caudal brain stem processing of thermal afferent signals is sufficient to drive endemic effectors for thermogenesis, heart rate (HR), T(c), and activity responses of chronic decerebrate (CD) and control rats adapted to 23 degrees C were compared during cold exposure (4, 8, or 12 degrees C) for 6 h. Other CDs and controls were exposed to 4 or 23 degrees C for 2 h, and tissues were processed for norepinephrine turnover (NETO), a neurochemical measure of sympathetic drive. Controls maintained T(c) for all temperatures. CDs maintained T(c) for the 8 and 12 degrees C exposures, but T(c) declined 2 degrees C during the 4 degrees C exposure. Cold exposure elevated HR in CDs and controls alike. Tachycardia magnitude correlated with decreases in environmental temperature for controls, but not CDs. Cold increased NETO in brown adipose tissue, heart, and some white adipose tissue pads in CDs and controls compared with their respective room temperature controls. These data demonstrate that, in neural isolation from the hypothalamus, cold exposure drives caudal brain stem neuronal activity and engages local effectors that trigger sympathetic energetic and cardiac responses that are comparable in many, but not in all, respects to those seen in neurologically intact rats.  相似文献   

5.
Oxygenation and establishment of thermogenesis in the avian embryo   总被引:1,自引:0,他引:1  
The production of heat (or thermogenesis) and its response to cold improve very quickly around birth in both mammals and birds. The mechanisms for such rapid perinatal development are not fully understood. Previous experiments with hyperoxia suggested that, during the last phases of incubation, eggshell and membranes might pose a limit to oxygen availability. Hence, it was hypothesized that an improvement in oxygenation by opening the eggshell may contribute to the establishment of thermogenesis. Thermogenesis and its response to cold were measured by indirect calorimetry, in warm (38 degrees C) conditions and during 1-h exposure to 30 degrees C. Both improved throughout the various phases of the hatching process. During the latest incubation phases (internal pipping, IP, and star fracture of external pipping, EP), the removal of the eggshell in the region above the air cell raised metabolic rate both in warm and cold conditions (in IP) or the thermogenic response to cold (in EP). Adding hyperoxia after opening the eggshell caused no further increase in the thermogenic response. In cold-incubated embryos thermogenesis during the EP phase was much less than normal; in these embryos, increasing the oxygen availability did not improve thermogenesis. We conclude that oxygenation contributes to the maturation of the thermogenic mechanisms in the perinatal period as long as these mechanisms have initiated their normal developmental process.  相似文献   

6.
We examined the sequence of neural responses to the hypotension, bradycardia, and apnea evoked by intravenous administration of 5-hydroxytryptamine (serotonin). Functional magnetic resonance imaging signal changes were assessed in nine isoflurane-anesthetized cats during baseline and after a bolus intravenous low dose (10 microg/kg) or high dose (20-30 microg/kg) of 5-hydroxytryptamine. In all cats, high-dose challenges elicited rapid-onset, transient signal declines in the intermediate portion of the solitary tract nucleus, caudal midline and caudal and rostral ventrolateral medulla, and fastigial nucleus of the cerebellum. Slightly delayed phasic declines appeared in the dentate and interpositus nuclei and dorsolateral pons. Late-developing responses also emerged in the solitary tract nucleus, parapyramidal region, periaqueductal gray, spinal trigeminal nucleus, inferior olivary nucleus, cerebellar vermis, and fastigial nucleus. Amygdala and hypothalamic sites showed delayed and prolonged signal increases. Intravenous serotonin infusion recruits cerebellar, amygdala, and hypothalamic sites in addition to classic brain stem cardiopulmonary areas and exhibits site-specific temporal patterns.  相似文献   

7.
Thermogenesis is one of the most important homeostatic mechanisms that evolved during vertebrate evolution. Despite its importance for the survival of the organism, the mechanistic details behind various thermogenic processes remain incompletely understood. Although heat production from muscle has long been recognized as a thermogenic mechanism, whether muscle can produce heat independently of contraction remains controversial. Studies in birds and mammals suggest that skeletal muscle can be an important site of non‐shivering thermogenesis (NST) and can be recruited during cold adaptation, although unequivocal evidence is lacking. Much research on thermogenesis during the last two decades has been focused on brown adipose tissue (BAT). These studies clearly implicate BAT as an important site of NST in mammals, in particular in newborns and rodents. However, BAT is either absent, as in birds and pigs, or is only a minor component, as in adult large mammals including humans, bringing into question the BAT‐centric view of thermogenesis. This review focuses on the evolution and emergence of various thermogenic mechanisms in vertebrates from fish to man. A careful analysis of the existing data reveals that muscle was the earliest facultative thermogenic organ to emerge in vertebrates, long before the appearance of BAT in eutherian mammals. Additionally, these studies suggest that muscle‐based thermogenesis is the dominant mechanism of heat production in many species including birds, marsupials, and certain mammals where BAT‐mediated thermogenesis is absent or limited. We discuss the relevance of our recent findings showing that uncoupling of sarco(endo)plasmic reticulum Ca2+‐ATPase (SERCA) by sarcolipin (SLN), resulting in futile cycling and increased heat production, could be the basis for NST in skeletal muscle. The overall goal of this review is to highlight the role of skeletal muscle as a thermogenic organ and provide a balanced view of thermogenesis in vertebrates.  相似文献   

8.
ABSTRACT

Listeriosis is an important public health problem in the world. It can cause abortion, encephalitis, septicemia, conjunctivitis and mastitis in ruminants. The development of central nervous system lesions is not fully understood in encephalitic listeriosis. We performed a retrospective analysis of 15 sheep with encephalitic listeriosis. Hyperemia and opacification of the meninges were common necropsy findings. Lesions generally were localized in the caudal part of the brain including the pons, medulla oblongata, thalamus and cerebellum. Microabscesses usually were found in the caudal brain and cerebellum, while perivascular infiltrates were found most often in other parts of the brain. Evidence of Listeria monocytogenes was detected immunohistochemically in the medulla oblongata, pons, thalamus and cerebellum. Prominent reactions for glial fibrillary acidic protein (GFAP), S100 protein, N-methyl-D-aspartate receptor-1 (NMDAR1) and inducible co-stimulatory protein (ICOS) were detected in the caudal brain, which indicates that these proteins may play roles in the pathogenesis of encephalitic listeriosis.  相似文献   

9.
Small mammals that are active all year must develop ways to survive the cold winters. Endotherms that experience prolonged cold exposure often increase their thermogenic capacity. Thermogenic capacity incorporates basal metabolic rate (BMR), nonshivering thermogenesis (NST), and shivering thermogenesis (ST). Increasing the capacity of any of these components will result in increased thermogenic capacity. It is often thought that NST should be the most plastic component of thermogenic capacity and as such is the most likely to increase with cold acclimation. We used deer mice to test this hypothesis by acclimating 27 animals to one of two temperatures (5 degrees or 22 degrees C) for 8 wk. We then measured and compared values for thermogenic capacity--BMR, ST, and NST--between the two groups. Thermogenic capacity and NST increased by 21% and 42%, respectively, after cold acclimation. Neither BMR nor ST showed any change after acclimation. Therefore, it appears that deer mice raise their thermogenic capacity in response to prolonged cold by altering NST only.  相似文献   

10.
L C Wang  M L Jourdan  T F Lee 《Life sciences》1989,44(14):927-934
Previous studies showed that acute treatment with aminophylline (AMPY) significantly elevated maximum thermogenesis and improved cold tolerance in rats and man in severe cold. However, the exact mechanism by which AMPY enhances thermogenesis was unknown. Rats receiving enprofylline (ENPRO) (1.5 and 15 mg/kg, i.p.), a selective phosphodiesterase inhibitor, failed to show enhanced thermogenesis. In contrast, treatment with a selective adenosine receptor antagonist, 8-phenyltheophylline(8-PT; 2.5 to 10 mg/kg, i.p.), significantly increased (p less than 0.05) thermogenesis and cold tolerance. However, the maximal thermogenic effect by optimal dose of 8-PT (5 mg/kg) was significantly lower than that with optimal dose of AMPY (18.7 mg/kg, i.p.); the deficit could be eradicated by combining optimal 8-PT dose with a low dose of AMPY (1.25 mg/kg), but not with ENPRO. These results indicate that the thermogenic effect of AMPY is not by inhibition of phosphodiesterase but at least partially by antagonism of adenosine receptors. It is also apparent that older mechanisms in addition to adenosine antagonism are also involved in AMPY's thermogenic action.  相似文献   

11.
Uncoupling protein (UCP) 1 (UCP1) catalyzes a proton leak in brown adipose tissue (BAT) mitochondria that results in nonshivering thermogenesis (NST), but the extent to which UCP homologs mediate NST in other tissues is controversial. To clarify the role of UCP3 in mediating NST in a hibernating species, we measured Ucp3 expression in skeletal muscle of arctic ground squirrels in one of three activity states (not hibernating, not hibernating and fasted for 48 h, or hibernating) and housed at 5 degrees C or -10 degrees C. We then compared Ucp3 mRNA levels in skeletal muscle with Ucp1 mRNA and UCP1 protein levels in BAT in the same animals. Ucp1 mRNA and UCP1 protein levels were increased on cold exposure and decreased with fasting, with the highest UCP1 levels in thermogenic hibernators. In contrast, Ucp3 mRNA levels were not affected by temperature but were increased 10-fold during fasting and >3-fold during hibernation. UCP3 protein levels were increased nearly fivefold in skeletal muscle mitochondria isolated from fasted squirrels compared with nonhibernators, but proton leak kinetics in the presence of BSA were unchanged. Proton leak in BAT mitochondria also did not differ between fed and fasted animals but did show classical inhibition by the purine nucleotide GDP. Levels of nonesterified fatty acids were highest during hibernation, and tissue temperatures during hibernation were related to Ucp1, but not Ucp3, expression. Taken together, these results do not support a role for UCP3 as a physiologically relevant mediator of NST in muscle.  相似文献   

12.
Brown adipose tissue serves as a thermogenic organ in placental mammals to defend body temperature in the cold by nonshivering thermogenesis. The thermogenic function of brown adipose tissue is enabled by several specialised features on the organ as well as on the cellular level, including dense sympathetic innervation and vascularisation, high lipolytic capacity and mitochondrial density and the unique expression of uncoupling protein 1 (UCP1). This mitochondrial carrier protein is inserted into the inner mitochondrial membrane and stimulates maximum mitochondrial respiration by dissipating proton-motive force as heat. Studies in knockout mice have clearly demonstrated that UCP1 is essential for nonshivering thermogenesis in brown adipose tissue. For a long time it had been presumed that brown adipose tissue and UCP1 emerged in placental mammals providing them with a unique advantage to survive in the cold. Our subsequent discoveries of UCP1 orthologues in ectotherm vertebrates and marsupials clearly refute this presumption. We can now initiate comparative studies on the structure-function relationships in UCP1 orthologues from different vertebrates to elucidate when during vertebrate evolution UCP1 gained the biochemical properties required for nonshivering thermogenesis.  相似文献   

13.
Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold.   总被引:5,自引:0,他引:5  
Adaptive nonshivering thermogenesis may have profound effects on energy balance and is therefore therefore is a potential mechanism for counteracting the development of obesity. The molecular basis for adaptive nonshivering thermogenesis has remained a challenge that sparked acute interest with the identification of proteins (UCP2, UCP3, etc.) with high-sequence similarity to the original uncoupling protein-1 (UCP1), which is localized only in brown adipose tissue. Using UCP1-ablated mice, we examined whether any adaptive nonshivering thermogenesis could be recruited by acclimation to cold. Remarkably, by successive acclimation, the UCP1-ablated mice could be made to subsist for several weeks at 4C during which they had to constantly produce heat at four times their resting levels. Despite these extreme requirements for adaptive nonshivering thermogenesis, however, no substitution of shivering by any adaptive nonshivering thermogenic process occurred. Thus, although the existence of, for example, muscular mechanisms for adaptive nonshivering thermogenesis has recurrently been implied, we did not find any indication of such thermogenesis. Not even during prolonged and enhanced demand for extra heat production was any endogenous hormone or neurotransmitter able to recruit any UCP1-independent adaptive nonshivering thermogenic process in muscle or in any other organ, and no proteins other than UCP1-not even UCP2 or UCP3-therefore have the ability to mediate adaptive nonshivering thermogenesis in the cold.  相似文献   

14.
Brown adipose tissue serves as a thermogenic organ in placental mammals to defend body temperature in the cold by nonshivering thermogenesis. The thermogenic function of brown adipose tissue is enabled by several specialised features on the organ as well as on the cellular level, including dense sympathetic innervation and vascularisation, high lipolytic capacity and mitochondrial density and the unique expression of uncoupling protein 1 (UCP1). This mitochondrial carrier protein is inserted into the inner mitochondrial membrane and stimulates maximum mitochondrial respiration by dissipating proton-motive force as heat. Studies in knockout mice have clearly demonstrated that UCP1 is essential for nonshivering thermogenesis in brown adipose tissue. For a long time it had been presumed that brown adipose tissue and UCP1 emerged in placental mammals providing them with a unique advantage to survive in the cold. Our subsequent discoveries of UCP1 orthologues in ectotherm vertebrates and marsupials clearly refute this presumption. We can now initiate comparative studies on the structure–function relationships in UCP1 orthologues from different vertebrates to elucidate when during vertebrate evolution UCP1 gained the biochemical properties required for nonshivering thermogenesis.  相似文献   

15.
The presence of nonshivering thermogenesis in marsupials is controversially debated. Survival of small eutherian species in cold environments is crucially dependent on uncoupling protein 1 (UCP1)-mediated, adaptive nonshivering thermogenesis that is executed in brown adipose tissue. In a small dasyurid marsupial species, the fat-tailed dunnart (Sminthopsis crassicaudata), an orthologue of UCP1 has been recently identified which is upregulated during cold exposure resembling adaptive molecular adjustments of eutherian brown adipose tissue. Here, we tested for a thermogenic function of marsupial brown adipose tissue and UCP1 by evaluating the capacity of nonshivering thermogenesis in cold-acclimated dunnarts. In response to an optimal dosage of noradrenaline, cold-acclimated dunnarts (12°C) showed no additional recruitment of noradrenaline-induced maximal thermogenic capacity in comparison to warm-acclimated dunnarts (24°C). While no differences in body temperature were observed between the acclimation groups, basal metabolic rate was significantly elevated after cold acclimation. Therefore, we suggest that adaptive nonshivering thermogenesis does not occur in this marsupial species despite the cold recruitment of oxidative capacity and UCP1 in the interscapular fat deposit. In conclusion, the ancient UCP orthologue in marsupials does not contribute to the classical nonshivering thermogenesis, and may exhibit a different physiological role.  相似文献   

16.
Neuropeptides, acting on structures within the central nervous system influence body temperature. Non-opioid peptides induce hypothermia usually, while opioid peptides are mostly hyperthermic. Neuropeptides exert their effect only when injected into specific brain areas.

Hypo- Or hyperthermic effect of neuropeptides may be either due to changes in threshold body temperatures for induction of thermoregulatory effectors or due to changes in hypothalamic thermosensitivity.

At the cellular level the opioid peptides also act differently than the non-opioid peptides. The opioid peptides mostly inhibit spontaneous neuronal firing, while the non-opioid peptides usually stimulate it. Neuropeptides exert their influence on all neurones in the hypothalamus, independently on their temperature characteristics.

Neuropeptides may play a role in the regulation of body temperature under stressful conditions and during fever or hibernation, in particular. Some neuropeptides, namely AVP, -MSH and ACTH, act as natural antipyretic substances by lowering the threshold for cold thermogenesis.

Neuropeptides also modulate food intake, reproduction and many other functions which are substantially changed during hibernation. There appears to be a correlation between the effect of peptides on the control of food intake and on the control of body temperature. Opioid peptides, which increase food intake, induce hyperthermia, while non-opioid peptides, which are appetite inhibiting, induce hypothermia. The exact role o neuropeptides in the regulation of body temperature, food intake and gonadal activity of hibernators remains unclear, however.  相似文献   


17.
Previous studies have shown that aminophylline, a phosphodiesterase inhibitor (thereby increasing intracellular cyclic AMP concentration) elicits supramaximal heat production and improves cold tolerance in rats acclimated to 22°C. To test whether aminophylline-stimulated supramaximal thermogenesis is independent of both the thermogenic capacity (i.e. aerobic fitness) and the mode of thermogenesis (shivering vs. non-shivering), rats (adult male Sprague-Dawley, approximately 400 g) of two different ages (4–11 month and 9–17 month, n=12 for each) were acclimated to 5, 15, and 25°C in succession and their thermogenic responses to aminophylline subsequently assessed. Aminophylline elicited supramaximal thermogenesis and improved cold tolerance regardless of age or acclimating temperatures. Further, the absolute net increase in heat production stimulated by aminophylline was also similar for all acclimating temperatures. After acclimating to 15°C, a single injection of aminophylline in the older rats elicited thermogenesis greater than that of the controls acclimated to 5°C; in the younger rats, aminophylline duplicated 46% of the increase in thermogenesis observed after acclimating to 5°C. These results indicated that the aminophylline-stimulated extra heat production is independent of both the thermogenic capacity and the mode of thermogenesis. It is possible that an enhanced substrate mobilization consequent to increased intracellular cyclic AMP concentration by aminophylline underlies the common mechanism via which supramaximal thermogenesis is elicited in temperature-acclimated rats.  相似文献   

18.
In their natural environment, burrowing rodents experience rather fluctuating ambient temperatures and are acutely cold exposed only for short periods outside their burrows. The effect of short daily cold exposure on basal metabolic rate, nonshivering thermogenesis, brown fat thermogenesis, and uncoupling protein mRNA was studied in the Djungarian hamster, Phodopus sungorus. They were kept at 23 degrees C and exposed to 5 degrees C daily either for one 4-h period or twice for 2 h (in 12-h intervals). At the same time control hamsters were kept continuously either at thermoneutrality (23 degrees C) or at 5 degrees C. Two 2-h cold exposures daily were sufficient to increase basal metabolic rate and nonshivering thermogenesis to the same level as continuous cold exposure, whereas one 4-h cold period per day did not result in a significant increase of both parameters. Brown fat thermogenesis (as measured by cytochrome-c oxidase activity and GDP binding to the mitochondrial uncoupling protein) increased to the same extent by both treatments with short daily cold exposure. However, this increase was less than in the chronically cold-exposed hamsters. A similar result was found for uncoupling protein mRNA: both short-term cold-exposed hamsters increased uncoupling protein mRNA levels to a similar extent, but less than after chronic cold treatment. It is concluded that short daily cold exposures are sufficient to cause adaptive increases of the capacity of metabolic heat production as well as brown fat thermogenic properties.  相似文献   

19.
Summary The maximum thermogenic capacity (HPmax) and the maximum capacity for non-shivering thermogenesis (NSTmax) were assessed in a hibernator, the Richardson's ground squirrel at different times of year. The HPmax was elicited by exposing animals to He–O2 (21% oxygen, balance helium) at –10 to –25°C. The NSTmax was estimated by i.v. infusion of isoproterenol in anesthetized animals at thermoneutrality. Non-hibernating phase adults were collected and tested in April and June, and youngs in June and August for effects of seasonal acclimatization; animals were also tested after acclimation to cold (5°C) or warm (20°C). Hibernating phase animals were tested both shortly after the onset of hibernation season and after several months into the hibernation season. Although HPmax differed significantly between the lowest [101 cal (wt0.73·h)–1 in the June-Young group] and the highest [142 cal (wt0.73·h)–1 in the June-Adult group], it was not significantly different between other groups regardless of hibernation status or temperature acclimation (Fig. 4). The NSTmax, however, increased from 40–50 cal (wt0.73·h)–1 in the Warm-Acclimated, August-Young, June-Adult, and April-Adult to 66.5 and 79.2 cal (wt0.73·h)–1 in the two hibernating groups (Fig. 3). No significant difference in NSTmax was observed between Cold- and Warm-Acclimated groups. Since HPmax was maintained essentially constant at different times of year or after temperature acclimation, the increase of NSTmax during the hibernating phase can best be viewed as an adjustment for facilitation of periodic rewarmings from depressed body temperature during hibernation rather than to counter cold.Abbreviations HP heat production - HPmax maximum heat production - NST non-shivering thermogenesis - NSTmax maximum non-shivering thermogenesis - ST shivering thermogenesis - T a ambient temperature - T b body temperature  相似文献   

20.
Studies both in vivo and in vitro implicate glucocorticoids in various aspects of thermogenesis and prevention of heat loss. Many or most of these effects are probably permissive. Adrenalectomized, cold-exposed rats require glucocorticoids for catecholamine-mediated mobilization of free fatty acids, for shivering responses, and for vasoconstriction and piloerection. Glucocorticoid pretreatment of hypothermic hamsters results in a physiological state more similar bioenergetically to hibernation than to hypothermia. For example, such hamsters can arouse to normothermia from a body temperature of 8 C in a 7--8 C cold room. Lipolytic, gluconeogenic, glycogenolic, and pressor actions resulting from several hormone interactions that require glucocorticoids for optimum responses may account for the enhanced thermogenic ability shown by glucocorticoid-pretreated hamsters. Glucocorticoid treatment also results in enhanced blood and liver carbohydrate levels during hypothermia, a condition similar to that occurring in naturally hibernating animals as opposed to the depleted carbohydrate reserves generally seen in hypothermic animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号