首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Regulation of glucose transport in skeletal muscle.   总被引:3,自引:0,他引:3  
The entry of glucose into muscle cells is achieved primarily via a carrier-mediated system consisting of protein transport molecules. GLUT-1 transporter isoform is normally found in the sarcolemmal (SL) membrane and is thought to be involved in glucose transport under basal conditions. With insulin stimulation, glucose transport is accelerated by translocating GLUT-4 transporters from an intracellular pool out to the T-tubule and SL membranes. Activation of transporters to increase the turnover number may also be involved, but the evidence is far from conclusive. When insulin binds to its receptor, it autophosphorylates tyrosine and serine residues on the beta-subunit of the receptor. The tyrosine residues are thought to activate tyrosine kinases, which in turn phosphorylate/activate as yet unknown second messengers. Insulin receptor antibodies, however, have been reported to increase glucose transport without increasing kinase activity. Insulin resistance in skeletal muscle is a major characteristic of obesity and diabetes mellitus, especially NIDDM. A decrease in the number of insulin receptors and the ability of insulin to activate receptor tyrosine kinase has been documented in muscle from NIDDM patients. Most studies report no change in the intracellular pool of GLUT-4 transporters available for translocation to the SL. Both the quality and quantity of food consumed can regulate insulin sensitivity. A high-fat, refined sugar diet, similar to the typical U.S. diet, causes insulin resistance when compared with a low-fat, complex-carbohydrate diet. On the other hand, exercise increases insulin sensitivity. After an acute bout of exercise, glucose transport in muscle increases to the same level as with maximum insulin stimulation. Although the number of GLUT-4 transporters in the sarcolemma increases with exercise, neither insulin or its receptor is involved. After an initial acute phase, which may involve calcium as the activator, a secondary phase of increased insulin sensitivity can last for up to a day after exercise. The mechanism responsible for the increased insulin sensitivity with exercise is unknown. Regular exercise training also increases insulin sensitivity, which can be documented several days after the final bout of exercise, and again the mechanism is unknown. An increase in the muscle content of GLUT-4 transporters with training has recently been reported. Even though significant progress has been made in the past few years in understanding glucose transport in skeletal muscle, the mechanisms involved in regulating transport are far from being understood.  相似文献   

2.
Physical activity is known to increase insulin action in skeletal muscle, and data have indicated that 5'-AMP-activated protein kinase (AMPK) is involved in the molecular mechanisms behind this beneficial effect. 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) can be used as a pharmacological tool to repetitively activate AMPK, and the objective of this study was to explore whether the increase in insulin-stimulated glucose uptake after either long-term exercise or chronic AICAR administration was followed by fiber-type-specific changes in insulin signaling and/or changes in GLUT-4 expression. Wistar rats were allocated into three groups: an exercise group trained on treadmill for 5 days, an AICAR group exposed to daily subcutaneous injections of AICAR, and a sedentary control group. AMPK activity, insulin-stimulated glucose transport, insulin signaling, and GLUT-4 expression were determined in muscles characterized by different fiber type compositions. Both exercised and AICAR-injected animals displayed a fiber-type-specific increase in glucose transport with the most marked increase in muscles with a high content of type IIb fibers. This increase was accompanied by a concomitant increase in GLUT-4 expression. Insulin signaling as assessed by phosphatidylinositol 3-kinase and PKB/Akt activity was enhanced only after AICAR administration and in a non-fiber-type-specific manner. In conclusion, chronic AICAR administration and long-term exercise both improve insulin-stimulated glucose transport in skeletal muscle in a fiber-type-specific way, and this is associated with an increase in GLUT-4 content.  相似文献   

3.
Exercise training induces an increase in GLUT-4 in muscle. We previously found that feeding rats a high-carbohydrate diet after exercise, with muscle glycogen supercompensation, results in a decrease in insulin responsiveness so severe that it masks the effect of a training-induced twofold increase in GLUT-4 on insulin-stimulated muscle glucose transport. One purpose of this study was to determine whether insulin signaling is impaired. Maximally insulin-stimulated phosphatidylinositol (PI) 3-kinase activity was not significantly reduced, whereas protein kinase B (PKB) phosphorylation was approximately 50% lower (P < 0.01) in muscles of chow-fed, than in those of fasted, exercise-trained rats. Our second purpose was to determine whether contraction-stimulated glucose transport is also impaired. The stimulation of glucose transport and the increase in cell surface GLUT-4 induced by contractions were both decreased by approximately 65% in glycogen-supercompensated muscles of trained rats. The contraction-stimulated increase in AMP kinase activity, which has been implicated in the activation of glucose transport by contractions, was approximately 80% lower in the muscles of the fed compared with the fasted rats 18 h after exercise. These results show that both the insulin- and contraction-stimulated pathways for muscle glucose transport activation are impaired in glycogen-supercompensated muscles and provide insight regarding possible mechanisms.  相似文献   

4.
Organo-vanadium compounds (OVC) have been shown to be more effective than inorganic vanadium compounds in ameliorating glucose homeostasis and insulin resistance in rodent models of diabetes mellitus. However, the precise molecular mechanism of OVC efficiency remains poorly defined. Since inorganic vanadium compounds have been found to activate several key components of the insulin signaling cascade, such as protein kinase B (PKB), the objective of the present study was to investigate if stimulation of PKB and its downstream target glycogen synthase kinase-3 (GSK-3), are responsible for the more potent insulinomimetic effects of OVC. Among several vanadium compounds tested, vanadium (IV) oxo bis (acetylacetonate) and vanadium (IV) oxo bis(maltolato) markedly induced the phosphorylation of PKB as well as GSK-3beta compared to vanadyl sulfate (VS), an inorganic vanadium salts in Chinese hamster ovary cells overexpressing the insulin receptor (IR). Furthermore, the OVC were stronger inhibitors of protein tyrosine phosphatase (PTPase) activity than VS. The higher PTPase inhibitory potential of the OVC was associated with more robust tyrosine phosphorylation of several cellular proteins, including the IRbeta subunit and insulin receptor substrate-1 (IRS-1). In addition, greater IRS-1/p85alpha interaction was elicited by the OVC than by VS. These data indicate that the higher PTPase inhibitory potential of OVC translates into greater phosphorylation of PKB and GSK-3beta, which, in turn, may contribute to a more potent effect of OVC on glucose homeostasis.  相似文献   

5.
Among several metals, vanadium has emerged as an extremely potent agent with insulin-like properties. These insulin-like properties have been demonstrated in isolated cells, tissues different animal models of type I and type II diabetes as well as a limited number of human subjects. Vanadium treatment has been found to improve abnormalities of carbohydrate and lipid metabolism and of gene expression in rodent models of diabetes. In isolated cells, it enhances glucose transport, glycogen and lipid synthesis, and inhibits gluconeogenesis and lipolysis. The molecular mechanism responsible for the insulin-like effects of vanadium compounds have been shown to involve the activation of several key components of insulin-signaling pathways that include the mitogen-activated-protein kinases (MAPKs) extracellular signal-regulated kinase 1/2 (ERK1/2) and p38MAPK, and phosphatidylinositol 3-kinase (PI3-K)/protein kinase B (PKB). It is interesting that the vanadium effect on these signaling systems is independent of insulin receptor protein tyrosine kinase activity, but it is associated with enhanced tyrosine phosphorylation of insulin receptor substrate-1. These actions seem to be secondary to vanadium-induced inhibition of protein tyrosine phosphatases. Because MAPK and PI3-K/PKB pathways are implicated in mediating the mitogenic and metabolic effects of insulin, respectively, it is plausible that mimicry of these pathways by vanadium serves as a mechanism for its insulin-like responses.  相似文献   

6.
The regulation by glucose and insulin of the muscle-specific facilitative glucose transport system GLUT-4 was investigated in L6 muscle cells in culture. Hexose transport activity, mRNA expression, and the subcellular localization of the GLUT-4 protein were analyzed. As observed previously (Walker, P. S., Ramlal, T., Sarabia, V., Koivisto, U.-M., Bilan, P. J., Pessin, J. E., and Klip, A. (1990) J. Biol. Chem. 265, 1516-1523), 24 h of glucose starvation and 24 h of insulin treatment each increase glucose transport activity severalfold. Here we report a differential regulation of the GLUT-4 and GLUT-1 transport systems under these conditions. (a) The level of GLUT-4 mRNA was not affected by glucose starvation and was diminished by prolonged (24 h) administration of insulin; in contrast, the level of GLUT-1 mRNA was elevated under both conditions. (b) Glucose starvation and prolonged insulin administration increased the amount of both GLUT-4 and GLUT-1 proteins in the plasma membrane. (c) In intracellular membranes, glucose starvation elevated, and prolonged insulin administration reduced, the GLUT-4 protein content. In contrast, the GLUT-1 protein content in these membranes decreased with glucose starvation and increased with insulin treatment. Glucose transport was rapidly curbed upon refeeding glucose to glucose-starved cells, with half-maximal reversal after 30 min and maximal reversal after 4 h. This was followed by a marked decrease in the levels of GLUT-1 mRNA without major changes in GLUT-4 mRNA. Neither 2-deoxy-D-glucose nor 3-O-methyl-D-glucose could substitute for D-glucose in these effects. It is proposed that glucose and insulin differentially regulate the two glucose transport systems in L6 muscle cells and that the rapid down-regulation of hexose transport activity by glucose is regulated by post-translational mechanisms.  相似文献   

7.
8.
9.
To study molecular mechanisms for glucosamine-induced insulin resistance, we induced complete and reversible insulin resistance in 3T3-L1 adipocytes with glucosamine in a dose- and time-dependent manner (maximal effects at 50 mM glucosamine after 6 h). In these cells, glucosamine impaired insulin-stimulated GLUT-4 translocation. Glucosamine (6 h) did not affect insulin-stimulated tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 and -2 and weakly, if at all, impaired insulin stimulation of phosphatidylinositol 3-kinase. Glucosamine, however, severely impaired insulin stimulation of Akt. Inhibition of insulin-stimulated glucose transport was correlated with that of Akt activity. In these cells, glucosamine also inhibited insulin stimulation of p70 S6 kinase. Glucosamine did not alter basal glucose transport and insulin stimulation of GLUT-1 translocation and mitogen-activated protein kinase. In summary, glucosamine induced complete and reversible insulin resistance in 3T3-L1 adipocytes. This insulin resistance was accompanied by impaired insulin stimulation of GLUT-4 translocation and Akt activity, without significant impairment of upstream molecules in insulin-signaling pathway.  相似文献   

10.
In the present study we have examined the proteins involved in the insulin signaling cascade during and after differentiation of human adipocyte precursor cells and their correlation with glucose uptake. The differentiation of human adipocytes was characterized by a two- to threefold stimulation of glucose transport in response to insulin and a marked increase protein expression for the insulin receptor, IRS-1, GLUT-4, PI 3-kinase, and PKB, with respect to undifferentiated cells. In contrast, there were small changes in the protein expression of IRS-2, and no changes in PKC zeta and MAP kinases, although basal MAP kinase activity and GLUT-1 protein were reduced during differentiation. In conclusion, there are quantitative differences in the regulation of IRS-1 and other proteins during differentiation which may contribute to more efficient insulin signaling leading to glucose uptake in mature fat cells. Alterations in this pattern may reflect or contribute to an insulin-resistant state.  相似文献   

11.
The long-chain diacylglycerol 1,2-dimyristoylglycerol emulsified with taurodeoxycholate has been shown to potently stimulate glucose transport in isolated rat adipocytes (Strålfors, Nature 335, 554-556 (1988)). We now report that this 1,2-diacylglycerol in the presence of taurodeoxycholate, similarly to insulin, induced translocation of the insulin-regulated glucose transporter (GLUT-4) from a microsomal membrane compartment to the plasma membrane. H4IIE hepatoma cells expressed mRNA for GLUT-1, but not for GLUT-4. In these, otherwise insulin-responsive, cells diacylglycerol or insulin had only a marginal effect on glucose transport.  相似文献   

12.
The long-term regulatory effect of insulin on glucose transport activity and glucose transporter expression was examined in Chinese hamster ovary (CHO) transfectants that overexpress either human insulin receptors of the wild type (CHO-R cells) or human insulin receptors mutated at two major autophosphorylation sites, Tyr1162 and Tyr1163 (CHO-Y2 cells). Previous studies showed that, when acutely stimulated by insulin, CHO-Y2 cells exhibit decreased receptor kinase activity along with decreased signaling of several pathways, including that for glucose transport, as compared with CHO-R cells. We now report the following. (i) When treated for 24 h with insulin (10(-10) to 10(-6) M), CHO-R and CHO-Y2 cells displayed closely similar concentration-dependent increases in 2-deoxyglucose uptake. In both transfectants, the maximal insulin-induced increase (approximately 3.5-fold) in uptake was cycloheximide-sensitive and was paralleled by equivalent increases in the levels of GLUT-1 immunoreactive protein and mRNA. (ii) By contrast, under similar conditions, CHO-Y2 cells exhibited a marked decrease in their response to insulin for [U-14C]glucose incorporation into glycogen (decreased sensitivity and maximal responsiveness) and for [U-14C]leucine incorporation into protein (decreased sensitivity) as compared with CHO-R cells. (iii) After a 24-h treatment with 10(-7) M insulin, CHO-R (but not CHO-Y2) cells showed a decreased ability to respond to a subsequent acute insulin stimulation of either receptor exogenous kinase activity or 2-deoxyglucose uptake as compared with respective untreated controls. These results indicate that (i) insulin receptors mutated at Tyr1162 and Tyr1163 retain normal signaling of the long-term stimulatory effect of insulin on glucose transport activity and GLUT-1 expression, but not on glycogenesis and overall protein synthesis; (ii) these three insulin signaling pathways may be triggered by distinct domains of the insulin receptor beta-subunit; and (iii) wild-type (but not twin-tyrosine mutant) receptors undergo negative regulation by chronic insulin treatment for subsequent signaling of acute biological actions of insulin.  相似文献   

13.
Previous studies have shown that when exercise isstopped there is a rapid reversal of the training-induced adaptiveincrease in muscle glucose transport capacity. Endurance exercisetraining brings about an increase in GLUT-4 in skeletal muscle. Theprimary purpose of this study was to determine whether the rapidreversal of the increase in maximally insulin-stimulated glucosetransport after cessation of training can be explained by a similarlyrapid decrease in GLUT-4. A second purpose was to evaluate thepossibility, suggested by previous studies, that the magnitude of theadaptive increase in muscle GLUT-4 decreases when exercise training is extended beyond a few days. We found that both GLUT-4 and maximally insulin-stimulated glucose transport were increased approximately twofold in epitrochlearis muscles of rats trained by swimming for 6 h/day for 5 days or 5 wk. GLUT-4 was 90% higher, citrate synthaseactivity was 23% higher, and hexokinase activity was 28% higher intriceps muscle of the 5-day trained animals compared with the controls.The increases in GLUT-4 protein and in insulin-stimulated glucosetransport were completely reversed within 40 h after the last exercisebout, after both 5 days and 5 wk of training. In contrast, theincreases in citrate synthase and hexokinase activities were unchanged40 h after 5 days of exercise. These results support the conclusionthat the rapid reversal of the increase in the insulin responsivenessof muscle glucose transport after cessation of training is explained bythe short half-life of the GLUT-4 protein.

  相似文献   

14.
The acute effect of selective hyperglycemia or hyperinsulinemia on late gestation fetal ovine glucose transporter protein (GLUT-1, GLUT-3, and GLUT-4) concentrations was examined in insulin-insensitive (brain and liver) and insulin-sensitive (myocardium and fat) tissues at 1, 2.5, and 24 h. Hyperglycemia with euinsulinemia caused a two- to threefold increase in brain GLUT-3, liver GLUT-1, and myocardial GLUT-1 concentrations only at 1 h. There was no change in GLUT-4 protein amounts at any time during the selective hyperglycemia. In contrast, selective hyperinsulinemia with euglycemia led to an immediate and persistent twofold increase in liver GLUT-1, which lasted from 1 until 24 h with a concomitant decline in myocardial tissue GLUT-4 amounts, reaching statistical significance at 24 h. No other significant change in response to hyperinsulinemia was noted in any of the other isoforms in any of the other tissues. Simultaneous assessment of total fetal glucose utilization rate (GURf) during selective hyperglycemia demonstrated a transient 40% increase at 1 and 2.5 h, corresponding temporally with a transient increase in brain GLUT-3 and liver and myocardial GLUT-1 protein amounts. In contrast, selective hyperinsulinemia led to a sustained increase in GURf, corresponding temporally with the persistent increase in hepatic GLUT-1 concentrations. We conclude that excess substrate acutely increases GURf associated with an increase in various tissues of the transporter isoforms GLUT-1 and GLUT-3 that mediate fetal basal glucose transport without an effect on the GLUT-4 isoform that mediates insulin action. This contrasts with the tissue-specific effects of selective hyperinsulinemia with a sustained increase in GURf associated with a sustained increase in hepatic basal glucose transporter (GLUT-1) amounts and a myocardial-specific emergence of mild insulin resistance associated with a downregulation of GLUT-4.  相似文献   

15.
We investigated the possible regulatory role of glycogen in insulin-stimulated glucose transport and insulin signaling in skeletal muscle. Rats were preconditioned to obtain low (LG), normal, or high (HG) muscle glycogen content, and perfused isolated hindlimbs were exposed to 0, 100, or 10,000 microU/ml insulin. In the fast-twitch white gastrocnemius, insulin-stimulated glucose transport was significantly higher in LG compared with HG. This difference was less pronounced in the mixed-fiber red gastrocnemius and was absent in the slow-twitch soleus. In the white gastrocnemius, insulin activation of insulin receptor tyrosine kinase and phosphoinositide 3-kinase was unaffected by glycogen levels, whereas protein kinase B activity was significantly higher in LG compared with HG. In additional incubation experiments on fast-twitch epitrochlearis muscles, insulin-stimulated cell surface GLUT-4 content was significantly higher in LG compared with HG. The data indicate that, in fast-twitch muscle, the effect of insulin on glucose transport and cell surface GLUT-4 content is modulated by glycogen content, which does not involve initial but possibly more downstream signaling events.  相似文献   

16.
Sensitivity of glucose transport to stimulation by insulin has been shown to occur concomitant with activation of the AMP-activated protein kinase (AMPK) in skeletal muscle, suggesting a role of AMPK in regulation of insulin action. The purpose of the present study was to evaluate a possible role of AMPK in potentiation of insulin action in muscle cells. The experimental model involved insulin-responsive C2C12 myotubes that exhibit a twofold increase in glucose transport in the presence of insulin. Treatment of myotubes with the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), followed by a 2-h recovery, augmented the ability of insulin to stimulate glucose transport. Similarly, incubation in hyperosmotic medium, another AMPK-activating treatment, acted synergistically with insulin to stimulate glucose transport. Furthermore, the increase in insulin action caused by hyperosmotic stress was prevented by inclusion of compound C, an AMPK inhibitor, in hyperosmotic medium. In addition, iodotubercidin, a general kinase inhibitor that is effective against AMPK, also prevented the combined effects of insulin and hyperosmotic stress on glucose transport. The new information provided by these data is that previously reported AICAR effects on insulin action are generalizable to myotubes, hyperosmotic stress and insulin synergistically increase glucose transport, and AMPK appears to mediate potentiation of insulin action.  相似文献   

17.
GLUT4, a 12 transmembrane protein, plays a major role in insulin mediated glucose transport in muscle and adipocytes. For glucose transport, the GLUT4 protein needs to be translocated to the plasma membrane from the intracellular pool and it is possible that certain compounds may be able to enhance this process. In the present work, we have shown that gallic acid can increase GLUT4 translocation and glucose uptake activity in an Akt-independent but wortmannin-sensitive manner. Further analysis suggested the role of atypical protein kinase Cζ/λ in gallic acid mediated GLUT4 translocation and glucose uptake.  相似文献   

18.
Exercise-induced increase in muscle insulin sensitivity.   总被引:9,自引:0,他引:9  
Exercise/muscle contraction activates glucose transport. The increase in muscle glucose transport induced by exercise is independent of insulin. As the acute effect of exercise on glucose transport wears off, it is replaced by an increase in insulin sensitivity. An increase in insulin sensitivity results in a shift in the insulin dose-response curve to the left, with a decrease in the concentration of insulin needed to induce 50% of the maximal response. This phenomenon, which plays a major role in rapid muscle glycogen accumulation after exercise, is not mediated by amplification of the insulin signal. Development of the increase in insulin sensitivity after contractions does not require protein synthesis or activation of p38 MAPK. It does require the presence of a serum protein during the period of contractile activity. The effect of exercise on muscle insulin sensitivity is mimicked by hypoxia and by treatment of muscles with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside to activate AMP-activated protein kinase. The postexercise increase in sensitivity of muscle glucose transport to activation is not specific for insulin but also involves an increased susceptibility to activation by a submaximal contraction/hypoxia stimulus. The increase in insulin sensitivity is mediated by translocation of more GLUT4 glucose transporters to the cell surface in response to a submaximal insulin stimulus. Although the postexercise increase in muscle insulin sensitivity has been characterized in considerable detail, the basic mechanisms underlying this phenomenon remain a mystery.  相似文献   

19.
Insulin signaling was examined in muscle made insulin resistant by short-term (24-h) denervation. Insulin-stimulated glucose transport in vitro was reduced by 28% (P < 0.05) in denervated muscle (DEN). In control muscle (SHAM), insulin increased levels of surface-detectable GLUT-4 (i.e., translocated GLUT-4) 1.8-fold (P < 0.05), whereas DEN surface GLUT-4 was not increased by insulin (P > 0.05). Insulin treatment in vivo induced a rapid appearance of phospho[Ser(473)]Akt-alpha in SHAM 3 min after insulin injection. In DEN, phospho[Ser(473)]Akt-alpha also appeared at 3 min, but Ser(473)-phosphorylated Akt-alpha was 36% lower than in SHAM (P < 0. 05). In addition, total Akt-alpha protein in DEN was 37% lower than in SHAM (P < 0.05). Akt-alpha kinase activity was lower in DEN at two insulin levels tested: 0.1 U insulin/rat (-22%, P < 0.05) and 1 U insulin/rat (-26%, P < 0.01). These data indicate that short-term (24-h) denervation, which lowers insulin-stimulated glucose transport, is associated with decreased Akt-alpha activation and impaired insulin-stimulated GLUT-4 appearance at the muscle surface.  相似文献   

20.
Insulin is thought to exert its effects on cellular function through the phosphorylation or dephosphorylation of specific regulatory substrates. We have analyzed the effects of okadaic acid, a potent inhibitor of type 1 and 2A protein phosphatases, on the ability of insulin to stimulate glucose transport in rat adipocytes. Insulin and okadaic acid caused a 20-25- and a 3-6-fold increase, respectively, in the rate of 2-deoxyglucose accumulation by adipose cells. When added to cells previously treated with okadaic acid, insulin failed to stimulate 2-deoxyglucose accumulation beyond the levels observed with okadaic acid alone. Treatment of cells with okadaic acid did not inhibit the effect of insulin to stimulate tyrosine autophosphorylation of its receptor. These results indicate that okadaic acid potently inhibits the effects of insulin to stimulate glucose uptake and/or utilization at a step after receptor activation. To clarify the mechanism of inhibition by okadaic acid, the intrinsic activity of the plasma membrane glucose transporters was analyzed by measuring the rate of uptake of 3-O-methylglucose by adipose cells, and the concentration of adipocyte/skeletal muscle isoform of the glucose transporter (GLUT-4) in plasma membranes isolated from these cells. Insulin caused a 15-20-fold stimulation of 3-O-methylglucose uptake and a 2-3-fold increase in the levels of GLUT-4 detected by immunoblotting of isolated plasma membranes; okadaic acid caused a 2-fold increase in 3-O-methylglucose uptake, and a 1.5-fold increase in plasma membrane GLUT-4. Pretreatment of cells with okadaic acid blocked the effect of insulin to stimulate 3-O-methylglucose uptake and to increase the plasma membrane concentration of GLUT-4 beyond the levels observed with okadaic acid alone. These results indicate that the effect of okadaic acid to inhibit the effect of insulin on glucose uptake is exerted at a step prior to the recruitment of glucose transporters to the cell surface, and suggest that a phosphatase activity may be critical for this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号