首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Gluconobacter suboxydans IFO 12528 was selected as the best strain for 5-keto-d-gluconate (5KGA) production by oxidative fermentation. 5KGA was markedly accumulated by the strain during cultivation in a medium containing d-glucose and/or d-gluconate. The resting cells and the membrane fraction also catalyzed 5KGA formation with a minimal formation of 2-keto-d-gluconate (2KGA), an alternative keto-d-gluconate from d-gluconate. The membrane fraction of the organism was confirmed to contain a membrane-bound d-gluconate dehydrogenase (GADH) catalyzing d-gluconate oxidation to 5KGA of which optimum pH and temperature were found at pH 4 and 15°C, respectively. After treating the membrane fraction with EDTA allowing conversion from holo-GADH to the apoenzyme, 5KGA-forming GADH was confirmed to be a pyrroloquinoline quinone (PQQ)-dependent enzyme by the fact that the enzyme activity was restored by the addition of CaCl2 and PQQ. The 5KGA-forming GADH was totally distinct from 2KGA-forming GADH in which a covalently bound FAD functions as coenzyme. 5KGA-forming GADH was well solubilized from the membrane fraction with n-octyl-β-d-thioglucoside and 5KGA formation was favourably catalyzed at relatively lower temperature, while 2KGA-forming enzyme was solubilized with Triton X-100 and relatively higher temperatures was optimum for 2KGA formation. These results are completely discrepant from the conclusion proposed by Klasen et al. [R. Klasen, S. Bringer-Mayer, H. Sahm, J. Bacteriol., 177, 1995, 2637] claiming that 5KGA was produced by d-gluconate oxidation catalyzed by NADP-dependent cytoplasmic 5KGA reductase from Gluconobacter species at fairly alkaline pH such as 10.  相似文献   

3.
Acetic acid bacteria, especially Gluconobacter species, have been known to catalyze the extensive oxidation of sugar alcohols (polyols) such as D-mannitol, glycerol, D-sorbitol, and so on. Gluconobacter species also oxidize sugars and sugar acids and uniquely accumulate two different keto-D-gluconates, 2-keto-D-gluconate and 5-keto-D-gluconate, in the culture medium by the oxidation of D-gluconate. However, there are still many controversies regarding their enzyme systems, especially on D-sorbitol and also D-gluconate oxidations. Recently, pyrroloquinoline quinone-dependent quinoprotein D-arabitol dehydrogenase and D-sorbitol dehydrogenase have been purified from G. suboxydans, both of which have similar and broad substrate specificity towards several different polyols. In this study, both quinoproteins were shown to be identical based on their immuno-cross-reactivity and also on gene disruption and were suggested to be the same as the previously isolated glycerol dehydrogenase (EC 1.1.99.22). Thus, glycerol dehydrogenase is the major polyol dehydrogenase involved in the oxidation of almost all sugar alcohols in Gluconobacter sp. In addition, the so-called quinoprotein glycerol dehydrogenase was also uniquely shown to oxidize D-gluconate, which was completely different from flavoprotein D-gluconate dehydrogenase (EC 1.1.99.3), which is involved in the production of 2-keto-D-gluconate. The gene disruption experiment and the reconstitution system of the purified enzyme in this study clearly showed that the production of 5-keto-D-gluconate in G. suboxydans is solely dependent on the quinoprotein glycerol dehydrogenase.  相似文献   

4.
Fluorescamine rapidly inactivated membrane-bound succinate dehydrogenase. The inhibition of the enzyme by this reagent was prevented by succinate and malonate, suggesting that the group modified by fluorescamine was located at the active site. The modification of the active site sulfhydryl group by 5,5-dithiobis(2-nitrobenzoic acid) (DTNB) did not alter the inhibitory action of fluorescamine. However, the protective effect of malonate against fluorescamine inhibition was abolished in the enzyme modified at the thiol.  相似文献   

5.
The effect of disulfiram on succinate oxidase and succinate dehydrogenase activities of beef heart submitochondrial particles was studied. Results show that disulfiram inhibits both functions. Succinate and malonate suppress the inhibitory action of disulfiram when succinate dehydrogenase is stabilized in an active conformation. Disulfiram is not able to inhibit the enzyme when succinate dehydrogenase is inactivated by oxaloacetate. The inhibitory effect of disulfiram is reverted by the addition of dithiothreitol. From these results, it is proposed that disulfiram inhibits the utilization of succinate by a direct modification of an -SH group located in the catalytically active site of succinate dehydrogenase.  相似文献   

6.
Measurements of the deaminating activity of NAD-dependent glutamate dehydrogenase (NAD-GDH) in Pseudomonas aeruginosa strain 8602 (PAC 1) showed an initially constant rate that gave way to a 3.5-fold increased rate on prolonged incubation. Only the faster rate was observed when assay mixtures were preflushed with nitrogen or were treated with the detergent Triton X-100. Comparison of the intracellular distribution of NAD-GDH with marker enzymes showed it to be associated with the cytoplasmic membrane. The results suggest that NAD-GDH may be linked to oxygen through an electron-transport system.  相似文献   

7.
To identify the enzyme responsible for pentitol oxidation by acetic acid bacteria, two different ribitol oxidizing enzymes, one in the cytosolic fraction of NAD(P)-dependent and the other in the membrane fraction of NAD(P)-independent enzymes, were examined with respect to oxidative fermentation. The cytoplasmic NAD-dependent ribitol dehydrogenase (EC 1.1.1.56) was crystallized from Gluconobacter suboxydans IFO 12528 and found to be an enzyme having 100 kDa of molecular mass and 5 s as the sedimentation constant, composed of four identical subunits of 25 kDa. The enzyme catalyzed a shuttle reversible oxidoreduction between ribitol and D-ribulose in the presence of NAD and NADH, respectively. Xylitol and L-arabitol were well oxidized by the enzyme with reaction rates comparable to ribitol oxidation. D-Ribulose, L-ribulose, and L-xylulose were well reduced by the enzyme in the presence of NADH as cosubstrates. The optimum pH of pentitol oxidation was found at alkaline pH such as 9.5-10.5 and ketopentose reduction was found at pH 6.0. NAD-Dependent ribitol dehydrogenase seemed to be specific to oxidoreduction between pentitols and ketopentoses and D-sorbitol and D-mannitol were not oxidized by this enzyme. However, no D-ribulose accumulation was observed outside the cells during the growth of the organism on ribitol. L-Ribulose was accumulated in the culture medium instead, as the direct oxidation product catalyzed by a membrane-bound NAD(P)-independent ribitol dehydrogenase. Thus, the physiological role of NAD-dependent ribitol dehydrogenase was accounted to catalyze ribitol oxidation to D-ribulose in cytoplasm, taking D-ribulose to the pentose phosphate pathway after being phosphorylated. L-Ribulose outside the cells would be incorporated into the cytoplasm in several ways when need for carbon and energy sources made it necessary to use L-ribulose for their survival. From a series of simple experiments, membrane-bound sugar alcohol dehydrogenase was concluded to be the enzyme responsible for L-ribulose production in oxidative fermentation by acetic acid bacteria.  相似文献   

8.
The reactions of Dopa decarboxylase (DDC) with l- and d-enantiomers of tryptophan methyl ester are described. Although both the enantiomers bind to the active site of the enzyme with similar affinity, their binding modes are different. l-enantiomer binds in an unproductive mode, while d-enantiomer acts as an oxidative deamination substrate. For the first time a quinonoid has been detected as intermediate of this reaction. By using rapid-scanning stopped-flow kinetic technique rate constants for formation and decay of this species have been determined. All these data, besides validating the functional DDC active site model, represent an important step toward the elucidation of the catalytic pathway of oxidative deamination.  相似文献   

9.
Yeast alcohol dehydrogenase (EC 1.1.1.1) catalyzed reduction of N,N-dimethyl-4-nitrosoaniline by NADH. The stoichiometry of reaction, steady-state kinetic parameters, and the pH-profile for this reaction were estimated. On that basis, the minimal mechanism of the above reaction was postulated.  相似文献   

10.
Methionine production by fermentation   总被引:1,自引:0,他引:1  
Fermentation processes have been developed for producing most of the essential amino acids. Methionine is one exception. Although microbial production of methionine has been attempted, no commercial bioproduction exists. Here, we discuss the prospects of producing methionine by fermentation. A detailed account is given of methionine biosynthesis and its regulation in some potential producer microorganisms. Problems associated with isolation of methionine overproducing strains are discussed. Approaches to selecting microorganism having relaxed and complex regulatory control mechanisms for methionine biosynthesis are examined. The importance of fermentation media composition and culture conditions for methionine production is assessed and methods for recovering methionine from fermentation broth are considered.  相似文献   

11.
12.
In aerobic metabolism, reactive oxygen species (ROS) are formed during the fermentation that can cause oxidative stress in microorganisms. Microbial cells possess both enzymatic and non-enzymatic defensive systems that may protect cells from oxidative damage. The antioxidant enzymes superoxide dismutase and catalase are the two key defensive enzymes to oxidative stress. The factors that induce oxidative stress in microorganisms include butylated hydroxytoluene (BHT), hydrogen peroxide, metal ions, dissolved oxygen tension, elevated temperature, menadione, junglone, paraquat, liquid paraffin, introduction to bioreactors of shake flask inocula and synthetic medium sterilized at initial pH 11.0. Carotenes are highly unsaturated isoprene derivatives. They are used as antioxidants and as coloring agents for food products. In fungi, carotenes are derived via the mevalonate biosynthesis pathway. The key genes in carotene biosynthesis are hmgR, ipi, isoA, carG, carRA and carB. Among microorganisms, Βlakeslea trispora is the main microorganism used for the production of carotenes on the industrial scale. Currently, the synthetic medium is considered the superior substrate for the production of carotenes in a pilot plant scale. The fermentation systems used for the production of carotenes include shake flasks, stirred tank fermentor, bubble column reactor and flat panel photobioreactor. This review summarizes the oxidative stresses in microorganisms and it is focused on the current status of carotene production by B. trispora including oxidative stress induced by BHT, enhanced dissolved oxygen levels, iron ions, liquid paraffin and synthetic medium sterilized at an initial pH 11.0. The oxidative stress induced by the above factors increases significantly the production of carotenes. However, to further reduce the cost of carotene production, new biotechnological methods with higher productivity still need to be explored.  相似文献   

13.
Applied Microbiology and Biotechnology - Acetic acid fermentation is widely considered a consequence of ethanol oxidation by two membrane-bound enzymes—alcohol dehydrogenase and aldehyde...  相似文献   

14.
15.
16.
17.
18.
Fluorinated substrate analogs were synthesized and incubated with rat liver 3-hydroxyacyl-CoA dehydrogenase, which reveals that the formation of an enolate intermediate is required for the reaction catalyzed by the enzyme.  相似文献   

19.
The inhibition of aldehyde dehydrogenase by cyanamide is dependent on an enzyme catalyzed conversion of the latter to an active metabolite. The following results suggest that catalase is the enzyme responsible for this bioactivation. The elevation of blood acetaldehyde elicited by cyanamide after ethanol administration to rats was attenuated more than 90 percent by pretreatment with the catalase inhibitor, 3-amino-1,2,4-triazole. This attenuation was dose dependent and was accompanied by a reduction in total hepatic catalase activity. Although hepatic catalase was also inhibited by cyanamide, a positive correlation between blood acetaldehyde and hepatic catalase activity was observed. In vitro, the activation inhibitor, 3-amino-1,2,4-triazole. This attenuation was dose dependent and was accompanied by a reduction in total hepatic catalase activity. Although hepatic catalase was also inhibited by cyanamide, a positive correlation between blood acetaldehyde and hepatic catalase activity was observed. In vitro, the activation of cyanamide was catalyzed by a) the rat liver mitochondrial subcellular fraction, b) the 50-65% ammonium sulfate mitochondrial fraction and c) purified bovine liver catalase. Cyanamide activation was inhibited by sodium azide. Since much of the hepatic catalase is localized in the peroxisomes and since peroxisomes and mitochondria cosediment, the cyanamide activating enzyme, catalase, is likely of peroxisomal and mitochondrial origin.  相似文献   

20.
Fumaric acid production by fermentation   总被引:3,自引:0,他引:3  
The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid from maleic anhydride and the fermentation process yields only 85% w/w from glucose, the latter raw material is three times cheaper. Besides, the fermentation fixes CO2. Production of fumaric acid by Rhizopus species and the involved metabolic pathways are reviewed. Submerged fermentation systems coupled with product recovery techniques seem to have achieved economically attractive yields and productivities. Future prospects for improvement of fumaric acid production include metabolic engineering approaches to achieve low pH fermentations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号