首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Gonadotropin releasing hormone enhanced guanylate cyclase [E.C.4.6.1.2] two- to threefold in pituitary, testis, liver and kidney. Dose response relationships revealed that at a concentration of 1 nanomolar, gonadotropin releasing hormone caused a maximal augmentation of guanylate cyclase activity and that increasing its concentration to the millimolar range caused no further enhancement of this enzyme. There was an absolute cation requirement for gonadotropin releasing hormone's enhancement of guanylate cyclase activity as there was no increase without any cation present. Gonadotropin releasing hormone could increase guanylate cyclase activity with either calcium or manganese in the incubation medium but more augmentation was observed with manganese. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of gonadotropin releasing hormone.  相似文献   

2.
Prolactin enhanced guanylate cyclase [E.C.4.6.1.2] two- to threefold in ovary, testis, mammary gland, liver and kidney. Dose response relationships revealed that maximal activation of this enzyme was at a concentration of one nanomolar and that increasing prolactin's concentration to the millimolar range caused no further increase in activity. There was an absolute cation requirement for prolactin's enhancement of guanylate cyclase. Calcium or manganese allowed prolactin to increase guanylate cyclase activity. Greater enhancement of this enzyme's activity by prolactin was observed when manganese was the co-factor. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of prolactin.  相似文献   

3.
Tolbutamide and its non-hypoglycemic analog carboxytolbutamide increased soluble and particulate guanylate cyclase [E.C.4.6.1.2] activity twofold in liver, lung, colon, pancreas, kidney cortex, heart and spleen at a concentration of 1 microM. The ED50 for stimulation of guanylate cyclase activity was 50 nM for both agents. No stimulation of guanylate cyclase activity was observed with either agent when their concentrations were decreased to 1 nM. Maximal enhancement was at a concentration of 100 nM for both agents. Butylated hydroxytoluene, an antioxidant and hydroxyl radical scavenger, completely blocked any enhancement of guanylate cyclase by carboxytolbutamide, suggesting that its effect was due to a nonspecific oxidation reaction. Tolbutamide's augmentation of guanylate cyclase activity was not blocked by butylated hydroxytoluene. Varying the concentration of the guanylate cyclase co-factor manganese indicated that these sulfonylureas could not maximally activate guanylate cyclase without manganese being present. In addition to increased insulin receptors in monocytes and fibroblasts, the present findings, plus similar findings with the oral hypoglycemic agent glibenclamide, may help explain the mechanism of the extra-pancreatic effects of oral sulfonylurea agents at the cellular level.  相似文献   

4.
The present investigation was designed to determine if atrial natriuretic factor relaxes non-vascular smooth muscle. Rather than cause a relaxation, atrial natriuretic factor induced a two-to-four fold enhancement in the amplitude of the spontaneous phasic contractions of duodenal longitudinal muscle. Dose-response curves revealed that ANF enhanced these contractions over a concentration range of 10 picomoles to 100 nanomoles with the ED50 at 1 nanomolar. The increased amplitude of contraction began within 30 seconds and was calcium-dependent. The increased force of contraction was associated with a three-fold increase in cyclic GMP levels and activation of particulate guanylate cyclase [E.C.4.5.1.2.]. Atrial natriuretic factor had its half-maximal [ED50] activation of guanylate cyclase at its 1 nM concentration while maximal enhancement was at its 100 nM concentration in duodenum, jejunum, and ileum. Atrial natriuretic factor did not stimulate adenylate cyclase [E.C.4.6.1.1.]. Thus, atrial natriuretic factor increases the force of the spontaneous phasic contractions of the small intestine which are calcium-dependent and associated with activation of the guanylate cyclase-cyclic GMP system.  相似文献   

5.
Summary Somatostatin has been shown to inhibit the release of various polypeptide hormones including insulin, glucagon, gastrin, thyroid stimulating hormone, and growth hormone. The mechanism by which somatostatin inhibits the release of these various polypeptide hormones has not been fully eluciadated. It has been reported that somatostatin increases the level of the second messenger cyclic GMP in rat brain and in the anterior pituitary gland. The present investigation was designed to determine if these responses seen in the anterior pituitary gland and brain were due to activation of guanylate cyclase GTP-pyrophosphate lyase (cyclizing), E.C.4.6.1.2., the enzyme that catalyzes the formation of cyclic GMP. Somatostatin at a concentration of 2 pm enhanced guanylate cyclase activity two-fold in rat cerebrum and anterior pituitary gland. This enhancement of guanylate cyclase activity was also seen in rat liver, pancreas, stomach, and small intestine at the same concentration of somatostatin. Increasing the concentration of somatostatin to 20 m, caused a marked inhibition of guanylate cyclase activity in all these tissues. Dose-response curves done on gastric guanylate cyclase activity revealed that over a concentration range of 2 pm to 0.2 m, somatostatin had a stimulatory effect on guanylate cyclase activity while at concentrations above 10 m somatostatin was inhibitory to guanylate cyclase activity. The biphasic pattern of enhancement of guanylate cyclase activity at lower concentrations of somatostatin and inhibition at higher concentrations may help to explain some of the discrepancies seen with previous investigations with somatostatin, hormone release, and cyclic nucleotide metabolism.  相似文献   

6.
Substance P enhanced guanylate cyclase (E.C.4.6.1.2) two- to fourfold in pancreas, small intestine, cerebellum, liver, kidney, and lung. Dose response relationship revealed that substance P caused a maximal augmentation of guanylate cyclase activity at concentration of 1 micromolar. Increasing substance P's concentration to the millimolar range caused no further increase in activity. There was an absolute cation requirement for substance P's enhancement of guanylate cyclase activity. Substance P could increase guanylate cyclase activity with either calcium or manganese in the incubation medium but more augmentation was observed with manganese. The data in this investigation suggest that guanylate cyclase may play a role in the mechanism of action of substance P.  相似文献   

7.
The resynthesis of cGMP in vertebrate photoreceptors by guanylate cyclase is one of the key events leading to the reopening of cGMP-gated channels after photoexcitation. Guanylate cyclase activity in vertebrate rod outer segments is dependent on the free calcium concentration. The basal activity of the enzyme observed at high concentrations of free calcium (greater than 0.5 microM) increases when the free calcium concentration is lowered into the nanomolar range (less than 0.1 microM). This effect of calcium is known to be mediated by a soluble calcium-sensitive protein in a highly cooperative way. We here show that this soluble protein, i.e. the modulator of photoreceptor guanylate cyclase, is a 26 kd protein. Reconstitution of the purified 26 kd protein with washed rod outer segment membranes containing guanylate cyclase revealed a 3- to 4-fold increase of cyclase activity when the free calcium concentration was lowered in the physiological range from 0.5 microM to 4 nM. Guanylate cyclase in whole rod outer segments was stimulated 10-fold in the same calcium range. The activation process in the reconstituted system was similar to the one in the native rod outer segment preparation, it showed a high cooperativity with a Hill coefficient n between 1.4 and 3.5. The half-maximal activation occurred between 110 and 220 nM free calcium. The molar ratio of the modulator to rhodopsin is 1:76 +/- 32. The protein is a calcium binding protein as detected with 45Ca autoradiography. Partial amino acid sequence analysis revealed a 60% homology to visinin from chicken cones.  相似文献   

8.
Several thiol blocking agents inhibit basal guanylate cyclase activity of 100 000 X g hepatic supernatant fractions and the stimulation of enzyme activity by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), NaN3, NaNO2 and nitroprusside. The relative potency of the thiol blockers as inhibitors was CdCl2 greater than p-hydroxymercuribenzoate greater than N-ethylmaleimide greater than arsenite greater than iodoacetamide. Inhibition of basal and MNNG-responsive soluble guanylate cyclase activities by arsenite was markedly potentiated by an equimolar concentration of 2,3-dimercaprol, but not by mercaptoethanol. Inhibition of soluble guanylate cyclase by either arsenite or CdCl2 was completely reversed by excess 2,3-dimercaprol. Qualitatively similar effects were observed with DE-52 cellulose purified soluble hepatic guanylate cyclase, and suggested an involvement of closely juxtaposed thiol groups in the regulation of enzyme activity. For several reasons inhibition by thiol blockers appeared to be mediated through multiple mechanisms and/or sites of interaction: (1) Concentrations of the thiol inhibitors which had no effect on basal activity strikingly inhibited the responsiveness of the enzyme to a submaximal concentration of MNNG. (2) CdCl2 abolished the action of excess MnCl2 to stimulate purified guanylate cyclase, but was a relatively ineffective inhibitor when MnCl2 and GTP were present in equimolar concentrations. By contrast, arsenite-2,3-dimercaprol was uniformly effective in inhibiting guanylate cyclase activity in the presence or absence of excess MnCl2. (3) Arsenite-2,3-dimercaprol increased the Km for MnGTP (control, 0.13 +/- 0.02 mM; 0.2 mM arsenite-2,3-dimercaprol, 0.31 +/- 0.03 mM), whereas CdCl2 had no effect on this parameter. (4) Hepatic particulate guanylate cyclase activity was significantly inhibited by arsenite 2,3-dimercaprol but not by CdCl2. Thus, the data not only indicate that vicinal dithiol groups are required for expression of basal guanylate cyclase activity and enzyme responses to agonists, but strongly suggest the involvement of more than one interacting site containing free thiol residues.  相似文献   

9.
Guanylate cyclase from human platelets was over 90% soluble, even when assayed in the presence of Triton X-100. A time-dependent increase in activity occurred when the enzyme was incubated at 37 degrees and this spontaneous activation was prevented by dithiothreitol. Arachidonic acid stimulated the soluble enzyme activity approximately 2- to 3-fold. Linear double reciprocal plots of guanylate cyclase activation as a function of arachidonic acid concentration were obtained with a Ka value of 2.1 muM. A Hill coefficient of 0.98 was obtained indicating that one fatty acid binding site is present for each catalytic site. Concentrations of arachidonic acid in excess of 10 muM caused less than maximal stimulation. Dihomo-gamma-linolenic acid and two polyunsaturated 22 carbon fatty acids stimulated the activity of guanylate cyclase to the same degree as did arachidonic acid. The methyl ester of arachidonic acid was much less effective. Diene, monoene, and saturated fatty acids of various carbon chain lengths as well as prostaglandins E1, E2, and F2alpha, had little or no effect. These data indicate that the structural determined required for stimulation by fatty acids of soluble platelet guanylate cyclase is a 1,4,7-octatriene group with its first double bond in the omega6 position. This structural group is similar to the substrate specificity determinants of fatty acid cyclooxygenase, the first enzyme of the prostaglandin synthetase complex. However, conversion of arachidonic acid to a metabolite of the cyclooxygenase pathway did not appear to be required for activation of the cyclase since activation occurred in the 105,000 X g supernatant fraction and pretreatment of this fraction with aspirin did not alter the ability of arachidonic acid to activate guanylate cyclase. Kinetic studies showed that the stimulation of guanylate cyclase by arachidonic acid is primarily an effect on maximal velocity. Arachidonic acid did not alter the concentration of free Mn2+ required for optimal activity. It is concluded that the activity of the soluble form of guanylate cyclase in cell-free preparations of human platelets can be increased by a lipid-protein interaction involving specific polyunsaturated fatty acids.  相似文献   

10.
Summary The sulfur atom in the vitamin biotin has previously been suggested to be essential in biotin's mechanism of action. In a series of investigations on structure-function relationships with biotin analogs not containing the sulfur atom, the biotin analogs, azabiotin, bisnorazabiotin, carbobiotin and isoazabiotin enhanced guanylate cyclase, an enzyme that has recently been demonstrated to be activated by biotin. These analogs increased guanylate cyclase activity two-fold in liver, cerebellum, heart, kidney and colon at 1 M concentrations. The ED50 for stimulation of guanulate cyclase activity occurred at 0.1 M for each of the biotin analogs. These data indicate that the sulfur atom is not essential in biotin's activation of guanylate cyclase since these analogs do not contain the sulfur atom. Studies on the ring structure of biotin revealed that even compounds with a single 5-membered ring (2-imidazolidone) could augment guanylate cyclase activity. The guanylate cyclase co-factor manganese was not essential for the enhancement of guanylate cyclase by these agents but a maximal activation of this enzyme by these analogs could not be obtained without manganese present.  相似文献   

11.
Summary The cytochemical localization of particulate guanylate cyclase and adenylate cyclase activities in rabbit platelets were studied after stimulation with various agents, at the electron microscope level. In the presence of platelet aggregating agents such as thrombin and ADP, the particulate reaction product of guanylate cyclase activity was detectable on plasma membrane and on membranes of the open canalicular system. In contrast, samples incubated with platelet-activating factor showed no activation of the cyclase activity. Atrial natriuretic factor stimulated the particulate guanylate cyclase. The ultracytochemical localization of this activated cyclase was the same as that of thrombin-or ADP-stimulated guanylate cyclase. Adenylate cyclase activity was studied in platelets incubated with prostaglandin E1 plus or minus insulin. The enzyme reaction product was found at the same sites where guanylate cyclase was detected. Therefore guanylate and adenylate cyclase activities do not seem to be preferentially localised in platelet membranes.  相似文献   

12.
The 98 amino acid (a. a.) N-terminus of the 126 a. a. atrial natriuretic factor (ANF) prohormone contains three peptides consisting of a. a. 1–30 (proANF 1–30), a. a. 31–67 (proANF 31–67) and a. a. 79–98 (proANF 79–98) with blood pressure lowering, sodium and/or potassium excreting properties similar to atrial natriuretic factor (a. a. 99–126, C-terminus of prohormone). ProANF 1–30 and proANF 31–67 have separate and distinct receptors from ANF in both vasculature and in the kidney to help mediate the above effects. At the cellular level proANFs 1–30, 31–67, and 79–98 as well as ANF's effects are mediated by enhancement of the guanylate cyclase (EC 4.6.1.2) — cyclic GMP system in vasculature and in the kidney. These peptides from the N-terminus of the ANF prohormone circulate normally in man and in all animal species tested. The object of the present investigation was to determine if these peptides have the ability to enhance either guanylate cyclase and/or adenylate cyclase in a variety of other tissues in addition to kidney and vasculature. ProANF 1–30, proANF 31–67, proANF 79–98, and ANF all increased rat lung, liver, heart and testes, but not spleen, particulate guanylate cyclase 2- to 3-fold at their 100 nM concentrations. Dose response curves revealed that maximal stimulation of particulate guanylate cyclase activity by these newly discovered peptides was at their 1 M concentrations, with no further increase in activity above their 1 M concentrations. Half-maximal (EC50) enhancement of particulate guanylate cyclase occurred at 0.15 ± 0.01, 0.3 ± 0.02, 0.5 ± 0.03, and 0.9 ± 0.03 nM for proANF 1–30, proANF 31–67, proANF 79–98 and ANF, respectively. ProANFs 1–30, 31–67, 79–98, and 99–126 (i.e., ANF) each increased cyclic GMP but not cyclic AMP levels in tissue slices of liver, lung, small intestine, heart, and testes. None of these peptides enhanced either adenylate cyclase or the soluble 100,000 G form of guanylate cyclase. The ability of these N-terminal peptides to enhance particulate guanylate cyclase activity in a wide variety of tissues suggests that they may have effects in a much wider variety of tissues than presently thought.  相似文献   

13.
When tested at concentrations producing submaximal responses, the N-nitroso carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine (methylnitro-nitrosoguanidine) elicited a 2-fold greater increase in guanosine 3',5'-monophosphate (cyclic GMP) accumulation in slices and a 5-fold greater stimulation of guanylate cyclase activity in whole homogenates of rat liver examined 24 h after 75% hepatectomy compared to the corresponding methylnitro-nitrosoguanidine responses in sham-operated and unoperated controls. Enhanced methylnitro-nitrosoguanidine sensitivity of guanylate cyclase in whole homogenates of regenerating liver was attributable to altered responsiveness of the enzyme activity of the 100 000 X g soluble fraction, which contained 98% of the methylnitro-nitrosoguanidine responsive activity. Basal cyclic GMP accumulation and guanylate cyclase activities of these systems, and their responses to concentrations of methylnitro-nitrosoguanidine eliciting maximal stimulation were unchanged after partial hepatectomy or sham operation, compared to unoperated controls. The findings of (a) increased heme concentrations in the supernatant and the high molecular weight Sephadex G-25 fraction of sham operated, compared to regenerating liver, (b) suppression of methylnitro-nitrosoguanidine responsive activity after addition of exogenous hemoglobin to supernatants from regenerating liver, and (c) enhancement of the responsiveness of soluble guanylate cyclase from sham operated liver to submaximal methylnitro-nitrosoguanidine after reduction of endogenous heme content by in situ perfusion, all suggested that the difference in methylnitro-nitrosoguanidine action observed in control vs. regenerating liver are related to a lower heme-protein content of the latter. These results emphasize the importance of endogenous heme as a factor modulating the response of the hepatic guanylate cyclase system to methylnitro-nitrosoguanidine.  相似文献   

14.
1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, [125I]iodomelatonin, was examined using an incubation temperature (30 degrees C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing [125I]iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax = 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.  相似文献   

15.
J K Bentley  H Shimomura  D L Garbers 《Cell》1986,45(2):281-288
Resact, a peptide obtained from eggs, causes a change in the Mr, and a loss of 32P from a plasma membrane protein identified as guanylate cyclase. Here, a resact analog (125I-[Tyr1, Ser8] resact) was synthesized and shown to bind to isolated sperm membranes. Resact, but not speract, competed with the radiolabeled ligand for binding. When membranes were prepared under appropriate conditions, guanylate cyclase remained at Mr 160,000; the incubation of membranes with gamma-32P-ATP resulted in the formation of 32P-labeled guanylate cyclase. The addition of resact to the membranes caused a shift in the Mr, a complete loss of 32P, and a 70% reduction in guanylate cyclase activity within 1 min; resact had an ED 50 at 100 nM concentration. Speract failed to cause any of these effects. This represents the first demonstration of receptor-mediated responses of isolated sperm membranes identical to those seen in the intact cell.  相似文献   

16.
Partially purified human leukocyte interferons, partially purified human lymphoblastoid interferon, and human fibroblast interferon enhanced rat liver, kidney, and splenic guanylate cyclase {E.C.4.6.1.2.} activity 2–4 fold at 5 μIU concentration. Dose-response relationships revealed that the human leukocyte interferons enhanced splenic guanylate cyclase activity at concentrations as low as 0.01 μIU while a concentration of 1 μIU for partially purified human lymphoblastoid interferon and 10 μIU concentration for human fibroblast interferon were necessary to see any effect on guanylate cyclase activity.  相似文献   

17.
The guanosine 3',5'-cyclic monophosphate (cGMP) level in the mouse splenic lymphocytes was increased about 2- to 3-fold by concanavalin A. This increase was completely dependent on the presence of Ca2+ in the medium. Homogenates of mouse splenic lymphocytes contained significant guanylate cyclase [EC 4.6.1.2] activity in both the 105,000 X g (60 min) particulate and supernatant fractions and both fractions required Mn2+ for full activity. Calcium ion (3mM) activated soluble guanylate cyclase 3-fold at a relatively low concentration of Mn2+ (less than 1mM) but inhibited the particulate enzyme slightly at all Mn2+ concentrations tested. Concanavalin A itself did not stimulate either fraction of guanylate cyclase. Thus these results suggest that elevation of the cGMP level in lymphocytes by concanavalin A might be brought about by stimulation of Ca2+ uptake and activation of soluble guanylate cyclase by the latter.  相似文献   

18.
Light activation of guanylate cyclase at different calcium concentrations was studied in the rod outer segments of the toad retina. The enzyme becomes sensitive to calcium ions after a flash of light, showing an enhancement of its activity when Ca2+ concentration is lowered from 10(-4) M to 10(-8) M. A possible pathway of guanylate cyclase activation by light was also investigated by means of the antibody 4A to transducin. When added in excess to transducin, the antibody inhibits light activation of phosphodiesterase as well as of cyclase, suggesting a possible coupling of the two enzymes.  相似文献   

19.
The influence of adrenochrome and YC-1 activation of human platelet soluble guanylate cyclase was investigated. Adrenochrome (0.1–10.0 μM) had no effect on the basal activity, but it potentiated in a concentration- dependent manner the spermine NONO-induced activation of this enzyme. Adrenochrome also sensitized guanylate towards nitric oxide (NO) and produced the leftward shift of the spermine NONO concentration response curve. Addition of adrenochrome decreased the YC-1-induced leftward shift of the spermine NONO concentration response curve. Adrenochrome also inhibited enzyme activation byYC-1. Thus, synergistic activation of NO-stimulated guanylate cyclase activity by adrenochrome represents a new biochemical effect of this compound and indicates that adrenochrome may act as an endogenous regulator of the NO-dependent stimulation of soluble guanylate cyclase. This new property of adrenochrome, similar to YC-1 but more effective, should be taken into consideration especially under conditions of adrenochrome overproduction in the body.  相似文献   

20.
Cyclic GMP is the second messenger in phototransduction and regulates the photoreceptor current. In the present work, we tried to understand the regulation mechanism of cytoplasmic cGMP levels in frog photoreceptors by measuring the photoreceptor current using a truncated rod outer segment (tROS) preparation. Since exogenously applied substance diffuses into tROS from the truncated end, we could examine the biochemical reactions relating to the cGMP metabolism by manipulating the cytoplasmic chemical condition. In tROS, exogenously applied GTP produced a dark current whose amplitude was half-maximal at approximately 0.4 mM GTP. The conductance for this current was suppressed by light in a fashion similar to when it is activated by cGMP. In addition, no current was produced in the absence of Mg2+, which is known to be necessary for the guanylate cyclase activity. These results indicate that guanylate cyclase was present in tROS and synthesized cGMP from exogenously applied GTP. The enzyme activity was distributed throughout the rod outer segment. The amount of synthesized cGMP increased as the cytoplasmic Ca2+ concentration of tROS decreased, which indicated the activation of guanylate cyclase at low Ca2+ concentrations. Half-maximal effect of Ca2+ was observed at approximately 100 nM. tROS contained the proteins involved in the phototransduction mechanism and therefore, we could examine the regulation of the light response waveform by Ca2+. At low Ca2+ concentrations, the time course of the light response was speeded up probably because cGMP recovery was facilitated by activation of the cyclase. Then, if the cytoplasmic Ca2+ concentration of a photoreceptor decreases during light stimulation, the Ca2+ decrease may explain the acceleration of the light response during light adaptation. In tROS, however, we did observe an acceleration during repetitive light flashes when the cytoplasmic Ca2+ concentration increased during the stimulation. This result suggests the presence of an additional light-dependent mechanism that is responsible for the acceleration of the light response during light adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号