首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Effects of Cephalotaxus alkaloids (homoharringtonine and cephalotaxine) on the translation of endogenous mRNA in a cell-free system of rabbit reticulocyte lysate and on poly(U)-directed poly(Phe) synthesis on human placenta ribosomes was studied. The effect of the alkaloids on the activity of human placenta ribosomes in a template-dependent aminoacyl-tRNA binding, N-acetyl-phenylalanyl-puromycin and diphenylalanine formation was also studied. Homoharringtonine was shown to have little effect of codon-dependent Phe-tRNA(Phe) binding but the alkaloid strongly inhibited (Phe)2 formation as well as N-Ac-Phe-puromycin synthesis from the complex N-Ac-Phe-tRNA(Phe).poly(U).80S ribosomes. It was concluded that the site of homoharringtonine binding overlaps or coincides with the acceptor site of the ribosomal peptidyltransferase center. The association constant of homoharringtonine to the ribosomes was estimated to be (4.8 +/- 1.0) x 10(7) M-1. Cephalotaxine had no effect on the elongation steps.  相似文献   

2.
The conditions for preparation of 80S ribosomes from S. cerevisiae are suggested. The ribosomes can bind Phe-tRNAPhe in poly(U)-or poly(dT)-directed manner and are shown to be able to translate poly(dT) in the absence of elongation factor and GTP. Effects of different antibiotics on the factor-free translation have been studied.  相似文献   

3.
The effect of mutations in ribosomal proteins S4 (rpsD12), S12 (rpsL282) and L7/L12 (rplL265) of Escherichia coli K12 on the EF-Tu-dependent expenditure of GTP during codon-specific elongation (poly(Phe) synthesis on poly(U] and misreading (poly(Leu) synthesis on poly(U], was studied. Under the conditions used the mutations in proteins S4 and L7/L12 did not practically affect the EF-Tu-dependent expenditure of GTR during the poly(Phe) synthesis on poly(U): the GTP/Phe ratio was about 1, as in the case of the wild strain. Under the same conditions, the ribosomes with a mutant S12 protein tended to discard some amount of Phe-tRNA, as a result of which the GTP/Phe ratio increased to about 3. The marked inhibition of misreading by ribosomes with a mutant S12 protein was accompanied by a significant increase of GTP expenditure at the stage of EF-Tu-dependent non-cognate aminoacyl-tRNA binding. In mutant S 12 proteins the GTP/Leu ratio was about 30-40, whereas in the wild type it was about 12. In contrast, stimulation of misreading by ribosomes with mutant S4 and L7/L12 proteins was accompanied by a decrease of the EF-Tu-dependent expenditure of GTP by 2-3 GTP molecules per one Leu residue included into the peptide.  相似文献   

4.
The effect of Escherichia coli ribosomal protein S1 on translation has been studied in S1-depleted systems programmed with poly(U), poly(A) and MS2 RNA3. The translation of the phage RNA depends strictly on the presence of S1. Optimum poly(U)-directed polyphenylalanine synthesis and poly(A)-programmed polylysine synthesis also require S1. Excess S1 relative to ribosomes and messenger RNA results in inhibition of translation of MS2 RNA and poly(U), but not of poly (A). In the case of phage RNA translation, this inhibition can be counteracted by increasing the amount of messenger RNA. Three other 30 S ribosomal proteins (S3, S14 and S21) are also shown to inhibit MS2 RNA translation. The effects of S1 on poly(U) translation were studied in detail and shown to be very complex. The concentration of Mg2+ in the assay mixtures and the ratio of S1 relative to ribosomes and poly(U) are crucial factors determining the response of this translational system towards the addition of S1. The results of this study are discussed in relation to recent developments concerning the function of this protein.  相似文献   

5.
Single point mutations corresponding to the positions G2505 and G2583 have been constructed in the gene encoding E.coli 23S rRNA. These mutations were linked to the second mutation A1067 to T, known to confer resistance to thiostrepton (1). Mutant ribosomes were analyzed in vitro for their ability to direct poly(U) dependent translation, their missence error frequency and in addition their sensitivity to peptidyltransferase inhibitors. It was evident that the mutated ribosomes had an altered dependence on [Mg2+] and an increased sensitivity to chloramphenicol during poly(U) directed poly(Phe) synthesis. In a transpeptidation assay mutated ribosomes were as sensitive to chloramphenicol as wild-type ribosomes. However, the mutant ribosomes exhibited an increased sensitivity to lincomycin. An increase in translational accuracy was attributed to the mutations at the position 2583: accuracy increased in the order G less than A less than U less than C.  相似文献   

6.
Poly(4-thiouridylic acid) [poly(s4U)] synthesized by polymerization of 4-thiouridine 5'-diphosphate with Escherichia coli polynucleotide phosphorylase (EC 2.7.7.8) acts as messenger RNA in vitro in a protein-synthesizing system from E. coli. It stimulates binding of Phe-tRNA to ribosomes both in the presence of EF-Tu-Ts at 5 mM Mg2+ concentration and nonenzymatically at 20 mM Mg2+ concentration. It codes for the synthesis of polyphenylalanine. Poly(s4U) competes with poly(U) for binding to E. coli ribosomes. Light of 330 nm photoactivates poly(s4U) thus making it a useful photoaffinity label for the ribosomal mRNA binding site. Upon irradiation of 70-S ribosomal complexes, photoreaction occurs with ribosomal proteins as well as 16-S RNA. Ribosomes pre-incubated with R17 RNA are protected against the photoaffinity reaction. The labelling of 16-S RNA can be reduced by treatment of ribosomes with colicin E3.  相似文献   

7.
Using the solid-phase translation system technique where template poly(U) is covalently coupled to Sepharose through cleavable disulfide bridges translating monoribosomes carrying a polypeptide (polyPhe) of 10 to 20 amino acids long have been isolated. Both pre-translocation state and post-translocation state ribosomes have been obtained. It has been shown that the sedimentation coefficient of the pre-translocation state ribosomes exceeds that of the post-translocation state ribosomes by a magnitude of about 1S. This difference is independent on the sedimentation rate (hydrostatic pressure) in the range of 20 000 to 40 000 rev/min and, most likely, is not a direct contribution of the increase of the particle mass at the expense of an additional tRNA in the pre-translocation state ribosomes. Together with other data, this result suggests that translating ribosomes in the pre-translocation state are more compact than post-translocation state ribosomes.  相似文献   

8.
The stimulation of poly(U)-directed polyphenylalanine synthesis produced by modification ofEscherichia coli ribosomes withp-hydroxymercuribenzoate, at low molar ratios of reagent to ribosomes, is due to an increase in the average chain length of polyphenylalanine synthesized, and not to the activation of inactive ribosomes. At a higher molar ratio ofp-hydroxymercuribenzoate to ribosomes, which produces no overall change in activity, approximately 50% of the active ribosomes present in the untreated preparation have been completely inactivated, and the remaining active ones, like the ribosomes of the stimulated preparation, synthesize polyphenylalanine at an increased rate as compared with the untreated ribosomes.Abbreviations pHMB p-hydroxymercuribenzoate - SucNBr N-bromosuccinimide  相似文献   

9.
A technique that permitted the reversible dissociation of rat liver ribosomes was used to study the difference in protein-synthetic activity between liver ribosomes of normal and hypophysectomized rats. Ribosomal subunits of sedimentation coefficients 38S and 58S were produced from ferritin-free ribosomes by treatment with 0.8m-KCl at 30 degrees C. These recombined to give 76S monomers, which were as active as untreated ribosomes in incorporating phenylalanine in the presence of poly(U). Subunits from normal and hypophysectomized rats were recombined in all possible combinations and the ability of the hybrid ribosomes to catalyse polyphenylalanine synthesis was measured. The results show that the defect in ribosomes of hypophysectomized rats lies only in the small ribosomal subunit. The 40S but not the 60S subunit of rat liver ribosomes bound poly(U). The only requirement for the reaction was Mg(2+), the optimum concentration of which was 5mm. No apparent difference was seen between the poly(U)-binding abilities of 40S ribosomal subunits from normal or hypophysectomized rats. Phenylalanyl-tRNA was bound by 40S ribosomal subunits in the presence of poly(U) by either enzymic or non-enzymic reactions. Non-enzymic binding required a Mg(2+) concentration in excess of 5mm and increased linearly with increasing Mg(2+) concentrations up to 20mm. At a Mg(2+) concentration of 5mm, GTP and either a 40-70%-saturated-(NH(4))(2)SO(4) fraction of pH5.2 supernatant or partially purified aminotransferase I was necessary for binding of aminoacyl-tRNA. Hypophysectomy of rats resulted in a decreased binding of aminoacyl-tRNA by 40S ribosomal subunits.  相似文献   

10.
Ribosomes can have two states at 0 degree C: competent and noncompetent in translocation. In both states poly(U)-programmed ribosomes bind phenylalanyl-tRNA to A and P sites and form peptide bond. Elongation factor G promotes fast translocation in competent ribosomes and makes them noncompetent ones. Initial correlation between competent and noncompetent ribosomes is 2:1. Addition of deacylated tRNA does not influence phenomenon described as well as thermal reactivation of the ribosomes before beginning of the experiments. The possibility of deacylated tRNA translocation is shown. The translocation does not occurred provided that at least one of the ribosome sites is filled with shortened tRNA analog (tRNA with truncated CCA-end or tRNA anticodon arm).  相似文献   

11.
A sensitive and rapid method has been developed for studying the interactions of ribonucleotide homopolymers with isolated liver ribosomal subunits. Small amounts of ribosomal subunits are first immobilised on Millipore filters. The homopolymers are then allowed to interact with the ribosomes by slow passage through the filters. Conditions are described under which both the large and the small subunits can bind poly(A) and poly(U) as well as poly(G). The poly(A) and poly(G) binding sites can be shown to be different.  相似文献   

12.
Poly(U)-programmed 70S ribosomes can be shown to be 80% to 100% active in binding the peptidyl-tRNA analogue AcPhe-tRNA to their A or P sites, respectively. Despite this fact, only a fraction of such ribosomes primed with AcPhe-tRNA participate in poly(U)-directed poly(Phe) synthesis (up to 65%) at 14 mM Mg2+ and 160 mM NH4+. Here it is demonstrated that the apparently 'inactive' ribosomes (greater than or equal to 35%) are able to participate in peptide-bond formation, but lose their nascent peptidyl-tRNA at the stage of Ac(Phe)n-tRNA, with n greater than or equal to 2. The relative loss of early peptidyl-tRNAs is largely independent of the degree of initial saturation with AcPhe-tRNA and is observed in a poly(A) system as well. This observation resolves a current controversy concerning the active fraction of ribosomes. The loss of Ac(Phe)n-tRNA is reduced but still significant if more physiological conditions for Ac(Phe)n synthesis are applied (3 mM Mg2+, 150 mM NH4+, 2 mM spermidine, 0.05 mM spermine). Chloramphenicol (0.1 mM) blocks the puromycin reaction with AcPhe-tRNA as expected but, surprisingly, does not affect the puromycin reaction with Ac(Phe)2-tRNA nor peptide bond formation between AcPhe-tRNA and Phe-tRNA. The drug facilitates the release of Ac(Phe)2-4-tRNA from ribosomes at 14 mM Mg2+ while it hardly affects the overall synthesis of poly(Phe) or poly(Lys).  相似文献   

13.
We have elaborated a method for the isolation of ribosomal subunits from fresh unfrozen human placenta containing intact rRNA and a complete set of ribosomal proteins. Activity of 80S ribosomes obtained by reassociation of 40S and 60S subunits in nonenzymatic poly(U)-dependent binding of Phe-tRNA(Phe) was equal to 80% (above 1.5 mol [14C]Phe-tRNA(Phe) is coupled to 1 mol of ribosomes). The activity of 80S ribosomes in poly(U)-directed synthesis of polyphenylalanine was tested in a polysome-free protein-synthesizing system from rabbit reticulocytes. About 100 mol of phenylalanine residue was polymerized by a mole of ribosomes at a rate of 0.83 residues per minute in this system (2 h, 37 degrees C).  相似文献   

14.
The method for isolation of human placenta ribosomal subunits containing intact rRNA has been determined. The method uses fresh unfrozen placenta. Activity of 80S ribosomes obtained via reassociation of 40S and 60S subunits in non-enzymatic poly(U)-mediated Phe-tRNAPhe binding, was near 75% (maximal [14C]Phe-tRNA(Phe) binding was 1.5 mol Phe-tRNA(Phe) per mol of 80S ribosomes). Activity of 80S ribosomes with damaged rRNA isolated from frozen placenta was 2 times lower (the maximum level of poly(U)-dependent Phe-tRNA(Phe) binding was 0.7 mol per mol of ribosomes). The activity 80S ribosomes in poly(U)-mediated synthesis of polyphenylalanine was determined by using fractionated ("ribosomeless") protein synthesising system from rabbit reticulocytes. In this system up to the 50 mol of Phe residues per mol of 80S ribosomes are incorporated in acid insoluble fraction in 1 hour, at 37 degrees C. The obtained level of [14C]phenylalanine incorporation is three times as much as the amount of Phe residues observed for the ribosomal subunits, isolated from frozen placenta.  相似文献   

15.
Slowly cooled cells of Streptomyces aureofaciens contained mainly tight-couple ribosomes. Maximum rate of polyphenylalanine synthesis on ribosomes of S. aureofaciens was observed at 40°C, while cultures grew optimally at 28°C. Ribosomes of S. aureofaciens differed from those of E. coli in the amount of poly(U) required for maximum synthetic activity. The polyphenylalanine-synthesizing activity of E. coli ribosomes was about 3-times higher than that of S. aureofaciens ribosomes. The addition of protein S1 of E. coli or the homologous protein from S. aureofaciens had no stimulatory effect on the translation of poly(U). In order to localize alteration(s) of S. aureofaciens ribosomes in the elongation step of polypeptide synthesis we developed an in vitro system derived from purified elongation factors and ribosomal subunits. The enzymatic binding of Phe-tRNA to ribosomes of S. aureofaciens was significantly lower than the binding to ribosomes of E. coli. This alteration was mainly connected with the function of S. aureofaciens 50 S subunits. These subunits were not deficient in their ability to associate with 30 S subunits or with protein SL5 which is homologous to L7/L12 of E. coli.  相似文献   

16.
The interaction of N--Acetyl--Phe--tRNA Phe with 70 S ribosomes is a reversible process in the absence as well as in the presence of messenger. The equilibrium binding constants of these interactions were measured at different magnesium concentrations and temperatures and thermodynamical quantities computed. The enthalpy of the formation of complexes with the P site of ribosomes is larger by 6,000 cal/mol in the presence of poly (U) than in the presence of poly (C) or in total absence of messenger. Free energy differences are rather small, the association constants differ less than one order of magnitude. The association constant of N--Acetyl--Phe--tRNA Phe with the A site of ribosomes is 30--50 times lower than with the P site even in the presence of poly (U).  相似文献   

17.
To study the role of a messenger sugar-phosphate backbone in the ribosomal decoding process, poly(U) and poly(dT) template activity in different eukaryotic systems has been compared. 80S ribosomes from Saccharomyces cerevisiae appeared to be able to translate poly(dT) both in the presence and in the absence of elongation factors, contrary to poly(U). However, ribosomes from higher eukaryotes (wheat germ, rabbit liver) are completely inefficient in poly(dT) translation. Moreover, rabbit liver ribosomes fail to bind effectively phenylalanyl-tRNA in the presence of poly(dT) although the polynucleotide seems to interact with the ribosomal decoding center. It is also of particular interest that hybrid ribosomes formed from the yeast and rabbit liver subunits can translate poly(dT) only when the large ribosomal subunit from yeast is used.  相似文献   

18.
A series of P-site probes, chlorambucilyl-(Pro)n-Phe-tRNAPhe, were prepared and reacted with poly(U)-directed Escherichia coli MRE 600 ribosomes. Upon binding of the probes to ribosomes, 90% of the cpm bound were not released following subsequent interaction with puromycin. In the absence of poly(U) or in the presence of poly(C), binding was limited to the amount of cpm bound if ribosomes were incubated in the presence of puromycin before adding modified tRNA and poly(U). AcPhe-tRNAPhe was a competitive inhibitor of chlorambucilyl Phe-tRNAPhe. Binding to 50S subunits was strongly stimulated by poly(U), while binding to 30S subunits was not. Crosslinked 50S proteins were analyzed by two-dimensional gel electrophoresis. Crosslinking with molecular rulers containing zero prolines led to poly(U)-dependent labeling of L1 and L27. With rulers containing five prolines, L6, L25, L28, and the group L18,23,24 were labeled. Analysis of crosslinked ribosomal RNA on sucrose density gradients revealed almost no cpm in the 16S or 23S peaks, but only in the 5S peaks. This was observed with molecular rulers containing either zero or five proline residues.  相似文献   

19.
You S  Rice CM 《Journal of virology》2008,82(1):184-195
The hepatitis C virus (HCV) genomic RNA possesses conserved structural elements that are essential for its replication. The 3′ nontranslated region (NTR) contains several of these elements: a variable region, the poly(U/UC) tract, and a highly conserved 3′ X tail, consisting of stem-loop 1 (SL1), SL2, and SL3. Studies of drug-selected, cell culture-adapted subgenomic replicons have indicated that an RNA element within the NS5B coding region, 5BSL3.2, forms a functional kissing-loop tertiary structure with part of the 3′ NTR, 3′ SL2. Recent advances now allow the efficient propagation of unadapted HCV genomes in the context of a complete infectious life cycle (HCV cell culture [HCVcc]). Using this system, we determine that the kissing-loop interaction between 5BSL3.2 and 3′ SL2 is required for replication in the genotype 2a HCVcc context. Remarkably, the overall integrity of the 5BSL3 cruciform is not an absolute requirement for the kissing-loop interaction, suggesting a model in which trans-acting factor(s) that stabilize this interaction may interact initially with the 3′ X tail rather than 5BSL3. The length and composition of the poly(U/UC) tract were also critical determinants of HCVcc replication, with a length of 33 consecutive U residues required for maximal RNA amplification. Interrupting the U homopolymer with C residues was deleterious, implicating a trans-acting factor with a preference for U over mixed pyrimidine nucleotides. Finally, we show that both the poly(U) and kissing-loop RNA elements can function outside of their normal genome contexts. This suggests that the poly(U/UC) tract does not function simply as an unstructured spacer to position the kissing-loop elements.  相似文献   

20.
Protein synthesis in gastric mucosa was studied by measuring the incorporation of labeled amino acids into protein by isolated gastric mucosal ribosomes in a cell-free system. In 48-hour fasted rats, administration of the synthetic analogues pentagastrin, tetragastrin and gastrin-17 or naturally occurring molecular forms of human gastrin (G-14, G-34) markedly enhanced (23-123%) the capacity of the gastric mucosal ribosomes to synthesize endogenous mRNA-directed protein in a cell-free system. In the presence of exogenous mRNA (poly-U), the gastric mucosal ribosomes from the saline-treated controls showed a higher poly(U)-directed protein synthesis, compared to each fo the gastrin-treated groups. The protein/polyphenylalanine ratio which represents a ratio of polysomes to monosomes was found increased in ribosomes from the gastrin-treated groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号