首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the developmentally induced gene products that is essential for chemotaxis of Dictyostelium amoebae is a cyclic nucleotide phosphodiesterase. The enzyme can be secreted or exist in a membrane bound form. This enzyme is missing in the mutant HPX235 which, as a consequence, does not aggregate unless exogenous cAMP phosphodiesterase is supplied. We have introduced multiple copies of the cloned phosphodiesterase gene into mutant amoebae and restored aggregation. The formation of anatomically correct fruiting bodies, which does not occur when exogenous enzyme is added, is also restored by transformation with the gene. The construct that we have used gives rise only to secreted phosphodiesterase and therefore the membrane bound form of the enzyme is not absolutely required for normal aggregation and morphogenesis.  相似文献   

2.
Although D.discoideum amoebae do not bind AMP at their surface if they are not disrupted, total cell lysates display high levels of AMP binding activity specifically associated with the plasma membrane. The binding of AMP is not competed by adenosine and only poorly by ADP and ATP. The AMP binding sites have a single affinity of 0.6 μM for AMP; the association and dissociation rate constants are respectively 8×103 sec?1M?1 and 4.8 ×10?3sec?1. The AMP binding occurs at a site distinct from the cAMP binding site and from the catalytic site of a membrane bound enzyme.  相似文献   

3.
The onset of aggregation of bacterially-grown Dictyostelium discoideum amoebae is accompanied by the accumulation of the discoidin proteins. An immunofluorescent analysis demonstrates that discoidin is distributed throughout the cytoplasm, but is excluded from vesicles and nucleoli. There is no indication of either extracellular or membrane localization. Translocating amoebae of mutants lacking discoidin form more dispersed pseudopodial regions at the cell periphery, possess an abnormally centered microtubule organizing center, are blunt rather than elongate, and lack the tapered posterior uropod characteristic of translocating wild-type cells. However, in spite of the loss of the normal elongate morphology, discoidinless mutants translocate with instantaneous velocities and directional persistence comparable to wild-type cells, and they respond normally to the rapid addition of cAMP. These results demonstrate that the discoidin proteins are cytoplasmic components essential for the maintenance of the elongate cell morphology, cytoskeletal organization and the ability to align with other cells during aggregation. However, the elongate morphology is not a requisite for rapid and persistent single cell translocation.  相似文献   

4.
This investigation concerns a freeze-fracture study of the plasma membranes of aggregate-less mutants 67 and 20-2 derived from the wild-type slime mold Dictyostelium discoideum V12/M2. These mutants cannot respond chemotactically to cAMP and consequently are incapable of normal fruiting body formation. Freeze-fracture studies of Agg 67 and 20-2 amoebae revealed that the average diameters of the plasma membrane particles were almost identical to the wild-type strain V12/M2 vegetative amoebae. Although exposure to cAMP effected a 1.4 × increase in average particle size in the V12/M2 amoebae membranes, those in the mutant cell types did not increase in average diameters. The state of the plasma membrane and its regulatory role in the cell cycle and cell differentiation is discussed.  相似文献   

5.
In the large species of the cellular slime mold Dictyostelium , cell aggregation is regulated by extracellular cAMP. During aggregation, cAMP is released in pulses from cells in the aggregation centers and these rhythmic signals are propagated through the population by a signal relay system. In addition to triggering the relay response, the pulsatile signals also regulate the chemotactic movement of the cells and early cell differentiation. These different cellular responses to exogenous cAMP are thought to be mediated via cAMP receptors, which appear on the cell surface shortly after starvation.
Using a sensitive assay, the equilibrium binding properties of these receptors were analyzed at low cAMP concentrations. As reported earlier, Scatchard plots of cAMP binding to preaggregative amoebae of D. discoideum strain NP187 in the concentration range 2–500 nM were curvilinear suggesting either receptor heterogeneity or negative cooperative interactions. However, at cAMP concentrations below approximately 1.5 nM, the affinity of the receptors was found to decline as a function of decreasing receptor occupancy. This apparent positive cooperativity was observed with binding sites on crude plasma membranes as well as on intact cells, and it occurred at both 0°C and 22°C. Moreover, apparent positive cooperativity was a property of the receptors on all strains of D. discoideum examined and on one strain of D. purpureum . Unlike preaggregative cells, receptors on postaggregative cells often lacked this property.
The lowest concentration of cAMP pulses that can appreciably stimulate membrane differentiation in strain NP187 was found to be 0.15–1.5 nM. Since similar concentrations of exogenous cAMP have been reported to trigger minimal chemotactic and relay responses in D. discoideum , the apparent positive cooperative behavior of the cAMP receptor might function to generate a steep cellular response threshold.  相似文献   

6.
The cAMP cell surface receptor of Dictyostelium discoideum amoebae was identified by the use of the photoaffinity analogue 8-N3-[32P]cAMP. Labeling by intact cells of one component, identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography, could be specifically inhibited by the presence of nonradioactive cAMP. The component, P45 (apparent molecular weight of 45,000), was not identified on vegetative cells but was labeled with increasing intensity as cells differentiated and increased their levels of surface cAMP binding sites. Developmental mutants, starved under conditions where they do not express significant levels of cAMP binding sites, did not incorporate radioactivity into this protein. These mutants did label P45 when starved under differentiation-inducing conditions such that their levels of surface cAMP binding sites increased. P45 co-purified with the plasma membrane fraction isolated from cells to which 8-N3-[32p]cAMP had been covalently bound. Down-regulated amoebae, which displayed approximately 25% of the binding activity of untreated cells, did not label P45. These cells did, however, label a new component with an apparent molecular weight of 47,000 (P47).l The appearance of this component represented the only discernible difference in labeling profile under these conditions. As in the case of P45, radioactive incorporation into P47 did not occur if the photoactivation of 8-N3-[32P]cAMP was performed in the presence of nonradioactive cAMP.  相似文献   

7.
Kinase(s) in brush border membranes, isolated from rabbit renal proximal tubules, phosphorylated proteins intrinsic to the membrane and exogenous proteins. cAMP stimulated phosphorylation of histone; phosphorylation of protamine was cAMP independent. cAMP-dependent increases in phosphorylation of endogenous membrane protein were small, but highly reproducible. Most of the 32P incorporated into membranes represented phosphorylation of serine residues, with phosphorylthreonine comprising a minor component. cAMP did not alter the electrophoretic pattern of 32P-labeled membrane polypeptides. The small cAMP-dependent phosphorylation of brush border membrane proteins was not due to membrane phosphodiesterase or adenylate cyclase activities. Considerable cAMP was found “endogenously” bound to the membranes as prepared. However, this did not result in preactivation of the kinase since activity was not inhibited by a heat-stable protein inhibitor of cAMP-dependent protein kinases. With intrinsic membrane protein as phosphate acceptor, the relationship between rate of phosphorylation and ATP concentration appeared to follow Michaelis-Menton kinetics. With histone the relationship was complex. cAMP did not affect the apparent Km for histone. One-half maximal stimulation of the rate of histone phosphorylation was obtained with 7 × 10?8m cAMP. The Ka values for dibutyryl cAMP, cIMP, and cGMP were one to two orders of magnitude greater. Treatment of brush border membranes with detergent greatly increased the dependency of histone phosphorylation on cAMP. Phosphorylations of intrinsic membrane protein and histone were nonlinear with time, due in part to the lability of the protein kinase, the hydrolysis of ATP, and minimally to the presence of phosphoprotein phosphatase in the border membrane. The membrane phosphoprotein phosphatase was unaffected by cyclic nucleotides. Protein kinase activity was also found in cytosolic and crude particulate fractions of the renal cortex. Activity was enriched in the brush border membrane relative to that in the crude membrane preparation. The kinase activities in the different loci were distinct both in relative activities toward different substrates and in responsiveness to cAMP.  相似文献   

8.
Stimulation of Dictyostelium discoideum amoebae with cAMP was found to induce the specific phosphorylation of a 47,000 molecular weight protein (pP47). This cellular response to cAMP was developmentally regulated. It was first detected in 3 1/2-h starved cells and appeared to persist throughout the aggregation phase of the cells' life cycle. pP47 phosphorylation was specifically induced by cAMP in that amoebae did not respond to stimulation with 5'-AMP, folic acid, Ca2+, and/or the Ca2+ ionophore A23187. cGMP could elicit pP47 phosphorylation but only at high concentrations. Phosphorylation of pP47 in response to cAMP occurred rapidly (within 5 s). The length of time for which it remained phosphorylated depended upon the concentration of the stimulus. With 10(-6) M cAMP, pP47 was phosphorylated for less than 4 min. If amoebae were stimulated with 10(-4) M cAMP, over 30 min were necessary before pP47 was dephosphorylated. Once dephosphorylated, pP47 could again be phosphorylated upon reapplication of the cAMP stimulus.  相似文献   

9.
The ability of Dictyostelium discoideum amoebae to synthesize and secrete cAMP in response to exogenous cAMP is called cAMP signaling. Concanavalin A is a potent, rapid, noncompetitive inhibitor of this response, with the rate of inhibition consistent with its rate of binding. The concanavalin A does not deplete cellular ATP, alter cAMP binding to its surface receptors, or affect basal adenylate cyclase activity, but blocks the cAMP-stimulated activation of adenylate cyclase. Therefore, concanavalin A appears to inhibit a step between the receptor and the adenylate cyclase which is necessary for the transduction of the cAMP signal. Wheat germ agglutinin, a polyclonal antibody against an 80-kDa glycoprotein, four monoclonal antibodies against the amoebal surface, and a chemical cross-linking agent which reacts with cell surface primary amines also inhibit signaling. To determine the importance of cross-linking in the inhibition, succinylated concanavalin A and the unlinked, reactive portion of the chemical cross-linker were tested and found to be relatively ineffective inhibitors. Thus it appears that ligands capable of cross-linking molecules on the external surface of D. discoideum amoebae inhibit cAMP signaling. It is proposed that these cross-linking agents prevent membrane or cytoskeletal rearrangement and that this rearrangement must occur before the adenylate cyclase is activated.  相似文献   

10.
J G Wise  A E Senior 《Biochemistry》1985,24(24):6949-6954
Nucleotide-depleted F1-ATPase from Escherichia coli was reconstituted with F1-depleted membranes and shown to catalyze high rates of oxidative phosphorylation of ADP and GDP. Adenine nucleotide became bound to the nonexchangeable nucleotide sites on membrane-bound F1 during ATP synthesis, but binding of guanine nucleotides to nonexchangeable sites during GTP synthesis was not detectable. It was possible to reload the nonexchangeable sites on nucleotide-depleted F1 with radioactive adenine nucleotide prior to membrane reconstitution. The radioactive adenine nucleotide did not exchange significantly during oxidative phosphorylation of ADP or GDP. The amount of nonexchangeable adenine nucleotide found in membrane-bound F1 was the same when the nonexchangeable sites were reloaded either prior to membrane reconstitution of the F1 or after membrane reconstitution with nucleotide-free F1 followed by a burst of oxidative phosphorylation of ADP. The results showed that occupation of the nonexchangeable sites on F1 by tightly bound nucleotide is not required for oxidative phosphorylation of GDP (a physiological activity of F1 in the bacterial cell). Also, the results confirm directly that the adenine-specific nonexchangeable sites on F1 are noncatalytic sites. Using this experimental approach, it was possible to look for a regulatory effect of the nonexchangeable nucleotide on oxidative phosphorylation. Nucleotide-depleted F1 was first reloaded with (i) ATP, (ii) ADP, (iii) 5'-adenylyl imidodiphosphate, or (iv) zero nucleotide, and was then reconstituted with F1-depleted membranes. The reconstituted membranes were compared in respect to rates of oxidative phosphorylation of GDP and Km values of GDP and Pi. No regulatory role for the nonexchangeable nucleotide was evident.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A plasma membrane preparation from Dictyostelium discoideum amoebae which contains the high affinity cAMP receptor is described. Ligand specificity and the kinetics of cAMP association and dissociation using isolated plasma membranes were similar to those of intact cells. The changes in cAMP binding activity which occur as cells proceed through their aggregation program were also reflected in the membrane preparations. However, neither the low affinity cAMP binding site nor the oscillatory cAMP binding behavior observed on intact cells was detected with the membrane preparations.  相似文献   

12.
Prior to completion of aggregation and the beginning of multicellular differentiation, the amoebae of Dictyostelium discoideum assume two distinct phases with characteristic changes in cellular movement, shape and adhesiveness. These two phases of amoeboid behaviour have been studied with respect to the quantitative analysis of the intracellular adenosine phosphates, using both enzymatic and chromatographic techniques. A higher intracellular ATP level and energy-charge has been found for the actively moving, non-adhesive amoebae as compared to the flattened, mutually adhesive cells. The importance and possible role of ATP in regulating amoeboid form, movement and cell adhesion is discussed.  相似文献   

13.
Both cyclic guanosine 3':5'-monophosphate and dithiothreitol stimulate binding of cyclic adenosine 3':5'-monophosphate (cAMP) to aggregation-competent amoebae. Both compounds appear to function solely by preventing the hydrolysis of cAMP by the cell-bound phosphodiesterase. The dissociation constant for binding of cAMP is 36 nM. Both cAMP binding and membrane-bound phosphodiesterase activities increase dramatically as cells develop aggregation competence, reach a maximum at about 11 hours, and remain at high levels for up to 48 hours if cells are maintained in shaken suspension. When amoebae are allowed to aggregate and develop naturally, binding of cAMP increases during aggregation, decreases during tip formation, and disappears during culmination. Phosphodiesterase activity parallels binding activity except that the decreased level after tip formation is retained throughout culmination. Two N-6-modified cAMP derivatives compete with cAMP for binding sites. One derivative is fluorescent (1,N-6-etheno-cAMP); the other is photolyzable [N-6(ethyl-2-diazomalonyl)cAMP]. This result opens the possibilities of using fluorescence quenching for assay of in vitro binding and of affinity labeling of binding sites. Competition by the derivatives is only partial, indicating possible heterogeneity of binding sites. Both compounds inhibit hydrolysis of cAMP by the membrane-bound phosphodiesterase.  相似文献   

14.
Acidic and basic fibroblast growth factors (aFGF and bFGF) have been isolated and purified from rod outer segments (ROS). aFGF is tightly bound to ROS membranes and can be specifically released by ATP. We show that this mechanism is dependent on the phosphorylation of aFGF itself. Phorbol 12-myristate 13-acetate (PMA) enhances this phenomenon independently of rhodopsin phosphorylation. This demonstrates that aFGF release from ROS membranes is dependent on its phosphorylation by endogenous kinase C. In addition specific binding sites for exogenous FGFs have been identified on ROS and disc membranes. A single high affinity site with a Kd of 40 pM was present in intact ROS while an additional low affinity site with a Kd of 300-600 pM was present in leaky ROS or in disc membranes. Light or ATP modified neither these Kd nor the apparent number of sites. The presence of specific receptors for FGFs and the kinase C dependent release of endogenous membrane bound aFGF suggest an autocrine mechanism which may be involved in photoreceptor cell biology.  相似文献   

15.
The phosphorylation of spectrin polypeptide 2 is thought to be involved in the metabolically dependent regulation of red cell shape and deformability. Spectrin phosphorylation is not affected by cAMP. The reaction in isolated membranes resembles the cAMP-independent, salt-stimulated phosphorylation of an exogenous substrate, casein, by enzyme(s) present both in isolated membranes and cytoplasmic extracts. Spectrin kinase is selectively eluted from membranes by 0.5 M NaCl and co-fractionates with eluted casein kinase. Phosphorylation of band 3 in the membrane is inhibited by salt, but the band 3 kinase is otherwise indistinguishable operationally from spectrin kinase. The membrane-bound casein (spectrin) kinase is not eluted efficiently with spectrin at low ionic strength; about 80% of the activity is apparently bound at sites (perhaps on or near band 3) other than spectrin. Partitioning of casein kinase between cytoplasm and membrane is metabolically dependent; the proportion of casein kinase on the membrane can range from 25% to 75%, but for fresh cells is normally about 40%. Dephosphorylation of phosphorylated spectrin has not been studied intensively. Slow release of 32Pi from [32P] spectrin on the membrane can be demonstrated, but phosphatase activity measured against solubilized [32P] spectrin is concentrated in the cytoplasm. The crude cytoplasmic phosphospectrin phosphatase is inhibited by various anions – notably, ATP and 2,3-DPG at physiological concentrations. Regulation of spectrin phosphorylation in intact cells has not been studied. We speculate that spectrin phosphorylation state may be regulated (1) by metabolic intermediates and other internal chemical signals that modulate kinase and phosphatase activities per se or determine their intracellular localization and (2) by membrane deformation that alters enzyme–spectrin interaction locally. Progress in the isolation and characterization of spectrin kinase and phosphospectrin phosphatase should lead to the resolution of major questions raised by previous work: the relationships between membrane-bound and cytoplasmic forms of the enzymes, the nature of their physical interactions with the membrane, and the regulation of their activities in defined cell-free systems.  相似文献   

16.
The amoebae Dictyostelium discoideum aggregate after starvation in a wavelike manner in response to periodic pulses of cyclic AMP (cAMP) secreted by cells which behave as aggregation centers. In addition to autonomous oscillations, the cAMP signaling system that controls aggregation is also capable of excitable behavior, which consists in the transient amplification of suprathreshold pulses of extracellular cAMP. Since the first theoretical model for slime mold aggregation proposed by Keller and Segel in 1970, many theoretical studies have addressed various aspects of the mechanism and function of cAMP signaling in Dictyostelium. This paper presents a brief overview of these developments as well as some reminiscences of the author's collaboration with Lee Segel in modeling the dynamics of cAMP relay and oscillations. Considered in turn are models for cAMP signaling in Dictyostelium, the developmental path followed by the cAMP signaling system after starvation, the frequency encoding of cAMP signals, and the origin of concentric or spiral waves of cAMP.  相似文献   

17.
When amoebae of Dictyostelium discoideum, suspended in buffer, were treated with 100 nM pulses of cAMP, the extracellular cAMP phosphodiesterase (ePD) activity increased dramatically and the synthesis of the phosphodiesterase inhibitor (PDI) was repressed. In addition, the time of appearance on the cell surface of contact sites A, membrane-bound cAMP phosphodiesterase, and cAMP binding sites was accelerated by 3–4 hr and the concentration of intracellular cAMP increased ?20-fold. When the concentration of the cAMP pulse was reduced to 1 nM, the effect of the pulses on membrane differentiation and on the cAMP pool was virtually the same, while the effect on the ePD-PDI system was reduced. When cAMP was added to the suspension continuously, the nucleotide had no effect on membrane differentiation and failed to stimulate the intracellular cAMP pool, however, the ePD-PDI system was regulated normally. When the developmental mutant, HC112, was treated with cAMP pulses, membrane differentiation and the level of the cAMP pool were unaffected, while the ePD-PDI system responded to the exogenous cAMP. In another mutant, HC53, membrane differentiation was stimulated by cAMP pulses and this response was accompanied by a sharp increase in the concentration of the cAMP pool. These results suggest that the ePD-PDI system and membrane differentiation are regulated independently by exogenous cAMP and that regulation of the ePD-PDI system does not require activation of the adenylyl cyclase.  相似文献   

18.
The cytosol fraction of human erythrocytes as well as 1 mM ATP decreased the rate constant (Kl) of association of [3H]cAMP with human erythrocyte membranes. However, the effect of 1 mM ATP on the association kinetics was much greater than that of the cytosol fraction. Accordingly, the cytosol fraction and 1 mM ATP increased the rate constant (k-l) of dissociation of bound [3H]cAMP from the human erythrocyte membranes. However, the cytosol fraction affected the dissociation kinetics to a far greater extent than 1 mM ATP. Thus, although both cytosol and 1 mM ATP decreased the affinity of [3H]cAMP for binding sites on human erythrocyte membranes at equilibrium, the detailed mode of their action on the membrane [3H]cAMP binding sites appears to differ.  相似文献   

19.
M M Rozdzial  L T Haimo 《Cell》1986,47(6):1061-1070
Studies were conducted to investigate the molecular basis for bidirectional pigment granule transport in digitonin-lysed melanophores. Pigment granule dispersion, but not aggregation, required cAMP and resulted in the phosphorylation of a 57 kd polypeptide. cAMP-dependent protein kinase inhibitor prevented this phosphorylation as well as pigment dispersal. In contrast, both pigment aggregation and the concomitant dephosphorylation of the 57 kd polypeptide were blocked by phosphatase inhibitors. These data support a model in which pigment dispersion and aggregation require protein phosphorylation and dephosphorylation, respectively. Furthermore, studies using the ATP analog, ATP gamma S, suggest either that protein phosphorylation alone is sufficient for dispersion or that transport is mediated by a unique force-generating ATPase that can use ATP gamma S for hydrolyzable energy.  相似文献   

20.
Previous investigations have shown that the adhesion of T. cruzi plasma membrane vesicles (PMV) to monolayers of host cell myoblasts and to immobilized heart muscle sarcolemma membranes (PAM) on polyaerylamide beads is mediated by the interaction of T. cruzi attachment sites with the muscarinic cholinergic and β-adrenergic receptors of the host cell membrane. It has also been shown that this interaction is blunted by the specific antagonists of the mammalian receptors atropine and propranol, respectively. In the studies reported here, PAM also rapidly attached to swimming T. cruzi trypomastigotes in a complex, concentration-dependent fashion and binding isotherms showed that the equilibrium between free and bound PAM is rapidly reached within 2 minutes of incubation in physiologically balanced salt solutions. In this time frame, trypomastigote cAMP levels are significantly reduced from steady state values within 30 seconds of the addition of PAM in a buffer system containing a diesterase inhibitor. Maximal attenuation of cAMP levels was measured between 1 and 2 minutes of the addition of PAM to T. cruzi trypomastigotes. The degree of cAMP level attenuation was reduced by blocking PAM attachment with either atropine or propranol. On the basis of these results we propose that a likely pathway for the negative parasite signal generated upon adhesion of host muscle cell membranes to the surface of the flagellates is from the parasite's surface attachment sites directly to a Pertussis toxin sensitive inhibitory protein Gi, thereby blunting adenyl cyclase activity and cAMP formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号