首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Legionella pneumophila is an ubiquitous opportunistic intracellular pathogen that replicates readily in thioglycollate-elicited peritoneal macrophages from genetically susceptible A/J mice. Treatment of macrophage cultures in vitro with tumor necrosis factor-alpha (TNF-alpha) induced resistance of the macrophages to infection by Legionella as compared with control macrophages treated with medium alone. Addition of small amounts of monoclonal antibody to TNF-alpha restored susceptibility of the macrophages. Furthermore, antibody to the proinflammatory cytokine interleukin-1 (IL-1) alpha/beta increased resistance, but recombinant IL-1 had little effect. Such decreased susceptibility to Legionella growth in anti-IL-1 antibody-treated cultures corresponded with enhanced levels of TNF-alpha in the supernatants of the treated cells. An antibody to another proinflammatory cytokine with known immunoregulatory properties (i.e., IL-6) had little or no effect on the ability of the macrophages to be infected by Legionella and, furthermore, treatment with recombinant IL-6, similar to recombinant IL-1, did not modify the ability of the cells to be infected in vitro. These results indicate that TNF-alpha is important in controlling L. pneumophila replication, and IL-1 can regulate TNF-alpha levels, affecting susceptibility of macrophages to infection with an intracellular opportunistic pathogen like Legionella.  相似文献   

2.
Three Legionella pneumophila strains isolated from municipal hot tap water during a multicentric Italian survey and belonging to serogroups 1, 6, 9 and the reference strain Philadelphia-1 were studied to determine the intracellular replication capability and the cytopathogenicity in human monocyte cell line U937 and in an Acanthamoeba polyphaga strain. Our results show that both serogroups 1 and Philadelphia-1 were able to multiply into macrophages inducing cytopathogenicity, while serogroup 6 and ever more serogroup 9 were less efficient in leading to death of the infected macrophages. Both serogroups 1 and 6 displayed a quite good capability of intracellular replication in A. polyphaga, although serogroup 1 was less cytopathogenic than serogroup 6. Serogroup 9, like Philadelphia-1 strain, showed a reduced efficiency of infection and replication and a low cytopathogenicity towards the protozoan. Our study suggests that bacterial pathogenesis is linked to the difference in the virulence expression of L. pneumophila serogroups in both hosts, as demonstrated by the fact that only L. pneumophila serogroup 1 shows the contextual expression of the two virulence traits. Serogroup 6 proves to be a good candidate as pathogen since it shows a good capacity for intracellular replication in protozoan.  相似文献   

3.
4.
Legionella pneumophila is an opportunistic intracellular pathogen that infects macrophages, both in vivo and in vitro. Tetrahydrocannabinol is a major psychoactive component of marijuana and can affect the functional activity of macrophages. In the present study, it was found that the treatment of macrophage cultures from permissive A/J mice with THC enhanced the growth of Legionella in these cells. Legionella grew much better in macrophages treated with low doses of THC, which caused no alteration in the number or viability of macrophages, as compared with growth in untreated cells. Furthermore, lipopolysaccharide-treated A/J mouse macrophages restricted the growth of Legionella, but this growth restriction was overcome by the addition of THC to LPS-treated macrophage cultures after infection. Thus, it is apparent that THC has the ability to enhance the growth of the intracellular opportunistic pathogen Legionella that grows in A/J mouse macrophages.  相似文献   

5.
In smoker's brain, rodent brain, and in cultured cells expressing nicotinic receptors, chronic nicotine treatment induces an increase in the total number of high affinity receptors for acetylcholine and nicotine, a process referred to as up-regulation. Up-regulation induced by 1 mm nicotine reaches 6-fold for alpha3beta2 nicotinic receptors transiently expressed in HEK 293 cells, whereas it is much smaller for alpha3beta4 receptors, offering a rationale to investigate the molecular mechanism underlying up-regulation. In this expression system binding sites are mainly intracellular, as shown by [(3)H]epibatidine binding experiments and competition with the impermeant ligand carbamylcholine. Systematic analysis of beta2/beta4 chimeras demonstrates the following. (i) The extracellular domain critically contributes to up-regulation. (ii) Only residues belonging to two beta2 segments, 74-89 and 106-115, confer up-regulation to beta4, mainly by decreasing the amount of binding sites in the absence of nicotine; on an atomic three-dimensional model of the alpha3beta2 receptor these amino acids form a compact microdomain that mainly contributes to the subunit interface and also faces the acetylcholine binding site. (iii) The beta4 microdomain is sufficient to confer to beta2 a beta4-like up-regulation. (iv) This microdomain makes an equivalent contribution to the up-regulation differences between alpha4beta2 and alpha4beta4. We propose that nicotine, by binding to immature oligomers, elicits a conformational reorganization of the microdomain, strengthening the interaction between adjacent subunits and, thus, facilitating maturation processes toward high affinity receptors. This mechanism may be central to nicotine addiction, since alpha4beta2 is the subtype exhibiting the highest degree of up-regulation in the brain.  相似文献   

6.
Legionella pneumophila is the causative agent of 90 % of Legionnaires’ disease cases. This bacterium lives naturally in fresh water and can colonize biofilms, which play an important role in the protection of Legionella against environmental stress factors. Relationship between the presence of minerals in water and Legionella adherence to surfaces is not well-known. In this study, we studied influence of minerals on bacterial adherence. For the first time, to our knowledge, this report shows that calcium and magnesium in a less extent, enhances the adherence of Legionella to surfaces compared to the bacteria behavior in distilled water. Treatment with proteinase K of live cells showed that surface proteins do not seem to play a crucial role in bacteria adherence to surfaces. Our results represent a first step in understanding effect of ions on Legionella adherence to surfaces. Such field of research could be helpful to better understand biofilm colonization by this bacterium to improve Legionella risk management in water networks.  相似文献   

7.
Macrophages from A/J mice are permissive for growth of Legionella pneumophila, an intracellular opportunistic pathogen that grows preferentially in macrophages. Macrophages from other mouse strains are highly resistant to growth of Legionella. In the present study, it was found that macrophages from A/J mice are readily activated by pretreatment with lipopolysaccharide (LPS), so that the cells do not permit Legionella to replicate in vitro, as occurs when untreated macrophages from A/J mice are cultured with these organisms for 48 hr. The augmentation of Legionella growth inhibition by LPS-activated macrophages from nonpermissive BDF1 mice also occurred. After in vitro infection, there was a 1000-fold increase in the number of Legionella in A/J macrophages and approximately a 10-fold increase in BDF1 macrophages, but LPS treatment of macrophages from either strain resulted in marked growth restrictions. This suppression was both dose dependent as well as dependent upon the time of addition of the LPS to the macrophages. Furthermore, the lipid A component of LPS was found to be as effective as the intact LPS in activating macrophages to inhibit the intracellular growth of Legionella. Further studies concerning the mechanisms involved are clearly warranted and in progress.  相似文献   

8.

Background

Nicotine is a psychoactive drug presenting a diverse array of biological activities, some positive, such as enhancement of cognitive performances, others negative, such as addiction liability. Ligands that discriminate between the different isotypes of nicotinic acetylcholine receptors (nAChRs) could present improved pharmacology and toxicity profile.

Results

Based on the recent crystal structure of a soluble acetylcholine binding protein from snails, we have built atomic models of acetylcholine and nicotine bound to the pocket of four different human nAChR subtypes. The structures of the docked ligands correlate with available biochemical data, and reveal that the determinants for isotype selectivity are relying essentially on four residues, providing diversity of the ligand binding pocket both in terms of Van der Waals boundary, and electrostatic potential. We used our models to screen in silico a large compound database and identify a new ligand candidate that could display subtype selectivity.

Conclusion

The nAChR-agonist models should be useful for the design of nAChR agonists with diverse specificity profiles.  相似文献   

9.
Abstract Legionella pneumophila readily grows in cultures of thioglycollate (TGC)-induced macrophages (MPs) from A/J mice, but not in MPs from BALB/c mice or other mouse strains. In the present study, the growth of Legionella pneumophila in MPs from A/J and BALB/c mice, as well as hybrids of the two strains and back-crossed mice, was investigated to determine whether the permissiveness of growth of these bacteria was due to an inherited trait of the MPs. The MPs from all A/J mice supported the growth of Legionella , regardless of whether they were obtained from TGC or casein injected donors, but the cells from the mice given TGC supported growth of L. pneumophila much better than cells from mice injected with casein. Furthermore, MPs obtained from all BALB/c mice treated with either TGC or casein were nonpermissive for the growth of L. pneumophila . MPs from approximately 46% of the back-crossed ACF1 to A/J mice were permissive for L. pneumophila growth, while MPs from all ACF1 to back-crossed BALB/c mice were found to be nonpermissive. MPs from approximately 19% of ACF2 mice were permissive for L. pneumophila . Killing activities of MPs using temperature sensitive mutants of Salmonella typhimurium were variable and did not correlate with permissiveness or nonpermissiveness for growth of L. pneumophila . In addition, the number of inflammatory cells in the peritoneal cavity induced in response to TGC did not correlate with the permissiveness or nonpermissiveness of the MPs from various mouse strains to Legionella , indicating the permissive nature of the cells is controlled by genetic mechanisms involving a recessive phenotype but differs from resistance genes such as Ity important for replication of S. typhimurium .  相似文献   

10.
Similar to guinea pig macrophages and human monocytes, macrophages from the peritoneal cavity of thioglycolate pretreated A/J mice are permissive for growth of Legionella pneumophila. In contrast, macrophages from BDF1 mice are not permissive for L. pneumophila. Lymphocytes from A/J and BDF1 mice proliferated in response to Legionella Ag but guinea pig lymphocytes did not. Also, splenocyte cultures from A/J mice treated with either Con A or Legionella vaccine produced supernatants which induced A/J macrophages to restrict Legionella growth, but guinea pig splenocyte culture supernatants obtained after stimulation with L. pneumophila vaccine did not induce Legionella growth restriction activity by guinea pig macrophages. Murine rIFN-gamma but not rIFN-alpha markedly inhibited growth of Legionella in A/J mouse macrophages and monoclonal anti-IFN-gamma antibody neutralized the anti-Legionella activity of culture supernatants from A/J mouse splenocytes responding to Legionella Ag. From these data, IFN-gamma appears to be an important factor in anti-Legionella activity of Ag-activated mouse splenocyte culture supernatants. Cyclosporin A, when given to either A/J or BDF1 mice, reduced the proliferation responses of splenocytes to T cell mitogens and also decreased the IFN production of A/J spleen cells to Legionella Ag. In addition, drug treatment decreased the resistance of A/J mice to Legionella infection as shown by an increase in the number of viable bacteria in the liver. However, injection of drug treated mice with lymphokine-rich splenocyte culture supernatant reconstituted the resistance of these animals. These results suggest an important role for lymphocyte activation and lymphokine production in the resistance of A/J mice to Legionella infection. The greater resistance of BDF1 mice, however, may result from nonpermissive macrophages and responsive lymphocytes. In the case of guinea pigs, susceptibility to Legionella infections may result from both the permissive nature of the macrophages and the relatively unresponsive nature of the lymphocytes in these animals.  相似文献   

11.
Macrophages are an important component in the first line of defence of the innate immune system. They are capable of producing cytokines in response to bacterial challenge, as well as in response to cytokine stimuli from other cells in the immune system. The microbicidal response of human monocyte-derived macrophages in vitro, induced by exogenously added cytokines, is highly variable. We found that tumour necrosis factor-alpha (TNF-alpha) and granulocyte-macrophage colony-stimulating factor (GM-CSF) could have either stimulatory or inhibitory effects on intracellular BCG killing, depending on the macrophage donor. Macrophages infected in vitro by various clinical isolates of Mycobacterium tuberculosis or the laboratory strain H37Rv, produced varying levels of both TNF-alpha and IFN-gamma. Certain M. tuberculosis strains tended to be associated with high cytokine production in each of three independent experiments, indicating that strains may differ in the host response elicited to infection.  相似文献   

12.
Infection of macrophages from genetically susceptible A/J mice with Legionella pneumophila induces high levels of various cytokines in serum as well as in cultures of spleen or peritoneal cells from the mice. However, modulation of receptor expression for these cytokines during infection has not been studied in detail, even though these receptors on macrophages have a critical role in inflammatory responses during the infection. In the present study, the differential expression of mRNA for TNF and IL-1 receptors as well as receptor antigens during infection of macrophages with virulent vs. avirulent L. pneumophila was investigated. Mouse thioglycollate-elicited peritoneal macrophages showed by RT-PCR constitutive steady-state levels of mRNA for TNF-type I and -type II receptors as well as IL-1 type I receptor. However, IL-1 type II receptor mRNA was not expressed in thioglycollate-elicited macrophages. Infection of macrophages with virulent bacteria caused an upregulation of IL-1 type I and TNF type I receptor mRNA, but had no effect on TNF type II receptor message. Avirulent L. pneumophila infection caused much less induction of these receptor mRNAs. The amount of receptor antigen of IL-1 type I on the surface of macrophages was also increased by infection with virulent L. pneumophila determined by flow cytometric analysis. These results indicate that L. pneumophila infection not only causes induction of various cytokines, but also modulation of certain cytokine receptors, which may regulate the susceptibility to infection.  相似文献   

13.
Alveolar macrophages (AM) may be exposed to a range of CO(2) and pH levels depending on their location in the alveoli and the health of the lung. Cytokines produced by AM contribute to inflammation in acute lung injury (ALI). Current ventilatory practices for the management of ALI favor low tidal volumes, which can give rise to increases in CO(2) and changes in pH of the alveolar microenvironment. Here we examined the effect of CO(2) on cytokine release from LPS-stimulated rat AM. AM were incubated for 1-4 h under different atmospheric gas mixtures ranging from 2.5-20% CO(2). To distinguish between effects of pH and CO(2), the culture media were also buffered to pH 7.2 with NaHCO(3). Cell metabolic activity, but not cell viability, decreased and increased significantly after 4 h at 20 and 2.5% CO(2), respectively. Increasing CO(2) decreased TNF-alpha secretion but had no effect on lysate TNF-alpha. Buffering the media abated the effects of CO(2) on TNF-alpha secretion. CO(2) increased cytokine-induced neutrophil chemoattractant factor-1 secretion only when the pH was buffered to 7.2. Effects of CO(2) on cytokine responses were reversible. In conclusion, the effects of CO(2) on cytokine lysate levels and/or secretion in AM are cytokine specific and, depending on both the cytokine and the immediate microenvironment, may be beneficial or detrimental to ALI.  相似文献   

14.
Summary 1. Nicotine stimulated two Ca2+-dependent processes in rat frontal cortex synaptosomes: the phosphorylation of an 80-kDa protein band and the release of endogenous ACh.3 Both effects were mediated by neuronal nAChRs and coincided with depolarization of the synaptosomal plasma membrane induced by the drug. Changes in the state of phosphorylation of the 80-kDa band (presumed to contain synapsin I) were correlated with changes in the release of ACh as follows, from 2 to 4.2. Blockade of predominant, nerve terminal P-type Ca2+ channels with -agatoxin-IVA, did not prevent nicotine from stimulating ACh release. In contrast, exposure to the toxin partially inhibited the release promoted by the depolarizing agent veratridine and attenuated protein phosphorylation induced by either nicotine or veratridine. Taken together, these data suggest that, upon nicotine stimulation, Ca2+ enters nerve terminals through two distinct pathways. The first, via Ca2+ channels, is necessary (but not sufficient) for both nicotine-induced phosphorylation and ACh release. The second, both necessary and sufficient for nicotine-induced phosphorylation and release, is the neuronal nAChR itself.3. Preincubation of the synaptosomes with a subeffective concentration of nicotine inactivated both nicotine-induced ACh liberation and phosphorylation. This shows that diminished release is associated to decreased phosphorylation of the 80-kDa protein band, most likely as a consequence of nicotine-promoted nAChR desensitization.4. Augmented ACh release and phosphorylation of the 80-kDa protein band were achieved by using the protein phosphatase inhibitor okadaic acid. However, okadaic acid did not summate with either nicotine or veratridine to increase ACh release further. This is probably because okadaic acid, as in other neurons, increases intracellular Ca2+ (Cholewinskiet al., 1993), thus promoting desensitization of ACh release.  相似文献   

15.
Although NLRC4/IPAF activation by flagellin has been extensively investigated, the downstream signaling pathways and the mechanisms responsible for infection clearance remain unclear. In this study, we used mice deficient for the inflammasome components in addition to wild-type (WT) Legionella pneumophila or bacteria deficient for flagellin (flaA) or motility (fliI) to assess the pathways responsible for NLRC4-dependent growth restriction in vivo and ex vivo. By comparing infections with WT L. pneumophila, fliI, and flaA, we found that flagellin and motility are important for the colonization of the protozoan host Acanthamoeba castellanii. However, in macrophages and mammalian lungs, flagellin expression abrogated bacterial replication. The flagellin-mediated growth restriction was dependent on NLRC4, and although it was recently demonstrated that NLRC4 is able to recognize bacteria independent of flagellin, we found that the NLRC4-dependent restriction of L. pneumophila multiplication was fully dependent on flagellin. By examining infected caspase-1(-/-) mice and macrophages with flaA, fliI, and WT L. pneumophila, we could detect greater replication of flaA, which suggests that caspase-1 only partially accounted for flagellin-dependent growth restriction. Conversely, WT L. pneumophila multiplied better in macrophages and mice deficient for NLRC4 compared with that in macrophages and mice deficient for caspase-1, supporting the existence of a novel caspase-1-independent response downstream of NLRC4. This response operated early after macrophage infection and accounted for the restriction of bacterial replication within bacteria-containing vacuoles. Collectively, our data indicate that flagellin is required for NLRC4-dependent responses to L. pneumophila and that NLRC4 triggers caspase-1-dependent and -independent responses for bacterial growth restriction in macrophages and in vivo.  相似文献   

16.
The role of nicotinic acetylcholine receptors in Alzheimer's disease.   总被引:5,自引:0,他引:5  
The two hallmark lesions of Alzheimer's disease (AD) are extracellular amyloid plaques, mainly formed by a small peptide called amyloid-beta (Abeta), and neurofibrillary tangles, which are intracellular inclusions formed by aggregates of hyperphosphorylated tau protein. One of the major neurochemical features of AD is the marked reduction of nicotinic acetylcholine receptors in disease-relevant brain regions such as the cerebral cortex and hippocampus. This loss is further compounded by the loss of cholinergic cells, which contributes to the cognitive dysfunction. This observation has had a major impact on therapeutic treatments, as efforts to restore cholinergic function such as the administration of acetylcholinesterase inhibitors have been, until recently, the major treatment options available for AD. Understanding the relationship of these hallmark lesions with the plethora of other changes that occur in the AD brain has proven to be a difficult challenge to resolve. The utilization of transgenic mouse models, that recapitulate one or more neuropathological and neurochemical features of the AD brain is providing some inroads, as they offer a means to gain mechanistic insights into the disease process in an in vivo setting. In this review, we consider the role of nicotinic acetylcholine receptors in transgenic models and in AD.  相似文献   

17.
Macrophages from the C57BL/6 (B6) mouse strain restrict intracellular growth of Legionella pneumophila, whereas A/J macrophages are highly permissive. The mechanism by which B6 macrophages restrict Legionella growth remains poorly understood, but is known to require the cytosolic microbe sensors Naip5 (Birc1e) and Ipaf. We hypothesized that Naip5 and Ipaf may act in partnership with other antimicrobial signalling pathways in macrophages. Indeed, we found that macrophages lacking either tumour necrosis factor (TNF)-alpha or type I interferon (IFN) signalling are permissive for growth of L. pneumophila, even in the presence of functional Naip5 and Ipaf alleles. Similarly, macrophages lacking Naip5 and/or Ipaf signalling were permissive even though we found that Naip5 or Ipaf were not required for induction of TNF-alpha and type I IFN. Therefore, our data suggest that the mechanism by which B6 macrophages restrict intracellular replication of L. pneumophila is more complex than previously appreciated, and involves the concerted action of cytokine and intracellular microbe sensor signalling pathways.  相似文献   

18.
19.
The evolution of venom resistance through coevolutionary chemical arms races has arisen multiple times throughout animalia. Prior documentation of resistance to snake venom α-neurotoxins consists of the N-glycosylation motif or the hypothesized introduction of arginine at positions 187 at the α-1 nicotinic acetylcholine receptor orthosteric site. However, no further studies have investigated the possibility of other potential forms of resistance. Using a biolayer interferometry assay, we first confirm that the previously hypothesized resistance conferred by arginine at position 187 in the honey badger does reduce binding to α-neurotoxins, which has never been functionally tested. We further discovered a novel form of α-neurotoxin resistance conferred by charge reversal mutations, whereby a negatively charged amino acid is replaced by the positively charged amino acid lysine. As venom α-neurotoxins have evolved strong positive charges on their surface to facilitate binding to the negatively charged α-1 orthosteric site, these mutations result in a positive charge/positive charge interaction electrostatically repelling the α-neurotoxins. Such a novel mechanism for resistance has gone completely undiscovered, yet this form of resistance has convergently evolved at least 10 times within snakes. These coevolutionary innovations seem to have arisen through convergent phenotypes to ultimately evolve a similar biophysical mechanism of resistance across snakes.  相似文献   

20.
The recognition that intracellular free calcium serves as a ubiquitous intracellular signal has motivated efforts to elucidate mechanisms by which cells regulate calcium influx. One route of entry that may offer both spatial and temporal fine resolution for altering calcium levels is that provided by cation-permeable, ligand-gated ion channels. Biophysical measurements as well as calcium imaging techniques demonstrate that neuronal nicotinic acetylcholine receptors as a class have a high relative permeability to calcium; some subtypes equal or exceed all other known receptors in this respect. Activation of nicotinic receptors on neurons can produce substantial increases in intracellular calcium levels by direct passage of calcium through the receptor channel. When multiple classes of nicotinic receptors are expressed by the same neuron, each appears capable of increasing calcium in the cell but may differ with respect to location, temporal response, agonist sensitivity, or regulation in achieving it. As a result, nicotinic receptors must be considered strong candidates for signaling molecules through which neurons regulate a diverse array of cellular events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号