首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A cytochrome P450BM3‐catalyzed reaction system linked by a two‐step cofactor regeneration was investigated in a cell‐free system. The two‐step cofactor regeneration of redox cofactors, NADH and NADPH, was constructed by NAD+‐dependent bacterial glycerol dehydrogenase (GLD) and bacterial soluble transhydrogenase (STH) both from Escherichia coli. In the present system, the reduced cofactor (NADH) was regenerated by GLD from the oxidized cofactor (NAD+) using glycerol as a sacrificial cosubstrate. The reducing equivalents were subsequently transferred to NADP+ by STH as a cycling catalyst. The resultant regenerated NADPH was used for the substrate oxidation catalyzed by cytochrome P450BM3. The initial rate of the P450BM3‐catalyzed reaction linked by the two‐step cofactor regeneration showed a slight increase (approximately twice) when increasing the GLD units 10‐fold under initial reaction conditions. In contrast, a 10‐fold increase in STH units resulted in about a 9‐fold increase in the initial reaction rate, implying that transhydrogenation catalyzed by STH was the rate‐determining step. In the system lacking the two‐step cofactor regeneration, 34% conversion of 50 μM of a model substrate (p‐nitrophenoxydecanoic acid) was attained using 50 μM NADPH. In contrast, with the two‐step cofactor regeneration, the same amount of substrate was completely converted using 5 μM of oxidized cofactors (NAD+ and NADP+) within 1 h. Furthermore, a 10‐fold dilution of the oxidized cofactors still led to approximately 20% conversion in 1 h. These results indicate the potential of the combination of GLD and STH for use in redox cofactor recycling with catalytic quantities of NAD+ and NADP+. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

2.

Objectives

To investigate the efficiency of a cofactor regeneration enzyme co-expressed with a glycerol dehydrogenase for the production of 1,3-dihydroxyacetone (DHA).

Results

In vitro biotransformation of glycerol was achieved with the cell-free extracts containing recombinant GlyDH (glycerol dehydrogenase from Escherichia coli), LDH (lactate dehydrogenase form Bacillus subtilis) or LpNox1 (NADH oxidase from Lactobacillus pentosus), giving DHA at 1.3 g l?1 (GlyDH/LDH) and 2.2 g l?1 (GlyDH/LpNox1) with total turnover number (TTN) of NAD+ recycling of 6039 and 11100, respectively. Whole cells of E. coli (GlyDH–LpNox1) co-expressing both GlyDH and LpNox1 were constructed and converted 10 g glycerol l?1 to DHA at 0.2–0.5 g l?1 in the presence of zero to 2 mM exogenous NAD+. The cell free extract of E. coli (GlyDH–LpNox) converted glycerol (2–50 g l?1) to DHA from 0.5 to 4.0 g l?1 (8–25 % conversion) without exogenous NAD+.

Conclusions

The disadvantage of the expensive consumption of NAD+ for the production of DHA has been overcome.
  相似文献   

3.
In enzyme catalysis there is great interest in finding suitable organic media for less water-soluble substrates in order to increase the substrate concentration and, therefore, the reaction rates. These requirements are fulfilled by using microemulsions as reaction media. In this study w/o-microemulsions were used to investigate the kinetics of the reduction of 2-Heptanone to S-2-Heptanol, catalyzed by alcohol dehydrogenase. The required cofactor NADH for this reduction is regenerated by a second enzyme, formate dehydrogenase. The influences of pH, temperature, and the kinetic parameters of the enzymes are presented. It is demonstrated that in microemulsions the reaction rate of ADH is increased up to 12 times compared to water.  相似文献   

4.
Enzymatic hydrolysis of microcrystalline cellulose in reverse micelles   总被引:2,自引:0,他引:2  
The activities of cellulases from Trichoderma reesei entrapped in three types of reverse micelles have been investigated using microcrystalline cellulose as the substrate. The reverse micellar systems are formed by nonionic surfactant Triton X-100, anionic surfactant Aerosol OT (AOT), and cationic surfactant cetyltrimethyl ammonium bromide (CTAB) in organic solvent media, respectively. The influences of the molar ratio of water to surfactant omega0, one of characteristic parameters of reverse micelles, and other environmental conditions including pH and temperature, on the enzymatic activity have been studied in these reverse micellar systems. The results obtained indicate that these three reverse micelles are more effective than aqueous systems for microcrystalline cellulose hydrolysis, and cellulases show "superactivity" in these reverse micelles compared with that in aqueous systems under the same pH and temperature conditions. The enzymatic activity decreases with the increase of omega0 in both AOT and Triton X-100 reverse micellar systems, but reaches a maximum at omega0 of 16.7 for CTAB reverse micelles. Temperature and pH also influence the cellulose hydrolysis process. The structural changes of cellulases in AOT reverse micelles have been measured by intrinsic fluorescence method and a possible explanation for the activity changes of cellulases has been proposed.  相似文献   

5.
6.
Conventional vat dyeing involves chemical reduction of dyes into their water-soluble leuco form generating considerable amounts of toxic chemicals in effluents. In the present study, a new β-nicotinamide adenine dinucleotide disodium salt (NADH)-dependent reductase isolated from Bacillus subtilis was used to reduce the redox dyes CI Acid Blue 74, CI Natural Orange 6, and CI Vat Blue 1 into their water-soluble leuco form. Enzymatic reduction was optimized in relation to pH and temperature conditions. The reductase was able to reduce Acid Blue 74 and Natural Orange 6 in the presence of the stoichiometrically consumed cofactor NADH; meanwhile, Vat Blue 1 required the presence of mediator 1,8-dihydroxyanthraquinone. Oxygen from air was used to reoxidize the dyes into their initial forms. The enzymatic reduction of the dyes was studied and the kinetic constants determined, and these were compared to the chemically-reduced leuco form. The enzyme responsible for the reduction showed homology to a NADH-dependent reductase from B. subtilis based on results from the MS/MS peptide mass mapping of the tryptically digested protein. Additionally, the reduction of Acid Blue 74 to its leuco form by reductase from B. subtilis was confirmed using NADH regenerated by the oxidation of formic acid with formate dehydrogenase from Candida boidinii in the same solution.  相似文献   

7.
Summary Bio-oxidative regeneration of carbonyl compounds from phenylhydrazones, tosylhydrazones and oximes by non-immobilized baker's yeast in organic solvents has been demonstrated.IICT Communication No. 3068  相似文献   

8.
Summary The influence of various ternary systems consisting of surfactant, water and organic solvent on living cells of the strain Mycobacterium E3 was studied. A rapid and reliable method for the quantitative estimation of the metabolic activity of the cells on the basis of the reduction of a tetrazolium salt is described.  相似文献   

9.
Pyridine nucleotide transhydrogenase activities of a highly purified soluble NADH dehydrogenase and particulate NADH-ubiquinone reductase (Complex I) differ in their pH optima (5.0 and 6.0, respectively) and in their sensitivity to inhibition by Mg2+ and ATP. The oxidation of NADPH with ferricyanide as acceptor is very similar in both preparations with a pH optimum around 5.0. It is concluded that Complex I possesses two types of transhydrogenase activity, whereas only one has been found in the soluble dehydrogenase.  相似文献   

10.
11.
Glycerol-fatty acid esterification has been conducted with lipase from R. delemar in water/AOT/isooctane reverse micellar media, with the major product being 1-monoglyceride, a useful food-emulsifier. 1,3-diglyceride was also synthesized, but to a much lesser extent. For a given set of initial conditions, the reaction productivity, measured in terms of the initial product formation rate, V(0), and the final or equilibrium concentration of product, is optimal for a particular concentration of each surfactant, fatty acid, glycerol, and water. Many of these optimal values correlate well with a "critical" region on the phase diagram. Also, results indicate lipase-catalyzed esterification stops due to the achievement of kinetic equilibrium expect for a few cases where enzyme deactivation is severe. Dynamic light scattering was employed to examine the influence of water, glycerol, and fatty acid on micellar and interfacial structure. Results from this technique indicate enzyme kinetic are linked to interfacial phenomena and the presence of substrates at the interfacial region.  相似文献   

12.
Solubilization of bacterial cells in organic solvents via reverse micelles   总被引:1,自引:0,他引:1  
A reverse micellar system containing Tween 85 and water in isopropylpalmitate was developed which permitted the solubilization of bacteria in the form of homogenous organic solutions. The presence of the bacteria in solution was demonstrated by light microscopy. Immediately after solubilization, isolated bacterial cells were observed, which by aging tend to form larger aggregates. Cells of Escherichia coli remained viable in this system for at least one day and retained beta-galactosidase activity for an even longer period as indicated by the hydrolysis of x-gal. Cells of an alkane-degrading strain of Acinetobacter calcoaceticus remained viable in the system for several days.  相似文献   

13.
Glucose dehydrogenase (E.C. 1.1.1.47) from B. megaterium M 1286 was immobilized together with mutarotase (E.C. 5.1.3.3) on several organic carriers and by different methods. The storage stability of the enzyme at pH-values > 6 is slightly improved by immobilization and the pH-optimum is shifted from 8.3 to 8.0. Kinetic constants of the immobilized enzyme are: KM(NAD+) = 5.36 × 10?4 mol/l KM(glucose) = 3.76 · 10?2 mol/l and Vmax = 5.54 · 10?5 mol/(l min g carrier) for the most active preparation (2.16 mg enzyme/g carrier). In reactor experiments the immobilized glucose dehydrogenase was used with glucose to regenerate NADPH in NADPH-dependent iron-III-protoporphyrin-IX-imidazole catalyzed hydroxylation and demethylation of model substrates of cytochrome P-450. The advantages of the coupling of both reactions with cofactor recycling are shown and discussed.  相似文献   

14.
Enzymatic synthesis of l-ascorbyl linoleate in organic media   总被引:1,自引:0,他引:1  
A novel l-ascorbyl fatty acid ester, l-ascorbyl linoleate was successfully prepared by enzymatic esterification and transesterification in a non-aqueous medium using immobilized lipase as biocatalyst. Changes in enzymatic activity and product yield were studied for the following variable: the nature of the fatty acid, the fatty acid concentration and water content. The yield of synthesis for the C18 unsaturated fatty acids were higher than for the C18 saturated fatty acid. Initial enzyme concentration does not affect the equilibrium of the reaction. And the product yield (33.5%) in the transesterification was higher than that of the esterification (21.8%) at a high-substrate concentration 0.3 M. The medium water content was found to have a distinct influence on the l-ascorbyl linoleate synthesis.These authors contributed equally to the article.  相似文献   

15.
A dimeric enzyme (alkaline phosphatase from calf intestinal mucosa) was studied in the reversed micellar medium of Aerosol OT (AOT) in octane. The dependence of the enzyme's activity on the hydration degree (on the size of micelles) is a curve with two optima corresponding to the hydration degrees [H2O]/[AOT] = 17 and 25; when the inner cavity radii of reversed micelles are equal to the size of the enzyme's monomer (Mr = 70 000) and of the dimer (Mr = 140 000). Ultracentrifugation experiments showed that a reversible dissociation of the enzyme into subunits takes place as a result of the change of the hydration degree; the first and second maxima corresponding to the functioning of the monomeric and dimeric forms of the enzyme, respectively.  相似文献   

16.
Activation of lignin peroxidase (LIP) in an organic solvent by reversed micelles was investigated. Bis(2-ethylhexyl)sulfosuccinate sodium salt (AOT) was used as a surfactant to form a reversed micelle. Lyophilized LIP from an optimized aqueous solution exhibited no enzymatic activity in any organic solvents examined in this study; however, LIP was catalytically active by being entrapped in the AOT reversed micellar solution. LIP activity in the reversed micelle was enhanced by optimizing either the preparation or the operation conditions, such as water content and pH in water pools of the reversed micelle and the reaction temperature. Stable activity was obtained in isooctane because of the stability of the reversed micelle. The optimal pH was 5 in the reversed micellar system, which shifted from pH 3 in the aqueous solution. The degradation reaction of several environmental pollutants was attempted using LIP hosted in the AOT reversed micelle. Degradation achieved after a 1-h reaction reached 81%, 50%, and 22% for p-nonylphenol, bisphenol A, and 2,4-dichlorophenol, respectively. This is the first report on the utilization of LIP in organic media.  相似文献   

17.
The stability of a recombinant cutinase from the fungus Fusarium solani was evaluated in aqueous media and in reverse micelles. Thermal unfolding in aqueous solution is a two-state process at the pH values tested and trehalose increased the temperature at the mid-point of the unfolding transitions. Irreversible inactivation is a first-order process at pH 9.2, but two inactivation phases were resolved at pH 4.5. Trehalose did not change the irreversible inactivation pathway but increased the kinetics of the irreversible inactivation step. Unfolding of cutinase induced by guanidine hydrochloride was more complex, showing a stable intermediate, molten globule in character, within the transition region. Trehalose did not change the three-state nature of the unfolding process. Encapsulation of cutinase in AOT reverse micelles induced unfolding at room temperature due to an enzyme location at the micellar interface. The presence of 1-hexanol as co-surfactant delayed or even prevented the unfolding of cutinase by promoting the establishment of a new equilibrium in the system. Cutinase is encapsulated in a 10-fold larger AOT/hexanol reverse micelle built up by the fusion of empty reverse micelles. When tested in a membrane reactor in the presence of 1-hexanol, an operational half-life of 674 days was achieved.  相似文献   

18.
Trypsin and alpha-chymotrypsin were immobilized by gelentrapment in polyacrylamide cross-linked with N,N(1)-methylenebisacrylamide. The immobilized enzymes are catalytically efficient in suspensions of reverse micelles formed in isooctane by bis(2-ethylhexyl) sodium sulfosuccinate (AOT) and water. Both entrapped enzymes are stable in reverse micellar suspension at room temperature and pH 8.2 for 3 days and lose 30-40% activity after 1 week. The enzymes obey Michaelis-Menten kinetics in the investigated concentration range with K(m) values higher than those in solution. Activity of the enzymes is independent of the water content of the micellar solution. No shift in pH optimum was observed for immobilized trypsin activity toward Nalpha-benzoyl-L-arginine ethyl ester. The utility of the procedure, which combines the advantage of enzyme immobilization and enzymology in reverse micelles, is illustrated by an example of peptide synthesis. In particular, peptide synthesis (e. g., Z--Ala--Phe--Leu--NH(2)) using water-insoluble substrate has been performed with gelentrapped alpha-chymotrypsin in reverse micellar suspension with the advantage of efficient enzyme recycling.  相似文献   

19.
Reverse micelles were used as a cytoplasmic model to study the kinetics of an extreme halophilic enzyme such as the recombinant glucose dehydrogenase from the Archaeon Haloferax mediterranei. This enzyme was solubilized in reverse micelles of hexadecyltrimethylammoniumbromide in cyclohexane, with 1-butanol as co-surfactant. Glucose dehydrogenase retained its catalytic properties in this organic medium, showing good stability at low water content, even at low salt concentration (125 mM NaCl). The dependence of the enzymatic activity on the molar water surfactant ratio (w0=[H2O]/[surfactant]) increased with rising water content. Surprisingly, the activity of this extreme halophilic enzyme did not depend on the salt concentration in reverse micelles. The kinetic of the enzymatic oxidation of β-D-glucose to D-glucono-1,5-lactone using NADP+ as coenzyme for the glucose dehydrogenase from Haloferax mediterranei was also studied in the reverse micellar system.  相似文献   

20.
Horse liver alcohol dehydrogenase (EC 1.1.1.1) solubilized in sodium dioctylsulfosuccinate (AOT)/cyclohexane reverse micelles was used for the oxidation of ethanol and reduction of cyclohexanone in a coupled substrate/coenzyme recycling system. The activity of the enzyme was studied as a function of pH and water content. The enzyme was optimally active in microemulsions prepared with buffer of pH around 8. An increase in enzymatic activity was observed as a function of increasing water content. The Km values for the substrates were calculated based on the total reaction volume. The apparent Km for ethanol in reverse micelles was about eight times lower as compared to that in buffer solution, whereas the Km for cyclohexanone was almost unaltered. Storage and operational stability were investigated. It was found that the specific activity of the alcohol dehydrogenase operating in reverse micellar solution was good for at least two weeks. The steroid eticholan-3 beta-ol-17-one was also used as a substrate. In this case the reaction rate was approximately five times higher in a reverse micellar solution than in buffer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号