首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton-translocating nicotinamide nucleotide transhydrogenases contain an NAD(H)-binding domain (dI), an NADP(H)-binding domain (dIII) and a membrane domain (dII) with the proton channel. Separately expressed and isolated dIII contains tightly bound NADP(H), predominantly in the oxidized form, possibly representing a so-called “occluded” intermediary state of the reaction cycle of the intact enzyme. Despite a Kd in the micromolar to nanomolar range, this NADP(H) exchanges significantly with the bulk medium. Dissociated NADP+ is thus accessible to added enzymes, such as NADP-isocitrate dehydrogenase, and can be reduced to NADPH. In the present investigation, dissociated NADP(H) was digested with alkaline phosphatase, removing the 2′-phosphate and generating NAD(H). Surprisingly, in the presence of dI, the resulting NADP(H)-free dIII catalyzed a rapid reduction of 3-acetylpyridine-NAD+ by NADH, indicating that 3-acetylpyridine-NAD+ and/or NADH interacts unspecifically with the NADP(H)-binding site. The corresponding reaction in the intact enzyme is not associated with proton pumping. It is concluded that there is a 2′-phosphate-binding region in dIII that controls tight binding of NADP(H) to dIII, which is not a required for fast hydride transfer. It is likely that this region is the Lys424-Arg425-Ser426 sequence and loops D and E. Further, in the intact enzyme, it is proposed that the same region/loops may be involved in the regulation of NADP(H) binding by an electrochemical proton gradent.  相似文献   

2.
Using the purified NADP(H)-binding domain of proton-translocating Escherichia coli transhydrogenase (ecIII) overexpressed in (15)N- and (2)H-labeled medium, together with the purified NAD(H)-binding domain from E. coli (ecI), the interface between ecIII and ecI, the NADP(H)-binding site and the influence on the interface by NAD(P)(H) was investigated in solution by NMR chemical shift mapping. Mapping of the NADP(H)-binding site showed that the NADP(H) substrate is bound to ecIII in an extended conformation at the C-terminal end of the parallel beta-sheet. The distribution of chemical shift perturbations in the NADP(H)-binding site, and the nature of the interaction between ecI and ecIII, indicated that the nicotinamide moiety of NADP(H) is located near the loop comprising residues P346-G353, in agreement with the recently determined crystal structures of bovine [Prasad, G. S., et al. (1999) Nat. Struct. Biol. 6, 1126-1131] and human heart [White, A. W., et al. (2000) Structure 8, 1-12] transhydrogenases. Further chemical shift perturbation analysis also identified regions comprising residues G389-I406 and G430-V434 at the C-terminal end of ecIII's beta-sheet as part of the ecI-ecIII interface, which were regulated by the redox state of the NAD(P)(H) substrates. To investigate the role of these loop regions in the interaction with domain I, the single cysteine mutants T393C, R425C, G430C, and A432C were generated in ecIII and the transhydrogenase activities of the resulting mutant proteins characterized using the NAD(H)-binding domain I from Rhodospirillum rubrum (rrI). All mutants except R425C showed altered NADP(H) binding and domain interaction properties. In contrast, the R425C mutant showed almost exclusively changes in the NADP(H)-binding properties, without changing the affinity for rrI. Finally, by combining the above conclusions with information obtained by a further characterization of previously constructed mutants, the implications of the findings were considered in a mechanistic context.  相似文献   

3.
The soluble NADP(H)-binding domain of Escherichia coli transhydrogenase (186 amino acids, 20.4 kDa, rotational correlation time 14 ns) was characterized using NMR techniques. The global fold is similar to that of a classical dinucleotide-binding fold with six parallel beta-strands in a central sheet surrounded by helices and irregular structures, but is lacking both alphaD and alphaE. The substrate is bound in an extended conformation at the C-terminal end of the parallel beta-sheet and our data support the notion of a redox dependent structural rearrangement.  相似文献   

4.
5.
Membrane-bound transhydrogenases are conformationally driven proton-pumps which couple an inward proton translocation to the reversible reduction of NADP+ by NADH (forward reaction). This reaction is stimulated by an electrochemical proton gradient, Delta p, presumably through an increased release of NADPH. The enzymes have three domains: domain II spans the membrane, while domain I and III are hydrophilic and contain the binding sites for NAD(H) and NADP(H), respectively. Separately expressed domain I and III together catalyze a very slow forward reaction due to tightly bound NADP(H) in domain III. With the aim of examining the mechanistic role(s) of loop D and E in domain III and intact cysteine-free Escherichia coli transhydrogenase by cysteine mutagenesis, the conserved residues beta A398, beta S404, beta I406, beta G408, beta M409 and beta V411 in loop D, and residue beta Y431 in loop E were selected. In addition, the previously made mutants betaD392C and betaT393C in loop D, and beta G430C and beta A432C in loop E, were included. All loop D and E mutants, especially beta I406C and beta G430C, showed increased ratios between the rates of the forward and reverse reactions, thus approaching that of the wild-type enzyme. Determination of values indicated that the former increase was due to a strongly increased dissociation of NADPH caused by an altered conformation of loops D and E. In contrast, the cysteine-free G430C mutant of the intact enzyme showed the same inhibition of both forward and reverse rates. Most domain III mutants also showed a decreased affinity for domain I. The results support an important and regulatory role of loops D and E in the binding of NADP(H) as well as in the interaction between domain I and domain III.  相似文献   

6.
7.
The dimeric integral membrane protein nicotinamide nucleotide transhydrogenase is required for cellular regeneration of NADPH in mitochondria and prokaryotes, for detoxification and biosynthesis purposes. Under physiological conditions, transhydrogenase couples the reversible reduction of NADP+ by NADH to an inward proton translocation across the membrane. Here, we present crystal structures of the NAD(H)-binding domain I of transhydrogenase from Escherichia coli, in the absence as well as in the presence of oxidized and reduced substrate. The structures were determined at 1.9-2.0 A resolution. Overall, the structures are highly similar to the crystal structure of a previously published NAD(H)-binding domain, from Rhodospirillum rubrum transhydrogenase. However, this particular domain is unique, since it is covalently connected to the integral-membrane part of transhydrogenase. Comparative studies between the structures of the two species reveal extensively differing surface properties and point to the possible importance of a rigid peptide (PAPP) in the connecting linker for conformational coupling. Further, the kinetic analysis of a deletion mutant, from which the protruding beta-hairpin was removed, indicates that this structural element is important for catalytic activity, but not for domain I:domain III interaction or dimer formation. Taken together, these results have important implications for the enzyme mechanism of the large group of transhydrogenases, including mammalian enzymes, which contain a connecting linker between domains I and II.  相似文献   

8.
Proton-translocating nicotinamide nucleotide transhydrogenase is a conformationally driven pump which catalyzes the reversibel reduction of NADP(+) by NADH. Transhydrogenases contain three domains, i.e., the hydrophilic NAD(H)-binding domain I and the NADP(H)-binding domain III, and the hydrophobic domain II containing the proton channel. Domains I and III have been separately expressed and characterized structurally by, e.g. X-ray crystallography and NMR. These domains catalyze transhydrogenation in the absence of domain II. However, due to the absence of the latter domain, the reactions catalyzed by domains I and III differ significantly from those catalyzed by the intact enzyme. Mutagenesis of residues in domain II markedly affects the activity of the intact enzyme. In order to resolve the structure-function relationships of the intact enzyme, and the molecular mechanism of proton translocation, it is therefore essential to establish the structure and function of domain II and its interactions with domains I and III. This review describes some relevant recent results in this field of research.  相似文献   

9.
Conformational changes in proton pumping transhydrogenases have been suggested to be dependent on binding of NADP(H) and the redox state of this substrate. Based on a detailed amino acid sequence analysis, it is argued that a classical betaalphabetaalphabeta dinucleotide binding fold is responsible for binding NADP(H). A model defining betaA, alphaB, betaB, betaD, and betaE of this domain is presented. To test this model, four single cysteine mutants (cfbetaA348C, cfbetaA390C, cfbetaK424C, and cfbetaR425C) were introduced into a functional cysteine-free transhydrogenase. Also, five cysteine mutants were constructed in the isolated domain III of Escherichia coli transhydrogenase (ecIIIH345C, ecIIIA348C, ecIIIR350C, ecIIID392C, and ecIIIK424C). In addition to kinetic characterizations, effects of sulfhydryl-specific labeling with N-ethylmaleimide, 2-(4'-maleimidylanilino)naphthalene-6-sulfonic acid, and diazotized 3-aminopyridine adenine dinucleotide (phosphate) were examined. The results are consistent with the view that, in agreement with the model, beta-Ala348, beta-Arg350, beta-Ala390, beta-Asp392, and beta-Lys424 are located in or close to the NADP(H) site. More specifically, beta-Ala348 succeeds betaB. The remarkable reactivity of betaR350C toward NNADP suggests that this residue is close to the nicotinamide moiety of NADP(H). beta-Ala390 and beta-Asp392 terminate or succeed betaD, and are thus, together with the region following betaA, creating the switch point crevice where NADP(H) binds. beta-Asp392 is particularly important for the substrate affinity, but it could also have a more complex role in the coupling mechanism for transhydrogenase.  相似文献   

10.
11.
The pyridine nucleotide transhydrogenase carries out transmembrane proton translocation coupled to transfer of a hydride ion equivalent between NAD+ and NADP+. Previous workers (E. Holmberg et al. Biochemistry 33, 7691-7700, 1994; N. A. Glavas et al. Biochemistry 34, 7694-7702, 1995) had examined the role in proton translocation of conserved charged residues in the transmembrane domain. This study was extended to examine the role of conserved polar residues of the transmembrane domain. Site-directed mutagenesis of these residues did not produce major effects on hydride transfer or proton translocation activities except in the case of betaAsn222. Most mutants of this residue were drastically impaired in these activities. Three phenotypes were recognized. In betaN222C both activities were impaired maximally by 70%. The retention of proton translocation indicated that betaAsn222 was not directly involved in proton translocation. In betaN222H both activities were drastically reduced. Binding of NADP+ but not of NADPH was impaired. In betaN222R, by contrast, NADP+ remained tightly bound to the mutant transhydrogenase. It is concluded that betaAsn222, located in a transmembrane alpha-helix, is part of the conformational pathway by which NADP(H) binding, which occurs outside of the transmembrane domain, is coupled to proton translocation. Some nonconserved or semiconserved polar residues of the transmembrane domain were also examined by site-directed mutagenesis. Interaction of betaGlu124 with the proton translocation pathway is proposed.  相似文献   

12.
Proton-translocating transhydrogenase (TH) couples direct and stereospecific hydride transfer between NAD(H) and NADP(H), bound to soluble domains dI and dIII, respectively, to proton translocation across a membrane bound domain, dII. The reaction occurs with proton-gradient coupled conformational changes, which affect the energetics of substrate binding and interdomain interactions. The crystal structure of TH dIII from Rhodospirillum rubrum has been determined in the presence of NADPH (2.4 A) and NADP (2.1 A) (space group P6(1)22). Each structure has two molecules in the asymmetric unit, differing in the conformation of the NADP(H) binding loop D. In one molecule, loop D has an open conformation, with the B face of (dihydro)nicotinamide exposed to solvent. In the other molecule, loop D adopts a hitherto unobserved closed conformation, resulting in close interactions between NADP(H) and side chains of the highly conserved residues, betaSer405, betaPro406, and betaIle407. The conformational change shields the B face of (dihydro)nicotinamide from solvent, which would block hydride transfer in the intact enzyme. It also alters the environments of invariant residues betaHis346 and betaAsp393. However, there is little difference in either the open or the closed conformation upon change in oxidation state of nicotinamide, i.e., for NADP vs. NADPH. Consequently, the occurrence of two loop D conformations for both substrate oxidation states gives rise to four states: NADP-open, NADP-closed, NADPH-open, and NADPH-closed. Because these states are distinguished by protein conformation and by net charge they may be important in the proton translocating mechanism of intact TH.  相似文献   

13.
14.
A three-dimensional structure of the NAD site of Escerichia coli transhydrogenase has been predicted. The model is based on analysis of conserved residues among the transhydrogenases from five different sources, homologies with enzymes using NAD as cofactors or substrates, hydrophilicity profiles, and secondary structure predictions. The present model supports the hypothesis that there is one binding site, located relatively close to the N-terminus of the α-subunit. The proposed structure spans residues α145 to α287, and it includes five β-strands and five α-helices oriented in a typical open twisted α/β conformation. The amino acid sequence following the GXGXXG dinucleotide binding consensus sequence (residues α172 to α177) correlates exactly to a typical fingerprint region for ADP binding βαβ folds in dinucleotide binding enzymes. In the model, aspartic acid α195 forms hydrogen bonds to one or both hydroxyl groups on the adenosine ribose sugar moiety. Threonine α196 and alanine α256, located at the end of βB and βD, respectively, create a hydrophobic sandwich with the adenine part of NAD buried inside. The nicotinamide part is located in a hydrophobic cleft between αA and βE. Mutagenesis work has been carried out in order to test the predicted model and to determine whether residues within this domain are important for proton pumping directly. All data support the predicted structure, and no residue crucial for proton pumping Was detected. Since no three-dimensional structure of transhydrogenase has been solved, a well based tertiary structure prediction is of great value for further experimental design in trying to elucidate the mechanism of the energy-linked proton pump. © 1995 Wiley-Liss, Inc.  相似文献   

15.
We have analysed 1H, 15N-HSQC spectra of the recombinant, NADP(H)-binding component of transhydrogenase in the context of the emerging three dimensional structure of the protein. Chemical shift perturbations of amino acid residues following replacement of NADP+ with NADPH were observed in both the adenosine and nicotinamide parts of the dinucleotide binding site and in a region which straddles the protein. These observations reflect the structural changes resulting from hydride transfer. The interactions between the recombinant, NADP(H)-binding component and its partner, NAD(H)-binding protein, are complicated. Helix B of the recombinant, NADP(H)-binding component may play an important role in the binding process.  相似文献   

16.
Althage M  Bizouarn T  Rydström J 《Biochemistry》2001,40(33):9968-9976
The two hydrophilic domains I and III of Escherichia coli transhydrogenase containing the binding sites for NAD(H) and NADP(H), respectively, are located on the cytosolic side of the membrane, whereas the hydrophobic domain II is composed of 13 transmembrane alpha-helices, and is responsible for proton transport. In the present investigation the segment betaC260-betaS266 connecting domain II and III was characterized primarily because of its assumed role in the bioenergetic coupling of the transhydrogenase reaction. Each residue of this segment was replaced by a cysteine in a cysteine-free background, and the mutated proteins analyzed. Except for betaS266C, binding studies of the fluorescent maleimide derivative MIANS to each cysteine in the betaC260-betaR266 region revealed an increased accessibility in the presence of NADP(H) bound to domain III; an opposite effect was observed for betaS266. A betaD213-betaR265 double cysteine mutant was isolated in a predominantly oxidized form, suggesting that the corresponding residues in the wild-type enzyme are closely located and form a salt bridge. The betaS260C, betaK261C, betaA262C, betaM263, and betaN264 mutants showed a pronounced inhibition of proton-coupled reactions. Likewise, several betaR265 mutants and the D213C mutant showed inhibited proton-coupled reactions but also markedly increased values. It is concluded that the mobile hinge region betaC260-betaS266 and the betaD213-betaR265 salt bridge play a crucial role in the communication between the proton translocation/binding events in domain II and binding/release of NADP(H) in domain III.  相似文献   

17.
Transhydrogenase (E.C. 1.6.1.1) couples the redox reaction between NAD(H) and NADP(H) to the transport of protons across a membrane. The enzyme is composed of three components. The dI and dIII components, which house the binding site for NAD(H) and NADP(H), respectively, are peripheral to the membrane, and dII spans the membrane. We have estimated dissociation constants (K(d) values) for NADPH (0.87 microM), NADP(+) (16 microM), NADH (50 microM), and NAD(+) (100-500 microM) for intact, detergent-dispersed transhydrogenase from Escherichia coli using micro-calorimetry. This is the first complete set of dissociation constants of the physiological nucleotides for any intact transhydrogenase. The K(d) values for NAD(+) and NADH are similar to those previously reported with isolated dI, but the K(d) values for NADP(+) and NADPH are much larger than those previously reported with isolated dIII. There is negative co-operativity between the binding sites of the intact, detergent-dispersed transhydrogenase when both nucleotides are reduced or both are oxidized.  相似文献   

18.
The pyridine nucleotide transhydrogenase of Escherichia coli carries out transmembrane proton translocation coupled to transfer of a hydride ion equivalent between NAD(+) and NADP(+). The membrane domain (domain II) of the enzyme is composed of 13 transmembrane helices. Previous studies (N. A. Glavas et al., Biochemistry 34, 7694-7702, 1995) have suggested that betaHis91 in transmembrane helix 9 is involved in the translocation pathway of protons across the membrane. In this study we have replaced amino acid residues on the same face of helix 9 as betaHis91 by single cysteine residues. We then examined the effect of the sulfhydryl inhibitors N-ethylmaleimide (NEM) and p-chloromercuriphenylsulfonate (pCMPS) on enzyme activity and, in the case of [(14)C]NEM, as an enzyme label. The pattern of enzyme inhibition and labelling is consistent with the presence of an aqueous cavity through domain II from the cytosolic surface to the region of betaHis91. Residue betaAsn222 in helix 13, which appears also to be involved in the proton pathway across domain II, may interface with this aqueous cavity. A further series of mutants of betaGlu124 on helix 10 confirms the proposal (P. D. Bragg and C. Hou, Arch. Biochem. Biophys. 363, 182-190, 1999) that this residue is involved in passive permeation of protons across domain II.  相似文献   

19.
Transhydrogenase couples the transfer of hydride-ion equivalents between NAD(H) and NADP(H) to proton translocation across a membrane. The enzyme has three components: dI binds NAD(H), dIII binds NADP(H) and dII spans the membrane. Coupling between transhydrogenation and proton translocation involves changes in the binding of NADP(H). Mixtures of isolated dI and dIII from Rhodospirillum rubrum transhydrogenase catalyse a rapid, single-turnover burst of hydride transfer between bound nucleotides; subsequent turnover is limited by NADP(H) release. Stopped-flow experiments showed that the rate of the hydride transfer step is decreased at low pH. Single Trp residues were introduced into dIII by site-directed mutagenesis. Two mutants with similar catalytic properties to those of the wild-type protein were selected for a study of nucleotide release. The way in which Trp fluorescence was affected by nucleotide occupancy of dIII was different in the two mutants, and hence two different procedures for determining the rate of nucleotide release were developed. The apparent first-order rate constants for NADP(+) release and NADPH release from isolated dIII increased dramatically at low pH. It is concluded that a single ionisable group in dIII controls both the rate of hydride transfer and the rate of nucleotide release. The properties of the protonated and unprotonated forms of dIII are consistent with those expected of intermediates in the NADP(H)-binding-change mechanism. The ionisable group might be a component of the proton-translocation pathway in the complete enzyme.  相似文献   

20.
Proton-pumping nicotinamide nucleotide transhydrogenase from Escherichia coli contains an alpha and a beta subunit of 54 and 49 kDa, respectively, and is made up of three domains. Domain I (dI) and III (dIII) are hydrophilic and contain the NAD(H)- and NADP(H)-binding sites, respectively, whereas the hydrophobic domain II (dII) contains 13 transmembrane alpha-helices and harbours the proton channel. Using a cysteine-free transhydrogenase, the organization of dII and helix-helix distances were investigated by the introduction of one or two cysteines in helix-helix loops on the periplasmic side. Mutants were subsequently cross-linked in the absence and presence of diamide and the bifunctional maleimide cross-linker o-PDM (6 A), and visualized by SDS-PAGE. In the alpha(2)beta(2) tetramer, alphabeta cross-links were obtained with the alphaG476C-betaS2C, alphaG476C-betaT54C and alphaG476C-betaS183C double mutants. Significant alphaalpha cross-links were obtained with the alphaG476C single mutant in the loop connecting helix 3 and 4, whereas betabeta cross-links were obtained with the betaS2C, betaT54C and betaS183C single mutants in the beginning of helix 6, the loop between helix 7 and 8 and the loop connecting helix 11 and 12, respectively. In a model based on 13 mutants, the interface between the alpha and beta subunits in the dimer is lined along an axis formed by helices 3 and 4 from the alpha subunit and helices 6, 7 and 8 from the beta subunit. In addition, helices 2 and 4 in the alpha subunit together with helices 6 and 12 in the beta subunit interact with their counterparts in the alpha(2)beta(2) tetramer. Each beta subunit in the alpha(2)beta(2) tetramer was concluded to contain a proton channel composed of the highly conserved helices 9, 10, 13 and 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号