首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The association between Rhizobium and legumes and that between arbuscular mycorrhizal (AM) fungi and most land plants display a remarkable degree of similarity. Both events involve the recognition of, entrance into, and coexistence within the plant root, with the development of a specialized interface that always separates the two partners and at which nutrient exchange occurs. Molecules produced by rhizobia during the early stages of the symbiosis are related to fungal chitin, and the plant responds to both microbes with an increase in the production of flavonoids, which may assist in recognition and development of the symbioses. Many of the same plant genes are up-regulated in the two symbiotic pathways, and notably plants that are Nod are often defective in the AM association as well. However, there are a number of differences between the associations, and these are important for understanding the relationship between the two symbioses. The Rhizobium and AM symbioses will be compared and the question of whether the nitrogen-fixing association evolved from the much more ancient AM symbiosis will be discussed.  相似文献   

2.
Abstract

Legume plants enter two important endosymbioses – with soil fungi, forming phosphorus acquiring arbuscular mycorrhiza (AM), and with nitrogen-fixing bacteria, leading to the formation of nitrogen-fixing root nodules. Both symbioses have been studied extensively because these symbioses have great potential for agricultural applications. Although 80% of all living land plants form AM, the nitrogen-fixing root nodule symbiosis with rhizobia is almost exclusively restricted to legumes. Despite varying degree of differences in the morphological responses induced by both endosymbionts in the host plants, significant similarities in the development of both fungal and bacterial symbioses have been reported. The signal perception and signal transduction cascades that initiate nodulation and mycorrhization in legumes partially overlap. Legume genes have been identified that are required for the establishment of both AM and root nodule symbiosis and are referred to as the common SYM genes. Genetic dissection of the common SYM signal transduction pathway required for bacterial and fungal root endosymbiosis has not only unraveled the players involved but also provided a first glimpse at conservation and specialization of signaling cascades essential for nodulation and mycorrhiza development. Based on the observation of common signaling cascades, it is tempting to speculate that the root nodule symbiosis, where fossil records date back to the late Cretaceaous, adopted and subsequently modified more ancient signal transduction pathways leading to AM formation, having already been in place 400 million years ago. This review discusses the common aspects of recognition of mycorrhizal fungi and Rhizobium by the host, and further signal transduction that leads to an effective symbiosis.  相似文献   

3.
4.
The Roles of Auxins and Cytokinins in Mycorrhizal Symbioses   总被引:14,自引:0,他引:14  
Abstract Most land plant species that have been examined exist naturally with a higher fungus living in and around their roots in a symbiotic partnership called a mycorrhiza. Several types of mycorrhizal symbiosis exist, defined by the host/partner combination and the morphology of the symbiotic structures. The arbuscular mycorrhiza (AM) is ancient and may have co-evolved with land plants. Emerging results from gene expression studies have suggested that subsets of AM genes were co-opted during the evolution of other biotrophic symbioses. Here we compare the roles of phytohormones in AM symbiosis and ectomycorrhizas (EC), a more recent symbiosis. To date, there is little evidence of physiologic overlap between the two symbioses with respect to phytohormone involvement. Research on AM has shown that cytokinin (CK) accumulation is specifically enhanced by symbiosis throughout the plant. We propose a pathway of events linking enhanced CK to development of the AM. Additional and proposed involvement of other phytohormones are also described. The role of auxin in EC symbiosis and recent research advances on the topic are reviewed. We have reflected the literature bias in reporting individual growth regulator effects. However, we consider that gradients and ratios of these molecules are more likely to be the causal agents of morphologic changes resulting from fungal associations. We expect that once the individual roles of these compounds are explained, the subtleties of their function will be more clearly addressed.  相似文献   

5.
Summary

Mycorrhizal associations vary widely in structure and function, but the commonest interaction is the Arbuscular Mycorrhizal (AM) symbiosis which forms between the roots of over 80% of all terrestrial plant species and Zygomycete fungi of the Order Glomales. These are obligate symbionts which colonise plant root cells. This symbiosis confers benefits directly to the host plants through the acquisition of phosphate and other mineral nutrients from the soil by the fungus while the fungus receives a carbon source from the host. In addition, the symbiosis may also enhance the plants resistance to biotic and abiotic stresses. The beneficial effects of AM symbioses occur as a result of a complex molecular dialogue between the two symbiotic partners. Identifying the molecules and genes involved in the dialogue is necessary for a greater understanding of the symbiosis. This paper reviews the process of AM fungal colonisation of plant roots and the underlying molecular mechanisms associated with the formation and functioning of an AM symbiosis.  相似文献   

6.
Flavonoids and isoflavonoids are secondary metabolites in plants. With the goal of obtaining isoflavonoids from a wide range of plants, a few key studies have proven that isoflavonoids can be produced in non-leguminous plants by transgenic engineering. Many earlier studies investigate genistein biosynthesis in leaves and petals of isoflavone synthase (IFS) transgenic tobacco. However, most reports do not attempt to analyze quantification of genistein or do not check the presence of genistein in transgenic plant roots. In addition, little is known about the influence of genistein on arbuscular mycorrhiza (AM). In this paper, we reported that genistein was obtained from transgenic IFS tobacco roots. In addition, we revealed that endogenous genistein and 10???g?g?1 exogenous genistein enhanced the development of AM symbiosis. We also revealed the relative expression levels of pertinent genes during the development of AM symbiosis. Our results suggest that genistein plays a positive role in the development of AM symbiosis in tobacco roots.  相似文献   

7.
Arbuscular mycorrhiza: the mother of plant root endosymbioses   总被引:9,自引:0,他引:9  
Arbuscular mycorrhiza (AM), a symbiosis between plants and members of an ancient phylum of fungi, the Glomeromycota, improves the supply of water and nutrients, such as phosphate and nitrogen, to the host plant. In return, up to 20% of plant-fixed carbon is transferred to the fungus. Nutrient transport occurs through symbiotic structures inside plant root cells known as arbuscules. AM development is accompanied by an exchange of signalling molecules between the symbionts. A novel class of plant hormones known as strigolactones are exuded by the plant roots. On the one hand, strigolactones stimulate fungal metabolism and branching. On the other hand, they also trigger seed germination of parasitic plants. Fungi release signalling molecules, in the form of 'Myc factors' that trigger symbiotic root responses. Plant genes required for AM development have been characterized. During evolution, the genetic programme for AM has been recruited for other plant root symbioses: functional adaptation of a plant receptor kinase that is essential for AM symbiosis paved the way for nitrogen-fixing bacteria to form intracellular symbioses with plant cells.  相似文献   

8.
9.
10.
Abstract The legume-Rhizobium symbiosis and that between Euprymna scolopes and Vibrio fischeri show some surprising physiological similarities as well as differences. Both interactions rely on exchange of signal molecules, some of which are derived from bacterial cell surface molecules. Although the legume-Rhizobium symbiosis is nutritionally based as are many animal-microbe symbioses, it is not obligate because the plant initiates nodule formation only when the soil is deficient in nitrogen. In contrast, the squid-Vibrio symbiosis is obligate for the squid but is not nutritionally based. Rather, the bacteria produce light, which enables the animal to evade predators. These similarities and differences are described and discussed in term of the overall question of whether or not these two symbiotic relationships have evolved from commensal or pathogenic/parasitic interactions between prokaryotes and eukaryotes.  相似文献   

11.
Arbuscular mycorrhiza (AM) are mutualistic interactions formed between soil fungi and plant roots. AM symbiosis is a fundamental and widespread trait in plants with the potential to sustainably enhance future crop yields. However, improving AM fungal association in crop species requires a fundamental understanding of host colonisation dynamics across varying agronomic and ecological contexts. To this end, we demonstrate the use of betalain pigments as in vivo visual markers for the occurrence and distribution of AM fungal colonisation by Rhizophagus irregularis in Medicago truncatula and Nicotiana benthamiana roots. Using established and novel AM-responsive promoters, we assembled multigene reporter constructs that enable the AM-controlled expression of the core betalain synthesis genes. We show that betalain colouration is specifically induced in root tissues and cells where fungal colonisation has occurred. In a rhizotron setup, we also demonstrate that betalain staining allows for the noninvasive tracing of fungal colonisation along the root system over time. We present MycoRed, a useful innovative method that will expand and complement currently used fungal visualisation techniques to advance knowledge in the field of AM symbiosis.

Arbuscular mycorrhiza are mutualistic interactions formed between soil fungi and plant roots. This study presents the MycoRed system, which uses red plant pigments derived from beetroot to reveal how fungi establish symbiosis with living legume and wild tobacco roots.  相似文献   

12.
Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A 15N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, 15N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2.  相似文献   

13.
Several genera of N2-fixing bacteria establish symbiotic associations with plants. Among these, the genus Rhizobium has the most significant contribution, in terms of yield, in many important crop plants. The establishment of the Rhizobium-legume symbiosis is a very complex process involving many genes which need to be co-ordinately regulated. In the first instance, plant signal molecules, known to be flavonoids, trigger the expression of host-specific genes in the bacterial partner through the action of the regulatory NodD protein. In response to these signals, Rhizobium bacteria synthesize lipo-oligosaccharide molecules which in turn cause cell differentiation and nodule development. Once the nodule has formed, Rhizobium cells differentiate into bacteroids and another set of genes is activated. These genes, designated nif and fix, are responsible for N2 fixation. In this system, several regulatory proteins are involved in a complex manner, the most important being NifA and a two component (FixK and FixL) regulatory system. Our knowledge about the establishment of these symbioses has advanced recently, although there are many questions yet to be solved.  相似文献   

14.
Rice is a salt-sensitive crop whose productivity is strongly reduced by salinity around the world. Plants growing in saline soils are subjected to the toxicity of specific ions such as sodium, which damage cell organelles and disrupt metabolism. Plants have evolved biochemical and molecular mechanisms to cope with the negative effects of salinity. These include the regulation of genes with a role in the uptake, transport or compartmentation of Na+ and/or K+. Studies have shown that the arbuscular mycorrhizal (AM) symbiosis alleviates salt stress in several host plant species. However, despite the abundant literature showing mitigation of ionic imbalance by the AM symbiosis, the molecular mechanisms involved are barely explored. The objective of this study was to elucidate the effects of the AM symbiosis on the expression of several well-known rice transporters involved in Na+/K+ homeostasis and measure Na+ and K+ contents and their ratios in different plant tissues. Results showed that OsNHX3, OsSOS1, OsHKT2;1 and OsHKT1;5 genes were considerably upregulated in AM plants under saline conditions as compared to non-AM plants. Results suggest that the AM symbiosis favours Na+ extrusion from the cytoplasm, its sequestration into the vacuole, the unloading of Na+ from the xylem and its recirculation from photosynthetic organs to roots. As a result, there is a decrease of Na+ root-to-shoot distribution and an increase of Na+ accumulation in rice roots which seems to enhance the plant tolerance to salinity and allows AM rice plants to maintain their growing processes under salt conditions.  相似文献   

15.
Zhu H  Riely BK  Burns NJ  Ané JM 《Genetics》2006,172(4):2491-2499
Most land plants can form a root symbiosis with arbuscular mycorrhizal (AM) fungi for assimilation of inorganic phosphate from the soil. In contrast, the nitrogen-fixing root nodule symbiosis is almost completely restricted to the legumes. The finding that the two symbioses share common signaling components in legumes suggests that the evolutionarily younger nitrogen-fixing symbiosis has recruited functions from the more ancient AM symbiosis. The recent advances in cloning of the genes required for nodulation and AM symbioses from the two model legumes, Medicago truncatula and Lotus japonicus, provide a unique opportunity to address biological questions pertaining to the evolution of root symbioses in plants. Here, we report that nearly all cloned legume genes required for nodulation and AM symbioses have their putative orthologs in nonlegumes. The orthologous relationship can be clearly defined on the basis of both sequence similarity and microsyntenic relationship. The results presented here serve as a prelude to the comparative analysis of orthologous gene function between legumes and nonlegumes and facilitate our understanding of how gene functions and signaling pathways have evolved to generate species- or family-specific phenotypes.  相似文献   

16.
Preinfection events in legume-Rhizobium symbiosis were analyzed by studying the different nodulation behaviors of two rhizobial strains in cowpeas (Vigna sinensis). Log-phase cultures of Rhizobium sp. strain 1001, an isolate from the plant nodule, initiated host responses leading to infection within 2 h after inoculation, whereas log-phase cultures of Rhizobium sp. strain 32H1 took at least 7 h to trigger a discernible response. The delay observed with strain 32H1 could be eliminated by incubating the rhizobial suspension, before inoculation, for 4.5 h either in the cowpea rhizosphere/rhizoplane condition or in the root exudate of cowpea plants, grown without NH4+ in the rooting medium. The delay could not be eliminated by incubating the rhizobial suspension in the rooting medium of plants grown in the presence of 5 mM NH4+, indicating that there is a regulatory role of combined nitrogen in triggering preinfection events by the legume. The substance(s) in the root exudate which elicited the faster nodulation response by Rhizobium sp. strain 32H1 could be separated into a high-molecular-weight fraction by Sephadex G-100 gel filtration. The data support the notion that legume roots release substances that favor the development of rhizobial features essential for infection and nodulation.  相似文献   

17.
Plants are solar-powered sugar factories that feed a multitude of other organisms. Many of these organisms associate directly with host plants to gain access to the plant's photosynthates. Such symbioses encompass a wide collection of styles ranging from mutualistic to commensal and parasitic. Among these, the mutualistic arbuscular mycorrhizal (AM) symbiosis is one of the evolutionarily oldest symbioses of plants, relying on the formation of an intimate relationship between fungi of the Glomeromycota and roots of the majority of vascular flowering plants. In this symbiosis, the fungus intracellularly colonizes living root cells, implying the existence of an extreme form of compatibility. Interestingly, molecular events that happen in the plant in response to mycorrhizal colonization also occur in other beneficial and, as recently shown, even antagonistic plant symbioses. Thus, basic 'compatibility modules' appear to be partially conserved between mutualism and parasitism.  相似文献   

18.
19.
Meeting a non-host: the behaviour of AM fungi   总被引:9,自引:0,他引:9  
 Arbuscular mycorrhizal (AM) fungi are obligately biotrophic organisms that live symbiotically with the roots of most plants. The establishment of a functional symbiosis between AM fungi and host plants involves a sequence of recognition events leading to the morphological and physiological integration of the two symbionts. The developmental switches in the fungi are triggered by host signals which induce changes in gene expression and a process leading to unequivocal recognition between the two partners of the symbiosis. It has been calculated that about 80% of plant families from all phyla of land plants are hosts of AM fungi. The remaining plant species are either non-mycorrhizal or hosts of mycorrhizas other than the arbuscular type. Non-host plants have been used to obtain information on the factors regulating the development of a functional symbiosis. The aim of this present review is to highlight present-day knowledge of the fungal developmental switches involved in the process of host/non-host discrimination. The following stages of the life cycle of AM fungi are analysed in detail: spore germination, presymbiotic mycelial growth, differential branching pattern and chemotropism, appressorium formation, root colonization. Accepted: 17 June 1998  相似文献   

20.
Arbuscular mycorrhizal (AM) symbiosis is among the factors contributing to plant survival in serpentine soils characterised by unfavourable physicochemical properties. However, AM fungi show a considerable functional diversity, which is further modified by host plant identity and edaphic conditions. To determine the variability among serpentine AM fungal isolates in their effects on plant growth and nutrition, a greenhouse experiment was conducted involving two serpentine and two non-serpentine populations of Knautia arvensis plants grown in their native substrates. The plants were inoculated with one of the four serpentine AM fungal isolates or with a complex AM fungal community native to the respective plant population. At harvest after 6-month cultivation, intraradical fungal development was assessed, AM fungal taxa established from native fungal communities were determined and plant growth and element uptake evaluated. AM symbiosis significantly improved the performance of all the K. arvensis populations. The extent of mycorrhizal growth promotion was mainly governed by nutritional status of the substrate, while the effect of AM fungal identity was negligible. Inoculation with the native AM fungal communities was not more efficient than inoculation with single AM fungal isolates in any plant population. Contrary to the growth effects, a certain variation among AM fungal isolates was revealed in terms of their effects on plant nutrient uptake, especially P, Mg and Ca, with none of the AM fungi being generally superior in this respect. Regardless of AM symbiosis, K. arvensis populations significantly differed in their relative nutrient accumulation ratios, clearly showing the plant’s ability to adapt to nutrient deficiency/excess.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号