首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The substrate specificity of membrane-bound and purified epoxide hydrase from rat liver microsomes has been studied. Both enzyme preparations catalyzed the hydration of a variety of alkene oxidase as well as arene oxides of several polycyclic aromatic hydrocarbons. 2. Unlike the membrane-bound enzyme, the rate of hydration for most of the substrates catalyzed by the purified epoxide hydrase was constant for only 1 or 2 min. The addition of dilauroyl phosphatidylcholine or heated microsomes to the incubation mixture extended the linearity of the reaction. 3. When rat liver microsomes were used as the source of the enzyme, the apparent Km values for many of the substrates were dependent on the amount of microsomes used. When purified epoxide hydrase was used as the enzyme source and benzo(a)pyrene 11,12-oxide as substrate, the apparent Km for benzo(a)pyrene 11,12-oxide was independent of enzyme concentration but dependent on added lipid concentration. Thus, in the absence of added dilauroyl phosphatidylcholine or in the presence of this lipid at a concentration below its critical micelle concentration, the observed Km for benzo(a)pyrene 11,12-oxide remained constant. However, when the lipid concentration was greater than the critical micelle concentration, the apparent Km value increased linearly with lipid concentration. These results are consistent with a model based on the partition of lipid-soluble substrate between the lipid micelle and the aqueous medium.  相似文献   

2.
3.
4.
The nicotinic acetylcholine receptor from electrogenic tissue of Torpedo californica was solubilized by tryptic digestion of membrane fragments obtained from autolysed tissue, without use of detergent. The water-soluble acetylcholine receptor was purified by affinity chromatography on a cobra-toxin-Sepharose resin. The purified receptor bound 4000-6000 pmol per mg protein of alpha-[125I]bungarotoxin, and toxin-binding was specifically inhibited by cholinergic ligands. Gel filtration revealed a single molecular species of Stokes radius 125 +/- 10 A and on sucrose gradient centrifugation one major peak was observed of 20-22 S. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and beta-mercaptoethanol revealed two major polypeptides of mol. wt. 30 000 and 48 000.  相似文献   

5.
Inositol 1,4,5-trisphosphate is a second messenger of the phosphoinositide system which can mobilize calcium from intracellular stores. Rat cerebellum is an abundant source of a receptor for inositol 1,4,5-trisphosphate (Worley, P. F., Baraban, J. M., Supattapone, S., Wilson, V. S., and Snyder, S. H. (1987) J. Biol. Chem. 262, 12132-12136). In this study we have solubilized and purified this receptor to apparent homogeneity from rat cerebellum. Crude membrane, detergent-solubilized, and purified receptor preparations display similar selectivity for inositol 1,4,5-trisphosphate over other inositol phosphates. The purified receptor is globular with a Stokes' radius of approximately 10 nm. Electrophoretic analysis reveals one protein band with an Mr of 260,000. While binding is reversibly inhibited by 300 nM calcium in particulate fractions and detergent-solubilized membranes, the purified protein is not inhibited by calcium concentrations up to 1.5 mM. Inhibition by calcium is reconstituted by addition of detergent-solubilized cerebellar membranes, but not by the cytosolic fraction of cerebellum.  相似文献   

6.
7.
A squalene synthase was solubilized from daffodil (Narcissus pseudonarcissus L.) microsomes with CHAPS, a zwitterionic non-denaturating detergent. By successive chromatography on DEAE Sephacel and APP Sepharose a fraction enriched in this enzyme (21-fold) was prepared.  相似文献   

8.
Succinate dehydrogenase (SDH) was solubilized from membranes of Mycobacterium phlei by Triton X-100 with a recovery of about 90%. The solubilized SDH was purified about 90-fold by Sephacryl S-300, DEAE-cellulose, hydroxylapatite, and isoelectric focusing in the presence of Triton X-100 with a 20% recovery. SDH was homogeneous, as determined by polyacrylamide gel electrophoresis in nondenaturing gels containing Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme revealed two subunits with molecular weights of 62,000 and 26,000. SDH is a flavoprotein containing 1 mol of flavin adenine dinucleotide, 7 to 8 mol of nonheme iron, and 7 to 8 mol of acid-labile sulfide per mol of protein. Using phenazine methosulfate and 2,6-dichloroindophenol as electron acceptors, the enzyme had an apparent Km of 0.12 mM succinate. SDH exhibited a sigmoidal relationship of rate to succinate concentration, indicating cooperativity. The enzyme was competitively inhibited by fumarate with a Ki of 0.15 mM. In the absence of Triton X-100, the enzyme aggregated, retained 50% of the activity, and could be resolubilized with Triton X-100 with full restoration of activity. Cardiolipin had no effect on the enzyme activity in the absence of Triton X-100, but it stimulated the activity by about 30% in the presence of 0.1% Triton X-100 in the assay mixture. Menaquinone-9(2H), isolated from M. phlei, had no effect on the enzyme activity either in the presence or absence of Triton X-100.  相似文献   

9.
The nicotinic acetylcholine receptor from electrogenic tissue of Torpedo californica was solubilized by tryptic digestion of membrane fragments obtained from autolysed tissue, without use of detergent. The water-soluble acetylcholine receptor was purified by affinity chromatography on a cobra-toxin-Sepharose resin. The purified receptor bound 4000–6000 pmol per mg protein of α-[125]bungarotoxin, and toxin-binding was specifically inhibited by cholinergic ligands. Gel filtration revealed a single molecular species of Stokes radius 125 ± 10 Å and on sucrose gradient centrifugation one major peak was observed of 20–22 S. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and β-mercaptoethanol revealed two major polypeptides of mol. wt. 30 000 and 48 000.  相似文献   

10.
11.
Rat hepatic microsomal squalene synthetase (EC 2.5.1.21) was induced 25-fold by feeding rats with diet containing the hydroxymethylglutaryl-coenzyme A reductase inhibitor, fluvastatin, and cholestyramine, a bile acid sequestrant. A soluble squalene synthetase protein with an estimated mass of 32-35 kDa, as determined by gel filtration chromatography on Sephacryl S-200 column, was solubilized out of the microsomes by controlled proteolysis with trypsin. Approximately 25% of the activity was recovered in a soluble form. The enzyme was purified to homogeneity utilizing a series of column chromatography purification steps on DEAE-cellulose, hydroxylapatite, and phenyl-Sepharose sequentially. The purified enzyme showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Initial kinetic analysis indicated an S0.5 values for trans-farnesyl diphosphate of 1.0 microM and for NADPH of 40 microM. The Vmax with respect to trans-farnesyl diphosphate was calculated at 1.2 mumol/min/mg. NADH also serves as substrate for the reaction with S0.5 value of 800 microM. Western blot analysis utilizing rabbit antisera raised against the purified, trypsin-truncated enzyme showed a single band for the isolated solubilized enzyme at 32-33 kDa and a band for the intact microsomal enzyme at about 45-47 kDa.  相似文献   

12.
13.
The rat liver microsomal enzyme that catalyzes NADPH-dependent reduction of 3-ketosteroid intermediates of cholesterol biosynthesis from lanosterol has been solubilized. Although the specific activity has been enhanced only modestly, 24-fold, the solubilized and partially purified reductase can be obtained free of 4-methyl sterol oxidase (also NAD(P)H dependent) and 4α-steroidoic acid decarboxylase (NAD dependent) that are the other two constitutive enzymes of microsomal sterol 4-demethylation. In addition, the isolated protein can be incorporated into artificial phospholipid membranes with retention of activity. Thus, the partially purified 3-ketosteroid reductase is suitable for reconstitution with other enzymes and electron carriers to achieve the 10-step oxidative removal of the 4-gem-dimethyl group of sterols. Both the solubilized and microsomalbound enzyme are essentially inactive with NADH. Also, similar sterol substrate specificities with 4α-monomethyl- and 4,4-dimethyl-3-ketosteroids, pH optima, and other properties of microsomal-bound and solubilized 3-ketoreductase are observed. As observed for other microsomal enzymes the Km of the solubilized enzyme is significantly lower than that of the membrane-bound enzyme. Membrane-bound 3-ketosteroid reductase is stimulated two- to- threefold by cytosolic Z protein (fatty acid binding protein), but stimulatory activity is lost after solubilization of the microsomal enzyme. Stimulation could not be restored by incorporating the partially purified reductase into an artificial membrane. Stimulation can be reversed by titration of Z-protein with either fatty acids or anti-Z-protein immunoglobulin. Thus, Z protein may modulate several microsomal enzymic activities of sterol biosynthesis in concert by exhibiting affinities for the membrane as well as low-molecular-weight cofactors, substrates, and metabolic effectors.  相似文献   

14.
F Goubet  D Mohnen 《Plant physiology》1999,121(1):281-290
The transfer of a methyl group from S-adenosyl-L-methionine onto the carboxyl group of alpha-1,4-linked-galactosyluronic acid residues in the pectic polysaccharide homogalacturonan (HGA) is catalyzed by an enzyme commonly referred to as pectin methyltransferase. A pectin methyltransferase from microsomal membranes of tobacco (Nicotiana tabacum) was previously characterized (F. Goubet, L.N. Council, D. Mohnen [1998] Plant Physiol 116: 337-347) and named HGA methyltransferase (HGA-MT). We report the solubilization of HGA-MT from tobacco membranes. Approximately 22% of the HGA-MT activity in total membranes was solubilized by 0.65% (w/v) 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid containing 1 mM dithioerythritol. The addition of phosphatidylcholine and the methyl acceptors HGA or pectin (30% degree of esterification) to solubilized enzyme increased HGA-MT activity to 35% of total membrane-bound HGA-MT activity. Solubilized HGA-MT has a pH optimum of 7.8, an apparent K(m) for S-adenosyl-L-methionine of 18 microM, and an apparent V(max) of 0. 121 pkat mg(-1) of protein. The apparent K(m) for HGA and for pectin is 0.1 to 0.2 mg mL(-1). Methylated product was solubilized with boiling water and ammonium oxalate, two conditions used to solubilize pectin from the cell wall. The release of 75% to 90% of the radioactivity from the product pellet by mild base treatment showed that the methyl group was incorporated as a methyl ester rather than a methyl ether. The fragmentation of at least 55% to 70% of the radiolabeled product by endopolygalacturonase, and the loss of radioactivity from the product by treatment with pectin methylesterase, demonstrated that the bulk of the methylated product produced by the solubilized enzyme was pectin.  相似文献   

15.
16.
17.
18.
19.
20.
Highly purified hepatic microsomal epoxide hydrase, which had been purified in the presence of proteolytic enzyme inhibitors, was subjected to carboxypeptidase Y digestion, automated Edman degradation, and carbohydrate analysis. Carboxypeptidase Y digestion resulted in the near stoichiometric release of leucine, the COOH-terminal amino acid. Automated Edman degradation permitted the identification of the first 20 amino acid residues of epoxide hydrase. Methionine was identified as the NH2-terminal residue. The NH2-terminal region of epoxide hydrase is similar in hydrophobicity to the NH2-terminal precursor segments of several secretory proteins and the NH2-terminal regions of several microsomal cytochromes P-450. Carbohydrate analyses of the enzyme revealed the presence of 0.5 to 1.0 mol of mannose/50,000 g of protein. These results provide evidence for the presence of a single polypeptide chain in our purified enzyme preparations and suggest that there may be only one enzymic form of epoxide hydrase in microsomes from phenobarbital-treated rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号