首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p21-activated kinase (PAK) has been shown to be an upstream mediator of JNK in angiotensin II (AngII) signaling. Little is known regarding other signaling molecules involved in activation of PAK and JNK by AngII. Rho family GTPases Rac and Cdc42 have been shown to enhance PAK activity by binding to p21-binding domain of PAK (PAK-PBD). In vascular smooth muscle cells (VSMC) AngII stimulated Rac1 binding to GST-PAK-PBD fusion protein. Pretreatment of VSMC by genistein inhibited AngII-induced Rac1 activation, whereas Src inhibitor PP1 had no effect. Inhibition of protein kinase C by phorbol 12,13-dibutyrate pretreatment also decreased AngII-mediated activation of Rac1. The adaptor molecule Nck has been shown previously to mediate PAK activation by facilitating translocation of PAK to the plasma membrane. In VSMC AngII stimulated translocation of Nck and PAK to the membrane fraction. Overexpression of dominant-negative Nck in Chinese hamster ovary (CHO) cells, stably expressing the AngII type I receptor (CHO-AT1), inhibited both PAK and JNK activation by AngII, whereas it did not affect ERK1/2. Finally, dominant-negative Nck inhibited AngII-induced DNA synthesis in CHO-AT1 cells. Our data provide evidence for Rac1 and Nck as upstream mediators of PAK and JNK in AngII signaling and implicate JNK in AngII-induced growth responses.  相似文献   

2.
The mammalian Ste20 kinase Nck-interacting kinase (NIK) specifically activates the c-Jun amino-terminal kinase (JNK) mitogen-activated protein kinase module. NIK also binds the SH3 domains of the SH2/SH3 adapter protein Nck. To determine whether Nck functions as an adapter to couple NIK to a receptor tyrosine kinase signaling pathway, we determined whether NIK is activated by Eph receptors (EphR). EphRs constitute the largest family of receptor tyrosine kinases (RTK), and members of this family play important roles in patterning of the nervous and vascular systems. In this report, we show that NIK kinase activity is specifically increased in cells stimulated by two EphRs, EphB1 and EphB2. EphB1 kinase activity and phosphorylation of a juxtamembrane tyrosine (Y594), conserved in all Eph receptors, are both critical for NIK activation by EphB1. Although pY594 in the EphB1R has previously been shown to bind the SH2 domain of Nck, we found that stimulation of EphB1 and EphB2 led predominantly to a complex between NIK/Nck, p62(dok), RasGAP, and an unidentified 145-kDa tyrosine-phosphorylated protein. Tyrosine-phosphorylated p62(dok) most probably binds directly to the SH2 domain of Nck and RasGAP and indirectly to NIK bound to the SH3 domain of Nck. We found that NIK activation is also critical for coupling EphB1R to biological responses that include the activation of integrins and JNK by EphB1. Taken together, these findings support a model in which the recruitment of the Ste20 kinase NIK to phosphotyrosine-containing proteins by Nck is an important proximal step in the signaling cascade downstream of EphRs.  相似文献   

3.
4.
We previously reported that expression of polyglutamine-expanded huntingtin induces apoptosis via c-Jun amino-terminal kinase (JNK) activation in HN33 cells (Liu, Y. F. (1998) J. Biol. Chem. 273, 28873-28822). Extending this study, we now demonstrate a role of mixed-lineage kinase 2 (MLK2), a JNK activator, in polyglutamine-expanded huntingtin-mediated neuronal toxicity. We find that normal huntingtin interacts with MLK2, whereas the polyglutamine expansion interferes with this interaction. Similar to the expression of polyglutamine-expanded huntingtin, expression of MLK2 also induces JNK activation and apoptosis in HN33 cells. Co-expression of dominant negative MLK2 significantly attenuates neuronal apoptosis induced by the mutated huntingtin. Furthermore, over-expression of the N terminus of normal huntingtin partially rescues the neuronal toxicity induced by MLK2. Our results suggest that activation of MLK2-mediated signaling cascades may be partially involved in neuronal death induced by polyglutamine-expanded huntingtin.  相似文献   

5.
6.
7.
Li T  Yu XJ  Zhang GY 《FEBS letters》2008,582(13):1894-1900
Hematopoietic progenitor kinase 1 (HPK1) is a hematopoietic cell-restricted member of the Ste20 serine/threonine kinase super family. We recently reported that HPK1 is involved in c-Jun NH2-terminal kinase (JNK) signaling pathway by sequential activation of MLK3-MKK7-JNK3 after cerebral ischemia. Here, we used 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4-d] pyrimidine (PP2) and MK801 to investigate the events upstream of HPK1 in ischemic brain injury. Immunoprecipitation and immunoblot results showed that PP2 and MK801 significantly decreased the activation of Src, HPK1, MLK3, JNK3 and c-Jun, respectively, during ischemia/reperfusion. Histology and TUNEL staining showed PP2 or MK801 protects against neuron death after brain ischemia. We speculate that this unique signaling pathway through the tyrosine phosphorylation of HPK1 promotes ischemic brain injury by activated Src via N-methyl-d-aspartate receptor and, ultimately, the activation of the MLK3-MKK7-JNK3 pathway after cerebral ischemia.  相似文献   

8.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that activates c-jun N-terminal kinase (JNK) and can induce cell death in neurons. By contrast, the activation of phosphatidylinositol 3-kinase and AKT/protein kinase B (PKB) acts to suppress neuronal apoptosis. Here, we report a functional interaction between MLK3 and AKT1/PKBalpha. Endogenous MLK3 and AKT1 interact in HepG2 cells, and this interaction is regulated by insulin. The interaction domain maps to the C-terminal half of MLK3 (amino acids 511-847), and this region also contains a putative AKT phosphorylation consensus sequence. Endogenous JNK, MKK7, and MLK3 kinase activities in HepG2 cells are significantly attenuated by insulin treatment, whereas the phosphatidylinositol 3-kinase inhibitors LY294002 and wortmannin reversed the effect. Finally, MLK3-mediated JNK activation is inhibited by AKT1. AKT phosphorylates MLK3 on serine 674 both in vitro and in vivo. Furthermore, the expression of activated AKT1 inhibits MLK3-mediated cell death in a manner dependent on serine 674 phosphorylation. Thus, these data provide the first direct link between MLK3-mediated cell death and its regulation by a cell survival signaling protein, AKT1.  相似文献   

9.
The MLK (mixed lineage) ser/thr kinases are most closely related to the MAP kinase kinase kinase family. In addition to a kinase domain, MLK1, MLK2 and MLK3 each contain an SH3 domain, a leucine zipper domain and a potential Rac/Cdc42 GTPase-binding (CRIB) motif. The C-terminal regions of the proteins are essentially unrelated. Using yeast two-hybrid analysis and in vitro dot-blots, we show that MLK2 and MLK3 interact with the activated (GTP-bound) forms of Rac and Cdc42, with a slight preference for Rac. Transfection of MLK2 into COS cells leads to strong and constitutive activation of the JNK (c-Jun N-terminal kinase) MAP kinase cascade, but also to activation of ERK (extracellular signal-regulated kinase) and p38. When expressed in fibroblasts, MLK2 co-localizes with active, dually phosphorylated JNK1/2 to punctate structures along microtubules. In an attempt to identify proteins that affect the activity and localization of MLK2, we have screened a yeast two-hybrid cDNA library. MLK2 and MLK3 interact with members of the KIF3 family of kinesin superfamily motor proteins and with KAP3A, the putative targeting component of KIF3 motor complexes, suggesting a potential link between stress activation and motor protein function.  相似文献   

10.
The c-Jun N-terminal kinase (JNK) group of mitogen-activated protein kinases (MAPKs) are activated by pleiotropic signals including environmental stresses, growth factors, and hormones. A subset of JNK can bind to distinct scaffold proteins that also bind upstream kinases of the JNK pathway, allowing sequential kinase activation within a signaling module. The JNK-interacting protein-1 (JIP-1) scaffold protein specifically binds JNK, MAP kinase kinase 7, and members of the MLK family and is essential for stress-mediated JNK activation in neurones. Here we report that JIP-1 also binds the dual-specificity phosphatases MKP7 and M3/6 via a region independent of its JNK binding domain. The C-terminal region of MKP7, homologous to that of M3/6 but not other DSPs, is required for interaction with JIP-1. When MKP7 is bound to JIP-1 it reduces JNK activation leading to reduced phosphorylation of the JNK target c-Jun. These results indicate that the JIP-1 scaffold protein modulates JNK signaling via association with both protein kinases and protein phosphatases that target JNK.  相似文献   

11.
It has been reported that genipin, the aglycone of geniposide, induces apoptotic cell death in human hepatoma cells via a NADPH oxidase-reactive oxygen species (ROS)-c-Jun NH(2)-terminal kinase (JNK)-dependent activation of mitochondrial pathway. This continuing work aimed to define that mixed lineage kinase 3 (MLK3) is a key mediator, which connect between ROS and JNK in genipin-induced cell death signaling. In PC3 human prostate cancer cells, genipin stimulated MLK3 activity in concentration- and time-dependent manner. The PC3 cells stably transfected with dominant-negative form of MLK3 was less susceptible to population of the sub-G1 apoptotic cells, activation of caspase, collapse of mitochondrial membrane potential, and release of cytochrome c triggered by genipin, suggesting a crucial role of MLK3 in genipin signaling to apoptotic cell death. Diphenyleneiodonium (DPI), a specific inhibitor of NADPH oxidase, markedly inhibited ROS generation and MLK3 phosphorylation in the genipin-treated cells. Pretreatment with SP0600125, a specific inhibitor of JNK but neither U0126, a specific inhibitor of MEK1/2 nor PD169316, a specific inhibitor of p38 suppressed genipin-induced apoptotic cell death. Notably, both the phosphorylation of JNK and induction of c-Jun induced by genipin were markedly inhibited in PC3-EGFP-MLK3 (K144R) cells expressing a dominant-negative MLK3 mutant. Taken together, our observations suggest genipin signaling to apoptosis of PC3 cells is mediated via activation of ROS-dependent MLK3, which leads to downstream activation of JNK.  相似文献   

12.
Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates multiple mitogen-activated protein kinase (MAPK) pathways in response to growth factors, stresses and the pro-inflammatory cytokine, tumor necrosis factor (TNF). MLK3 is required for optimal activation of stress activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) signaling by TNF, however, the mechanism by which MLK3 is recruited and activated by the TNF receptor remains poorly understood. Here we report that both TNF and interleukin-1β (IL-1β) stimulation rapidly activate MLK3 kinase activity. We observed that TNF stimulates an interaction between MLK3 and TNF receptor associated factor (TRAF) 2 and IL-1β stimulates an interaction between MLK3 and TRAF6. RNA interference (RNAi) of traf2 or traf6 dramatically impairs MLK3 activation by TNF indicating that TRAF2 and TRAF6 are critically required for MLK3 activation. We show that TNF also stimulates ubiquitination of MLK3 and MLK3 can be conjugated with lysine 48 (K48)- and lysine 63 (K63)-linked polyubiquitin chains. Our results suggest that K48-linked ubiquitination directs MLK3 for proteosomal degradation while K63-linked ubiquitination is important for MLK3 kinase activity. These results reveal a novel mechanism for MLK3 activation by the pro-inflammatory cytokines TNF and IL-1β.  相似文献   

13.
p21-activated kinases (PAKs) are implicated in integrin signalings, and have been proposed to associate with paxillin indirectly. We show here that paxillin can bind directly to PAK3. We examined several representative focal adhesion proteins, and found that paxillin is the sole protein that associates with PAK3. PAK3 associated with the alpha and beta isoforms of paxillin, but not with gamma. We also show that paxillin alpha associated with both the kinase-inactive and the Cdc42-activated forms of PAK3 in vivo, without affecting the activation states of the kinase. A number of different functions have been ascribed to PAKs; and PAKs can bind directly to growth factor signaling-adaptor molecule, Nck, and a guanine nucleotide exchanger, betaPIX. Our results revealed that paxillin alpha can compete with Nck and betaPIX in the binding of PAK3. Moreover, paxillin alpha can be phosphorylated by PAK3 at serine. Therefore, paxillin alpha, but not gamma, appears to be capable of linking both the kinase-inactive and activated forms of PAK3 to integrins independent of Nck and betaPIX, as Nck links PAK1 to growth factor receptors. Our results also revealed that paxillin is involved in highly complexed protein-protein interactions in integrin signaling.  相似文献   

14.
Mixed lineage kinase 3 (MLK 3) (also called SPRK or PTK-1) is a recently described member of the family of the mixed lineage kinase subfamily of Ser/Thr protein kinases that interacts with mitogen-activated protein kinase pathways. In order to test the biological relevance and potential interaction of MLK 3 with protein kinase C-mediated signaling pathways, human MLK 3 was stably expressed in rat glomerular mesangial cells using a retroviral vector (LXSN) and the effects of phorbol myristoyl acetate (PMA) on DNA synthesis and osteopontin mRNA expression were examined. In control (vector-transfected) mesangial cells PMA increased [3H]-thymidine incorporation in a concentration-dependent manner. In mesangial cells stably expressing MLK 3, the PMA-induced increase in [3H]-thymidine incorporation was significantly reduced (> 50%). However, the PMA-induced increase in osteopontin mRNA was not affected by MLK 3 expression. To determine the mechanisms of these effects, activation of ERK2, JNK1 and p38 in response to PMA was examined in both vector and MLK 3 transfected cells. ERK2 activation was increased several fold by PMA in control cells but was attenuated significantly in MLK 3 expressing cells, suggesting that MLK 3 expression in mesangial cells can negatively regulate the ERK pathway. PMA had no significant effect on JNK and P38 activation, in either vector- or MLK 3-expressing cells. PD98059, a MEK inhibitor blocked PMA-induced DNA synthesis without affecting osteopontin expression. These results suggest that while protein kinase C activation increases cellular proliferation and osteopontin mRNA expression, over-expression of MLK 3 affects only the PKC-induced DNA synthesis, probably through inhibition of ERK. These results also indicate a novel mechanism of growth regulation by a member of the mixed-lineage kinase family that might have significant therapeutic implications in proliferative glomerulonephritis.  相似文献   

15.
MLK3 (mixed lineage kinase 3) is a widely expressed, mammalian serine/threonine protein kinase that activates multiple MAPK pathways. Previously our laboratory used in vivo labeling/mass spectrometry to identify phosphorylation sites of activated MLK3. Seven of 11 identified sites correspond to the consensus motif for phosphorylation by proline-directed kinases. Based on these results, we hypothesized that JNK, or another proline-directed kinase, phosphorylates MLK3 as part of a feedback loop. Herein we provide evidence that MLK3 can be phosphorylated by JNK in vitro and in vivo. Blockade of JNK results in dephosphorylation of MLK3. The hypophosphorylated form of MLK3 is inactive and redistributes to a Triton-insoluble fraction. Recovery from JNK inhibition restores MLK3 solubility and activity, indicating that the redistribution process is reversible. This work describes a novel mode of regulation of MLK3, by which JNK-mediated feedback phosphorylation of MLK3 regulates its activation and deactivation states by cycling between Triton-soluble and Triton-insoluble forms.  相似文献   

16.
Mixed lineage kinase 7 (MLK7) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that activates the pro-apoptotic signaling pathways p38 and JNK. A library of potential kinase inhibitors was screened, and a series of dihydropyrrolopyrazole quinolines was identified as highly potent inhibitors of MLK7 in vitro catalytic activity. Of this series, an aryl-substituted dihydropyrrolopyrazole quinoline (DHP-2) demonstrated an IC50 of 70 nM for inhibition of pJNK formation in COS-7 cell MLK7/JNK co-transfection assays. In stimulated cells, DHP-2 at 200 nM or MLK7 small interfering RNA completely blocked anisomycin and UV induced but had no effect on interleukin-1beta or tumor necrosis factor-alpha-induced p38 and JNK activation. Additionally, the compound blocked anisomycin and UV-induced apoptosis in COS-7 cells. Heart tissue homogenates from MLK7 transgenic mice treated with DHP-2 at 30 mg/kg had reduced JNK and p38 activation with no apparent effect on ERK activation, demonstrating that this compound can be used to block MLK7-driven MAPK pathway activation in vivo. Taken together, these data demonstrate that MLK7 is the MAPKKK required for modulation of the stress-activated MAPKs downstream of anisomycin and UV stimulation and that DHP-2 can be used to block MLK7 pathway activation in cells as well as in vivo.  相似文献   

17.
The signaling pathways that mediate the transforming activity of the Rac1 GTPase remain to be determined. In the present study, we used effector domain mutants of the constitutively activated Rac(61L) mutant that display differential transforming activities and differential activation of downstream effector pathways to investigate the contribution of p70 S6 kinase (p70(S6K)) to Rac1 transformation and to decipher the signaling pathways leading from Rac1 to p70(S6K). First, we found that Rac1 transforming activity could be dissociated from Rac1 activation of p70(S6K). A weakly transforming Rac1 mutant retained the ability to activate p70(S6K), whereas some potently transforming effector mutants were impaired in their ability to activate p70(S6K). These data suggest that p70(S6K) is not necessary to promote full Rac1 transforming activity. We also found a strong correlation between the ability of the Rac(61L) effector mutants to activate p70(S6K) and their ability to activate the JNK mitogen-activated protein kinase. We found that the MLK3 serine/threonine kinase activated JNK and p70(S6K), whereas activation of p70(S6K) by Rac(61L) was significantly inhibited by dominant-negative MLK3. Additionally, the ability of the Rac(61L) effector mutants to activate MLK3 correlated well with their ability to activate p70(S6K) and JNK. Taken together, these results provide evidence that Rac1 coordinately activates p70(S6K) and JNK via MLK3 activation. Finally, we found that co-expression of wild type, but not kinase-dead, MLK3 significantly inhibited Rac1 transforming activity. These results suggest that MLK3 may be a negative regulator of the growth-promoting and transforming properties of Rac1.  相似文献   

18.
Mixed-lineage kinase 1 (MLK1) is a mitogen-activated protein kinase kinase kinase capable of activating the c-Jun NH(2)-terminal kinase (JNK) pathway. Full-length MLK1 has 1104 amino acids and a domain structure identical to MLK2 and MLK3. Immunoblot and mass spectrometry show that MLK1 is threonine (and possibly serine) phosphorylated in or near the activation loop. A kinase-dead mutant is not, consistent with autophosphorylation. Mutation to alanine of any of the four serine or threonine residues in the activation loop reduces both the activity of the recombinant kinase domain and JNK pathway activation driven by full-length MLK1 expressed in mammalian cells. Furthermore, the gel mobility of the mutant MLK1s is closer to that of the kinase-dead than wild type, consistent with reduced phosphorylation. Thr312 is the key residue: MLK1[T312A] retains only basal activity (about 1-2% of wild type), and its gel mobility is indistinguishable from kinase-dead. Thr312 does not suffice, however; phosphorylation of multiple sites is necessary for full activation of MLK1. An activation mechanism consistent with these data involves phosphorylation of multiple sites in the activation loop, with phosphorylation of Thr312 required for full phosphorylation. This mechanism is broadly similar to that previously reported for MLK3 [Leung, I. W., and Lassam, N. (2001) J. Biol. Chem. 276, 1961-1967], but the key residue differs.  相似文献   

19.
20.
CEP-1347 (KT7515) promotes neuronal survival at dosages that inhibit activation of the c-Jun amino-terminal kinases (JNKs) in primary embryonic cultures and differentiated PC12 cells after trophic withdrawal and in mice treated with 1-methyl-4-phenyl tetrahydropyridine. In an effort to identify molecular target(s) of CEP-1347 in the JNK cascade, JNK1 and known upstream regulators of JNK1 were co-expressed in Cos-7 cells to determine whether CEP-1347 could modulate JNK1 activation. CEP-1347 blocked JNK1 activation induced by members of the mixed lineage kinase (MLK) family (MLK3, MLK2, MLK1, dual leucine zipper kinase, and leucine zipper kinase). The response was selective because CEP-1347 did not inhibit JNK1 activation in cells induced by kinases independent of the MLK cascade. CEP-1347 inhibition of recombinant MLK members in vitro was competitive with ATP, resulting in IC(50) values ranging from 23 to 51 nm, comparable to inhibitory potencies observed in intact cells. In addition, overexpression of MLK3 led to death in Chinese hamster ovary cells, and CEP-1347 blocked this death at doses comparable to those that inhibited MLK3 kinase activity. These results identify MLKs as targets of CEP-1347 in the JNK signaling cascade and demonstrate that CEP-1347 can block MLK-induced cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号