首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glycopeptide hormone catfish somatostatin (somatostatin-22) has the amino acid sequence H-Asp-Asn-Thr-Val-Thr-Ser-Lys-Pro-Leu-Asn-Cys-Met-Asn-Tyr-Phe-Trp-Lys-Se r-Arg-Thr-Ala-Cys-OH; it includes a cyclic disulfide connecting the two Cys residues, and the major naturally occurring glycoform contains D-GalNAc and D-Gal O-glycosidically linked to Thr5. The linear sequence was assembled smoothly starting with an Fmoc-Cys(Trt)-PAC-PEG-PS support, using stepwise Fmoc solid-phase chemistry. In addition to the nonglycosylated peptide, two glycosylated forms of somatostatin-22 were accessed by incorporating as building blocks, respectively, Nalpha-Fmoc-Thr(Ac3-alpha-D-GalNAc)-OH and Nalpha-Fmoc-Thr(Ac4-beta-D-Gal-(1-->3)-Ac2-alpha-D-GalNAc)-O H. Acidolytic deprotection/cleavage of these peptidyl-resins with trifluoroacetic acid/scavenger cocktails gave the corresponding acetyl-protected glycopeptides with free sulfhydryl functions. Deacetylation, by methanolysis in the presence of catalytic sodium methoxide, was followed by mild oxidation at pH 7, mediated by Nalpha-dithiasuccinoyl (Dts)-glycine, to provide the desired monomeric cyclic disulfides. The purified peptides were tested for binding affinities to a panel of cloned human somatostatin receptor subtypes; in several cases, presence of the disaccharide moiety resulted in 2-fold tighter binding.  相似文献   

2.
To determine the epitopic structure for an anti-GalNAc alpha-Ser(Thr) (anti-Tn) monoclonal antibody, MLS 128, asialo-ovine submaxillary mucin was digested with various proteases, and the digests were fractionated by immunoaffinity column chromatography and high performance liquid chromatography. From the tryptic digest, a glycopeptide, GP-I, and five other glycopeptides, GP-1-5, were obtained as bound and unbound fractions, respectively, of the immunoaffinity column. By solid phase radioimmunoassaying, it was found that GP-I was strongly immunoreactive, whereas GP-1-5 were poorly immunoreactive. On treatment with V8 protease, GP-I was converted to two glycopeptides, one with poor reactivity and the other with intermediate reactivity. From the thermolysin digest, the smallest fragment, GP-II, was isolated, which was as strongly immunoreactive as GP-I. GP-II corresponded to a part of GP-I, its sequence being Leu-Ser*-Glu-Ser*-Thr*-Thr*-Gln-Leu-Pro-Gly, where asterisks denote amino acids to which an alpha-GalNAc residue is attached. Other anti-Tn monoclonal antibodies, NCC-LU-35 and CA 3239, showed essentially the same reactivity to these glycopeptides as MLS 128 did. The glycopeptides (GP-1-5), which exhibited poor immunoreactivity, contained various GalNAc-containing structures, such as GalNAc-Ser, GalNAc-Thr, GalNAc-Ser-(GalNAc)-Ser, and GalNAc-Thr-(GalNAc)-Thr. These results indicate that a glycopeptide including a cluster structure, Ser*-Thr*-Thr*, is an essential part of the epitope recognized by anti-Tn antibodies.  相似文献   

3.
The surface layer glycoprotein of Aneurinibacillus thermoaerophilus DSM 10155 has a total carbohydrate content of 15% (by mass), consisting of O-linked oligosaccharide chains. After proteolytic digestion of the S-layer glycoprotein byPronase E and subsequent purification of the digestion products by gel permeation chromatography, chromatofocusing and high-performance liquid chromatography two glycopeptide pools A and B with identical glycans and the repeating unit structure -->4)-alpha-l-Rha p -(1-->3)-beta-d- glycero -d- manno -Hep p -(1--> (Kosma et al., 1995b, Glycobiology, 5, 791-796) were obtained. Combined evidence from modified Edman-degradation in combination with liquid chromatography electrospray mass-spectrometry and nuclear magnetic resonance spectroscopy revealed that both glycopeptides contain equal amounts of the complete core structure alpha-l-Rha p -(1-->3)-alpha-l-Rha p -(1-->3)-beta-d-Gal p NAc-(1-->O)-Thr/Ser and the truncated forms alpha-l-Rha p -(1-->3)-beta-d-Gal p NAc-(1-->O)-Thr/Ser and beta-d-Gal p NAc-(1-->O)-Thr/Ser. All glycopeptides possessed the novel linkage types beta-d-Gal p NAc-(1-->O)-Thr/Ser. The different cores were substituted with varying numbers of disaccharide repeating units. By 300 MHz proton nuclear magnetic resonance spectroscopy the complete carbohydrate core structure of the fluorescently labeled glyco-peptide B was determined after Smith-degradation of its glycan chain. The NMR data confirmed and complemented the results of the mass spectroscopy experiments. Based on the S-layer glycopeptide structure, a pathway for its biosynthesis is suggested.  相似文献   

4.
To determine the epitopic structure for an anti-Siaalpha2-6GalNAcalpha-Ser/Thr (anti-sialyl Tn) monoclonal antibody, MLS 132, ovine submaxillary mucin (OSM) was digested with the combination of trypsin and thermolysin and the digest fractionated by immunoaffinity column chromatography and HPLC. From tryptic digest, a major glycopeptide designated as T3 was obtained as an immunoaffinity column-bound fraction. On solid-phase radioimmunoassay, it was found that T3 exhibited strong immunoreactivity with MLS 132. On treatment with thermolysin, T3 was converted into about 50 fragments, as found on fractionation by HPLC. Several of them were strongly immunoreactive and had the same amino acid sequence, i.e. Phe-Ser*-Gly-Glu-Thr*-Ser*-Thr*-Thr*-Val-Ile-Ser*-Gly-Thr*-Asn-Val, where asterisks denote the sites of attachment of carbohydrate. Of these, one was fully sialylated, the others having one Ser or Thr with unsialylated GalNAc attached. Results of analyses of the carbohydrate attached in these glycopeptides led us to postulate that a cluster composed of four sialyl Tn antigens is the essential epitopic structure for MLS 132.  相似文献   

5.
Quiescent thymocytes, mitogen-stimulated thymocytes and acute-leukaemic lymphoblasts provide a model for the study of protein glycosylation in quiescent cells, mitotically active non-malignant and malignant cells respectively. The biosynthesis of both complex and high-mannose-type oligosaccharides was monitored by metabolic labelling with [6-3]fucose and [2-3H]mannose. Bio-Gel P6 elution profiles of [6-3H]fucose-labelled glycopeptides showed that quiescent thymocytes and stimulated thymocytes synthesized qualitatively and quantitatively similar glycopeptides; however, higher-molecular-weight glycopeptides were synthesized by the acute-leukaemic lymphoblasts. The amount of [2(-3)H]mannose incorporated into glycopeptide by quiescent thymocytes was less than 10% of that incorporated by stimulated thymocytes. The Bio-Gel P6 elution profile of [2(-3)H]mannose-labelled glycopeptides from acute leukaemic lymphoblasts was qualitatively similar to that of stimulated thymocytes, with about 40% of the radioactivity incorporated into one glycopeptide peak. This glycopeptide was characterized by Bio-Gel P6 and concanavalin A affinity chromatography, radioactive-sugar analysis, sensitivity to alpha-mannosidase and endoglycosidase H and resistance to beta-glucosaminidase as containing a high-mannose oligosaccharide, possible of Man7-8GlcNAc2 structure. Pulse/chase experiments indicated that this high-mannose oligosaccharide was an end product and not a biosynthetic intermediate. It is concluded that higher-molecular-weight fucose-labelled glycopeptides are characteristic of the malignant cell type, and the synthesis of high-mannose oligosaccharide, Man7-8GlcNAc2, in stimulated thymocytes and acute-leukaemic lymphoblasts is associated with mitotically active cells.  相似文献   

6.
We have carried out detailed structural studies of the glycopeptides of glycoprotein gD of herpes simplex virus types 1 and 2. We first examined and compared the number of N-asparagine-linked oligosaccharides present in each glycoprotein. We found that treatment of either pgD-1 or pgD-2 with endo-β-N-acetylglucosaminidase H (Endo H) generated three polypeptides which migrated more rapidly than pgD on gradient sodium dodecyl sulfate-polyacrylamide gels. Two of the faster-migrating polypeptides were labeled with [3H]mannose, suggesting that both pgD-1 and pgD-2 contained three N-asparagine-linked oligosaccharides. Second, we characterized the [3H]mannose-labeled tryptic peptides of pgD-1 and pgD-2. We found that both glycoproteins contained three tryptic glycopeptides, termed glycopeptides 1, 2, and 3. Gel filtration studies indicated that the molecular weights of these three peptides were approximately 10,000, 3,900, and 1,800, respectively, for both pgD-1 and pgD-2. Three methods were employed to determine the size of the attached oligosaccharides. First, the [3H]mannose-labeled glycopeptides were treated with Endo H, and the released oligosaccharide was chromatographed on Bio-Gel P6. The size of this molecule was estimated to be approximately 1,200 daltons. Second, Endo H treatment of [35S]methionine-labeled glycopeptide 2 reduced the molecular size of this peptide from approximately 3,900 to approximately 2,400 daltons. Third, glycopeptide 2 isolated from the gD-like molecule formed in the presence of tunicamycin was approximately 2,200 daltons. From these experiments, the size of each N-asparagine-linked oligosaccharide was estimated to be approximately 1,400 to 1,600 daltons. Our experiments indicated that glycopeptides 2 and 3 each contained one N-asparagine-linked oligosaccharide chain. Although glycopeptide 1 was large enough to accommodate more than one oligosaccharide chain, the experiments with Endo H treatment of the glycoprotein indicated that there were only three N-asparagine-linked oligosaccharides present in pgD-1 and pgD-2. Further studies of the tryptic glycopeptides by reverse-phase high-performance liquid chromatography indicated that all of the glycopeptides were hydrophobic in nature. In the case of glycopeptide 2, we observed that when the carbohydrate was not present, the hydrophobicity of the peptide increased. The properties of the tryptic glycopeptides of pgD-1 were compared with the properties predicted from the deduced amino acid sequence of gD-1. The size and amino acid composition compared favorably for glycopeptides 1 and 2. Glycopeptide 3 appeared to be somewhat smaller than would be predicted from the deduced sequence of gD-1. It appears that all three potential glycosylation sites predicted by the amino acid sequence are utilized in gD-1 and that a similar number of glycosylation sites are present in gD-2.  相似文献   

7.
The lipid-free protein residue of rat brain tissue was treated with papain to solubilize the heteropolysaccharide chains of the tissue glycoproteins. The glycopeptides were separated into non-dialyzable and dialyzable glycopeptide preparations. Each preparation was then sorted out into groups of glycopeptides by means of electrophoresis and gel filtration. The quantitatively predominant glycopeptides were the alkali-stable glycopeptides (Group A) which accounted for 64% of the glycopeptide carbohydrate recovered from rat brain. Most of the group A glycopeptides appeared in the non-dialyzable preparation. The molecular weight of the glycopeptides of Group A ranged from approximately 5200–3700. The largest glycopeptide molecule in this mixture possessed the highest electrophoretic mobility and contained one fucose, four N-acetylneuraminic acid (NANA), six N-acetylglucosamine, four galactose, and three mannose residues per molecule. The spectrum of glycopeptides isolated in this group showed a progressive decrease in NANA rsidues, NANA and galactose residues, and NANA, galactose, and N-acetylglucosamine residues which could be correlated with a progressive decline in molecular weight and electrophoretic mobility. Some of the glycopeptides in each fraction recovered from this group of glycopeptides contained sulfate ester groups.A second group of glycopeptides (Group C glycopeptides) accounted for 25% of the total glycoprotein carbohydrate recovered from rat brain. These were recoverd from the dialyzable glycopeptide preparation, and resolved into three fractions by column electrophoresis. These glycopeptides do not contain sulfate, are composed predominately of mannose and N-acetylglucosamine, and possess a molecular weight of approximately 3000.Several minor groups of glycopeptides were detected. Alkali-labile glycopeptides (Group B) appeared in the non-dialyzable glycopeptide preparation. The dialyzable glycopeptide preparation contained glycopeptides (Group E) which contained N-acetylgalactosamine and glucose. These had a molecular weight of approximately 2000. Group D glycopeptides recovered from the dialyzable glycopeptide preparation contained variable amounts of NANA, mannose, galactose, N-acetylglucosamine, and sulfate. These possessed a molecular weight of approximately 2900.  相似文献   

8.
We have isolated and characterized glycopeptides, derived from mouse and bovine cerebral cortex cells, that inhibit protein synthesis and cell growth of normal but not transformed cells. The inhibitor binds to target cell surfaces, and gangliosides have previously been shown to influence cell sensitivity to the glycopeptides. Preincubation with 3.0 micrograms/ml ganglioside GM1 at 0 degrees C for 3 hr sensitized the mouse L-cell line to the inhibitor, as determined by protein synthesis assays. Preincubation of LM cells with ganglioside GM1 alone did not affect protein synthesis rates. In addition, the gangliosides GD1a and GM3 also sensitized the LM cells to the protein synthesis inhibitory effect of the glycopeptide inhibitor. Binding experiments were performed with 3T3 (sensitive) and LM (insensitive) cells to determine if sensitivity to the glycopeptide inhibitor was reflected in binding of the inhibitor to these cells. Binding of 125I-labeled inhibitor to 3T3 cells was maximal after 60 min at 0 degrees C and saturable at approximately 1 X 10(4) molecules/cell. Furthermore, binding of the inhibitor was dose-dependent, with half-maximal binding at 1.5-2.0 nM and saturation at 8.0-10.0 nM. Scatchard plot analysis indicated that the Kd was about 1 X 10(-9) M and that there are 1 X 10(4) receptors/cell. Binding of the inhibitor to LM cells was maximal after 30 min at 0 degrees C and saturation occurred at 5 X 10(3) molecules/cell. We then examined the possibility that gangliosides are the cellular receptor or co-receptor for the glycopeptide inhibitor. Binding of the inhibitor to ganglioside GM1 was first examined after the ganglioside had been preadsorbed to polystyrene tubes. These experiments indicated that the ganglioside did not bind the inhibitor. Ganglioside-containing liposomes from phosphatidylcholine or LM cell membrane components were also prepared; these artificial membranes did not bind appreciable amounts of the iodinated inhibitor. Competition experiments showed that the gangliosides GM1 and GD1a did not neutralize the protein synthesis inhibitory activity of the glycopeptides, indicating that gangliosides do not directly interact with the glycopeptide inhibitor. In addition, binding of the inhibitor to LM cells preincubated with ganglioside GM1 was studied. Although the binding of the inhibitor to LM cells was one-half that observed for 3T3 cells, incorporation of exogenous gangliosides into LM cells did not result in increased binding of the inhibitor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The three tryptic glycopeptides from ovine lutropin, in which two were from the α-subunit (α-56 and α-82 glycopeptides) and one from the β-subunit (β-13 glycopeptide), have been isolated and their carbohydrate compositions analyzed. The results indicate that the α-56 glycopeptide has the highest amount of carbohydrate, whereas the β-13 glycopeptide has the least. In general, each of the glycopeptides has similar distribution of various sugars, i.e. high in mannose and glucosamine and low in fucose, sialic acid, galactose and galactosamine. Within the limit of experimental error, the sum of their carbohydrate composition is in agreement with the published data on the intact hormone or separated subunits.  相似文献   

10.
Two protected derivatives of beta-D-galactopyranosyl-5-hydroxy-L-lysine, in which HO-4 of galactose has been O-methylated or replaced by fluorine, have been prepared. The building blocks were incorporated at position 264 of the peptide fragment CII259-273 from type II collagen by solid-phase synthesis. The ability of these two glycopeptides, and two CII259-273 glycopeptides in which HO-4 of galactose was either unmodified or deoxygenated, to elicit responses from T-cell hybridomas obtained in a mouse model for rheumatoid arthritis was then determined. The hybridomas were all highly sensitive towards modifications at C-4 of the beta-D-galactosyl residue of CII259-273, highlighting the role of HO-4 as an important contact point for the T-cell receptor. Most likely, this glycopeptide hydroxyl group is involved in hydrogen bonding with the T-cell receptor.  相似文献   

11.
MUC1 mucin is a large transmembrane glycoprotein, of which the extracellular domain is formed by a repeating 20 amino acid sequence, GVTSAPDTRPAPGSTAPPAH. In normal breast epithelial cells, the extracellular domain is densely covered with highly branched complex carbohydrate structures. However, in neoplastic breast tissue, the extracellular domain is underglycosylated, resulting in the exposure of a highly immunogenic core peptide epitope (PDTRP in bold above) as well as the normally cryptic core Tn (GalNAc), STn (sialyl alpha2-6 GalNAc), and TF (Gal beta1-3 GalNAc) carbohydrates. In the present study, NMR methods were used to correlate the effects of cryptic glycosylation outside of the PDTRP core epitope region to the recognition and binding of a monoclonal antibody, Mab B27.29, raised against the intact tumor-associated MUC1 mucin. Four peptides were studied: a MUC1 16mer peptide of the sequence Gly1-Val2-Thr3-Ser4-Ala5-Pro6-Asp7-Thr8-Arg9-Pro10-Ala11-Pro12-Gly13-Ser14-Thr15-Ala16, two singly Tn-glycosylated versions of this peptide at either Thr3 or Ser4, and a doubly Tn-glycosylated version at both Thr3 and Ser4. The results of these studies showed that the B27.29 MUC1 B-cell epitope maps to two separate parts of the glycopeptide, the core peptide epitope spanning the PDTRP sequence and a second (carbohydrate) epitope comprised of the Tn moieties attached at Thr3 and Ser4. The implications of these results are discussed within the framework of developing a glycosylated second-generation MUC1 glycopeptide vaccine.  相似文献   

12.
Processing of N-linked oligosaccharides in soybean cultured cells   总被引:4,自引:0,他引:4  
Evidence, based on both in vivo and in vitro studies with suspension-cultured soybean cells, is presented to demonstrate the processing of the oligosaccharide chain of plant N-linked glycoproteins. Following a 1-h incubation of soybean cells with [2-3H]mannose, the predominant glycopeptide obtained by pronase digestion of the membrane fraction was a Man7- or Man8GlcNAc2-Asn (GlcNAc, N-acetylglucosamine). However, the major oligosaccharide isolated from the lipid-linked oligosaccharides of these cells was a Glc2- or Glc3Man9GlcNAc2. Soybean cells were incubated with [2-3H]mannose and the incorporation of mannose into Pronase-released glycopeptides was followed during a 2-h chase. During the first 10 min of labeling, the radioactivity was mostly in a large-sized glycopeptide that appeared to be a Glc1Man9GlcNAc2-peptide. During the next 60 to 90 min of chase, this radioactivity was shifted to smaller and smaller-sized glycopeptides indicating that removal of sugars (i.e., processing) had occurred. Both glucosidase and mannosidase activity was detected in membrane preparations of soybean cells. Nine different glycopeptides were isolated from Pronase digests of soybean cell membrane fractions. These glycopeptides were purified by repeated gel filtration on columns of Bio-Gel P-4. Partial characterization of these glycopeptides by endoglucosaminidase H and alpha-mannosidase digestion, and by analysis of the products, suggested the following glycopeptides: Glc1Man9GlcNAc2-Asn, Man8GlcNAc2-Asn, Man7GlcNAc2-Asn, Man6GlcNAc2-Asn, and Man5GlcNAc2-Asn.  相似文献   

13.
The development of vaccines against specific types of cancers will offer new modalities for therapeutic intervention. Here, we describe the synthesis of a novel vaccine construction prepared from spherical gold nanoparticles of 3-5 nm core diameters. The particles were coated with both the tumor-associated glycopeptides antigens containing the cell-surface mucin MUC4 with Thomsen Friedenreich (TF) antigen attached at different sites and a 28-residue peptide from the complement derived protein C3d to act as a B-cell activating "molecular adjuvant". The synthesis entailed solid-phase glycopeptide synthesis, design of appropriate linkers, and attachment chemistry of the various molecules to the particles. Attachment to the gold surface was mediated by a novel thiol-containing 33 atom linker which was further modified to be included as a third "spacer" component in the synthesis of several three-component vaccine platforms. Groups of mice were vaccinated either with one of the nanoplatform constructs or with control particles without antigen coating. Evaluation of sera from the immunized animals in enzyme immunoassays (EIA) against each glycopeptide antigen showed a small but statistically significant immune response with production of both IgM and IgG isotypes. Vaccines with one carbohydrate antigen (B, C, and E) gave more robust responses than the one with two contiguous disaccharides (D), and vaccine E with a TF antigen attached to threonine at the 10th position of the peptide was selected for IgG over IgM suggesting isotype switching. The data suggested that this platform may be a viable delivery system for tumor-associated glycopeptide antigens.  相似文献   

14.
Acid-catalysed O-acetylation of D-maltulose furnished the corresponding per-O-acetylated fructopyranose derivative that, after in situ deprotection at O-2 by reaction with triphenylphosphane dibromide, gave open-chain 2,3,4,6-tetra-O-acetyl-alpha-D-glucopyranosyl-(1 --> 4)-1,3,5-tri-O-acetyl-6-bromo-6-deoxy-D-fructose. Standard deprotection employing sodium methoxide in methanol at -30 degrees C, followed by treatment of the resulting free 6-bromodeoxymaltulose with sodium azide in N,N-dimethylformamide, allowed access to 6-azidodeoxymaltulose. Hydrogenation over Pearlman's catalyst, accompanied by intramolecular reductive amination, yielded the desired title compound. This route allows access to preparative quantities and to a range of novel analogues with improved biostability.  相似文献   

15.
Access to glycopeptides with C-terminal thioester functionality is essential for the synthesis of large glycopeptides and glycoproteins through the use of native chemical ligation. Toward that end, we have developed a concise method for the synthesis of a glycopeptide thioester having an intact complex-type dibranched disialyl-oligosaccharide. The synthesis employed a coupling reaction between benzylthiol and a free carboxylic acid at the C-terminus of a glycopeptide in which the peptide side chains are protected. After construction of glycopeptide on the HMPB-PEGA resin through the Fmoc-strategy, the protected glycopeptide was released upon treatment with acetic acid/trifluoroethanol and then the C-terminal carboxylic acid was coupled with benzylthiol at -20 degrees C in DMF. For this coupling, PyBOP/DIPEA was found to be the best for the formation of the thioester, while avoiding racemization. Finally, the protecting groups were removed in good yield with 95% TFA, thus affording a glycopeptide-thioester having an intact and homogeneous complex-type disialyl-oligosaccharide.  相似文献   

16.
Electrophoretically homogeneous type 1 (GP-C1 and GP-C2), type 2 (GP-C3a and GP-C3b,) and type 3 (GP-D1, and GP-D2) glycopeptides fromAspergillus niger glucoamylase II (Manjunath and Raghavendra Rao, preceding paper) were separately treated with alkaline borohydride. The (\-eliminated oligosaccharides were subjected to single and sequential digestion with specific glycosidases and the products analysed by gas liquid chromatography. The studies revealed that carbohydrate moieties were present as mannose, Man-Man-, and trisaccharide structures, namely, (a) GIc-Man-Man-, (b) Gal-Man-Man, (c) Man-Man-Man-, (d) GlcNAc-Man-Man-, and (e) Xyl-Man-Man. None of the glycopeptides contained all the trisaccharide structures (a) to (e). Type 1 glycopeptide contained structures (a), (b) and (c); type 2, (a) and (d) and type 3, (a), (b) and (e). The number of carbohydrate units (mono-, di-and trisaccharides) present in the major glycopeptides was determined and tentative structures for the glycopeptides proposed. Carbohydrate units appeared to occur in clusters of 4 to 7 in each glycopeptide, a structure unique to the carbohydrate moiety inAspergillus niger glucoamylase. Based on carbohydrate analysis and yields of glycopeptide, the number of units of each type of glycopeptide present in glucoamylase II was tentatively calculated to give two of type Man:Glc:Gal = 12–15:l:l, one of type Man:Glc:GlcN = 10-l1:1:2 and one of type Man :GIc :Gal:Xyl = 4–8:0.1:0.5-0.8:0.3-1 glycopeptides.  相似文献   

17.
Herein we describe the synthesis of glycopeptide fragments from the death domains of TRADD and FADD bearing the recently discovered -GlcNAc-β-arginine post-translational modification. TRADD and FADD glycopeptides were accessed through the use of a suitably protected synthetic glycosylamino acid ‘cassette’ that could be directly incorporated into conventional solid phase peptide synthesis (SPPS) protocols.  相似文献   

18.
This protocol describes the methodology for the synthesis of dehydroalanine (Dha)-containing peptides and illustrates their use in convergent ligation strategies for the preparation of peptide conjugates. A nonproteinogenic amino acid, Fmoc-Se-phenylselenocysteine (SecPh), can be prepared in high yield over four synthetic steps and be conveniently incorporated into peptides by standard solid-phase peptide synthesis techniques. Globally deprotected peptides containing phenylselenocysteine can be converted to dehydrated peptides following a chemoselective, mild oxidation with hydrogen peroxide or sodium periodate (i.e., the phenylselenocysteine side chain is converted to that of Dha). Dha residues are electrophilic handles for the preparation of glycopeptides, lipopeptides or other peptide conjugates; one such transformation will be outlined here. The preparation of Dha-containing peptides, including the synthesis of SecPh, peptide elongation and oxidative treatment of phenylselenocysteine-containing peptides can be completed by one person in approximately 3-5 weeks. However, once SecPh is in hand, the time required for the preparation of peptides is significantly shorter and comparable to that for any peptide synthesis.  相似文献   

19.
The amino acid sequence of the glycopeptide obtained from bovine PASII/PMP22 protein in the PNS myelin was determined to be Gln-Asn-Cys-Ser-Thr, where the asparagine was glycosylated. To eliminate all the contaminated P(o) glycopeptides from the PASII/PMP22 glycopeptide preparation, we used a fluorescent probe, N-[2-(2-pyridylamino)ethyl]maleimide, which reacts with the cysteine of the PASII/PMP22 glycopeptides. The labeled PASII/PMP22 glycopeptides were isolated by HPLC and were digested further with glycopeptidase A. The resultant oligosaccharides were conjugated with 2-aminopyridine (PA) as a fluorescent tag. One major PA-oligosaccharide, OPPE1, was purified by HPLC. The structure of OPPE1 was elucidated by fast atom bombardment mass spectrometry and (1)H-NMR studies and comparing the derivatives of PA-OPPE1 and PA-oligosaccharides of gamma-globulin on HPLC. The structure, SO(4)-3GlcAbeta1-3Galbeta1-4GlcNAcbeta1-2Manalpha1+ ++-6(GlcNAcbeta1-4) (GlcNAcbeta1-2Manalpha1-3)Manbeta1-4GlcNAcbeta1- 4(Fucalpha1-6)GlcNAc- PA, was identical to the pyridylaminated form of the major oligosaccharide D8 of bovine P(o) previously reported.  相似文献   

20.
The benzyl-protected disaccharide building blocks of core 8 O-glycan (15a/15b) for glycopeptide were stereoselectively synthesized by two glycosidation reactions with the glycosyl fluoride method. The building blocks were utilized in the solid-phase synthesis of a glycopeptide carrying two O-glycans with the consensus sequence of the tandem-repeat domain of MUC5AC. The synthetic glycopeptide was detached from the resin with reagent K, and subsequent debenzylation under conditions of low-acidity TfOH afforded glycopeptide 2. The synthetic sample will be used as a suitable standard in studies of the physicochemical or immunochemical characterization of mucin glycoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号