首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metamorphic duration: an under-studied variable in frog life histories   总被引:3,自引:0,他引:3  
Over a narrow temperature range (25.5–28 °C), metamorphic duration in 14 taxonomically diverse frog species ranged from 2.0 to 7.3 days. For 12 species, duration was significantly related to tadpole body-size parameters, especially tail length. For the remainder, duration was longer than expected. Two patterns of tail regression were seen with either rapid or slow regression at the start. Most species lost about 30% of body wet weight during metamorphosis, but two were exceptional: X. laevis lost 58% and F. fitzgeraldi 13%. The results are discussed in the context of Wassersug & Sperry's (1977 ) hypothesis that selection acts to minimize metamorphic duration because metamorphosis is a highly vulnerable stage. Several other factors are outlined as possible determinants of metamorphic duration: developmental constraints, functional trade-offs, phylogeny, predator abundance, adaptive de-coupling, body condition and metabolic and water costs. There is evidence from the data for the operation of several of these factors, especially in species utilizing specialized habitats, and a plea is made for further study of metamorphic duration as an ecologically and evolutionarily important variable in amphibian life histories. Finally, the effects of different temperatures on metamorphic duration are presented for several species, and discussed in terms of local adaptation and reaction norms.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 261–272.  相似文献   

2.
Vonesh JR 《Oecologia》2005,143(2):280-290
While theoretical studies of the timing of key switch points in complex life cycles such as hatching and metamorphosis have stressed the importance of considering multiple stages, most empirical work has focused on a single life stage. However, the relationship between the fitness components of different life stages may be complex. Ontogenetic switch points such as hatching and metamorphosis do not represent new beginnings—carryover effects across stages can arise when environmental effects on the density and/or traits of early ontogenetic stages subsequently alter mortality or growth in later stages. In this study, I examine the effects of egg- and larval-stage predators on larval performance, size at metamorphosis, and post-metamorphic predation in the African tree frog Hyperolius spinigularis. I monitored the density and survival of arboreal H. spinigularis clutches in the field to estimate how much egg-stage predation reduced the input of tadpoles into the pond. I then conducted experiments to determine: (1) how reductions in initial larval density due to egg predators affect larval survival and mass and age at metamorphosis in the presence and absence of aquatic larval predators, dragonfly larvae, and (2) how differences in mass or age at metamorphosis arising from predation in the embryonic and larval environments affect encounters with post-metamorphic predators, fishing spiders. Reduction in larval densities due to egg predation tended to increase per capita larval survival, decrease larval duration and increase mass at metamorphosis. Larval predators decreased larval survival and had density-dependent effects on larval duration and mass at metamorphosis. The combined effects of embryonic and larval-stage predators increased mass at metamorphosis of survivors by 91%. Larger mass at metamorphosis may have immediate fitness benefits, as larger metamorphs had higher survival in encounters with fishing spiders. Thus, the effects of predators early in ontogeny can alter predation risk even two life stages later.  相似文献   

3.
Variation in age and size at life‐history transitions is a reflection of the diversifying influence of biotic or abiotic environmental change. Examples abound, but it is not well understood how such environmental changes influence the age structure of a population. I experimentally investigated the effects of water temperature and food type on age and body size at metamorphosis in larvae of the salamander Hynobius retardatus. In individuals grown at a cold temperature (15 °C) or given Chironomidae as prey, the time to metamorphosis was significantly prolonged, and body size at metamorphosis was significantly enlarged, compared with individuals grown at a warmer temperature (20 °C) or fed larvae. I also examined whether larval density (a possible indicator of cannibalism in natural habitats) generated variation in the age structure of natural populations in Hokkaido, Japan, where the climate is subarctic. Natural ponds in Hokkaido may contain larvae that have overwintered for 1 or 2 years, as well as larvae of the current year, and I found that the number of age classes was related to larval density. Although cool water temperatures prolong the larval period and induce later metamorphosis, in natural ponds diet‐based enhancement of development translated into a shorter larval duration and earlier metamorphosis. Geographic variation in the frequency of cannibalism resulted in population differences in metamorphic timing in H. retardatus larvae. It is important to understand how environmental effects are ultimately transduced through individual organisms into population‐level phenomena, with the population response arising as the summation of individual responses. Without a thorough comprehension of the mechanisms through which population and individual responses to environmental conditions are mediated, we cannot interpret the relationship between population‐level and individual‐level phenomena. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 100–114.  相似文献   

4.
Relyea RA 《Oecologia》2007,152(3):389-400
Metamorphosis has intrigued biologists for a long time as an extreme form of complex life cycles that are ubiquitous in animals. While investigated from a variety of perspectives, the ecological focus has been on identifying and understanding the ecological factors that affect an individual’s decision on when, and at what size, to metamorphose. Predation is a major factor that affects metamorphic decisions and a recent review by Benard (Annu Rev Ecol Evol Syst 35:651–673, 2004)) documented how predator cues induce metamorphic changes relative to model predictions. Importantly, however, real predators affect larval prey via several mechanisms beyond simple induction. In this paper, I contrast the leading models of metamorphosis, provide an overview of the multiple ways that predators can directly and indirectly affect larval growth and development (via induction, thinning, and selection), and identify how each process should affect the time to and size at metamorphosis. With this mechanistic foundation established, I then turn to the well-studied model system of larval amphibians to synthesize studies on: (1) caged predators (which cause only induction), and (2) lethal predators (which cause induction, thinning, and selection). Among the caged-predator studies, the chemical cues emitted by predators rarely induce a smaller size at metamorphosis or a shorter time to metamorphosis, which is in direct contrast to theoretical predictions but in agreement with Benard’s (Annu Rev Ecol Evol Syst 35:651–673, 2004) review based on a considerably smaller dataset. Among the lethal-predator studies, there is a diversity of outcomes depending upon the relative importance of induction versus thinning with the relative importance of the two processes appearing to change with larval density. Finally, I review the persistent effects of larval predators after metamorphosis including both phenotypic and fitness effects. At the end, I outline a number of future directions to allow researchers to continue gaining insight into how predators affect the metamorphic decisions of their prey. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Hormonal control of post-embryonic morphogenesis is well established, but it is not clear how differences in developmental endocrinology between species may underlie animal diversity. We studied this issue by comparing metamorphic thyroid hormone (TH) physiology and gonad development across spadefoot toad species divergent in metamorphic rate. Tissue TH content, in vitro tail tip sensitivity to TH, and rates of TH-induced tail tip shrinkage correlated with species differences in larval period duration. Gonad differentiation occurred before metamorphosis in species with long larval periods and after metamorphosis in the species with short larval periods. These differences in TH physiology and gonad development, informed by phylogeny and ecology of spadefoot metamorphosis, provide evidence that selection for the short larval periods in spadefoot toads acted via TH physiology and led to dramatic heterochronic shifts in metamorphic climax relative to gonad development.  相似文献   

6.
1. To survive adverse or unpredictable conditions in the ontogenetic environment, many organisms retain a level of phenotypic plasticity that allows them to meet the challenges of rapidly changing conditions. Larval anurans are widely known for their ability to modify behaviour, morphology and physiological processes during development, making them an ideal model system for studies of environmental effects on phenotypic traits. Although temperature is one of the most important factors influencing the growth, development and metamorphic condition of larval anurans, many studies have failed to include ecologically relevant thermal fluctuations among their treatments. 2. We compared the growth and age at metamorphosis of striped marsh frogs Limnodynastes peronii raised in a diurnally fluctuating thermal regime and a stable regime of the same mean temperature. We then assessed the long-term effects of the larval environment on the morphology and performance of post-metamorphic frogs. 3. Larval L. peronii from the fluctuating treatment were significantly longer throughout development and metamorphosed about 5 days earlier. Frogs from the fluctuating group metamorphosed at a smaller mass and in poorer condition compared with the stable group, and had proportionally shorter legs. 4. Frogs from the fluctuating group showed greater jumping performance at metamorphosis and less degradation in performance during a 10-week dormancy. Treatment differences in performance could not be explained by whole-animal morphological variation, suggesting improved contractile properties of the muscles in the fluctuating group.  相似文献   

7.
Abstract 1. Western tent caterpillars hatch in the early spring when temperatures are cool and variable. They compensate for sub-optimal air temperatures by basking in the sun.
2. Tent caterpillars have cyclic population dynamics and infection by nucleopolyhedrovirus (NPV) often occurs in populations at high density.
3. To determine whether climatic variation might influence viral infection, the environmental determinants of larval body temperature and the effects of temperature on growth and development rates and larval susceptibility to NPV were examined.
4. In the field, larval body temperature was determined by ambient temperature, irradiance, and larval stage. The relationship between larval body temperature and ambient temperature was curvilinear, a property consistent with, but not necessarily limited to, behaviourally thermoregulating organisms.
5. Larvae were reared at seven temperatures between 18 and 36 °C. Larval growth and development increased linearly with temperature to 30 °C, increased at a lower rate to 33 °C, then decreased to 36 °C. Pupal weights were highest for larvae reared between 27 and 30 °C.
6. The pathogenicity (LD50) of NPV was not influenced by temperature, but the time to death of infected larvae declined asymptotically as temperature increased.
7. Taking into account larval growth, the theoretical yield of the virus increased significantly between 18 and 21 °C then decreased slightly as temperatures increased to 36 °C.
8. Control and infected larvae showed no difference in temperature preference on a thermal gradient. The modes of temperature preference were similar to those for optimal growth and asymptotic body temperatures measured in the field on sunny days.
9. Warmer temperatures attained by basking may increase the number of infection cycles in sunny springs but do not protect larvae from viral infection.  相似文献   

8.
The role of thyroid hormone (TH) in anuran metamorphosis has been documented from a variety of approaches, but the sequence of morpho-histological development of the thyroid glands that produce the secretion of the hormone was assumed invariant from studies of relatively few species even when the effects of environmental influences on larval development and metamorphosis have been largely documented. There are anurans in which developmental and growth rates diverge, and the resulting heterochrony in growth and development produces giant/miniature tadpoles, and or rapid/delayed metamorphosis suggesting changes of the activity of the thyroid glands during larval development. Herein, we analyze the morpho-histological variation of the thyroid glands in larval series of Ceratophrys cranwelli, Chacophrys pierottii, Lepidobatrachus laevis and L. llanensis that share breeding sites along semiarid environments of the Chaco in South America, belong to a monophyletic lineage, and present accelerated patterns in growth and development in order to have a morphological evidence about a possible shift of TH physiology. We describe gross morphology and histology of the thyroid glands and find features shared by all studied species such as the presence of supernumerary heterotopic follicles; changes in the volume and number of follicles towards the metamorphic climax, and cuboidal epithelia with occasional intra-cellular vacuoles as signs of low glandular activity without a manifest peak at the climax as it was assumed for anurans. We discuss different lines of evidence to interpret sources of extra supplement of TH to support the rapid metamorphosis. These interpretations highlight the necessity to design a research program to investigate the endocrine variation during development of ceratophryids taking in account their morphology, physiology and ecology in order to learn more about the effects of environmental and developmental interactions involved in the anuran evolution.  相似文献   

9.
The vulnerability of embryonic and larval stages of European sea bass Dicentrarchus labrax to environmental temperature and the longer-term consequences for the early juveniles was demonstrated. This phenotypic plasticity was highlighted by subjecting D. labrax at 15·2 ± 0·3 or 20·0 ± 0·4° C (mean ± s . d .) up to metamorphosis and then at the same temperature (18·5 ± 0·7° C). After 4–6 weeks at the same temperature, the measurement of critical swimming speed at four exercise temperatures (15, 20, 25 and 28° C) showed a significantly higher swimming capacity in the fish initially reared at 15° C than for fish initially reared at 20° C. This performance was correlated with significant differences in the phenotype of red muscle. Thermally induced phenotypic plasticity was clearly demonstrated as an important mechanism controlling swimming performance in early juveniles of D. labrax .  相似文献   

10.
In animals with complex life cycles, the environment experienced early during the development may have strong effects on later performance and fitness. We investigated the intraspecific variation in the effects of larval temperature environment on the morphology and locomotory performance of juvenile pool frogs Rana lessonae originating from three closely located populations of the northern fringe metapopulation in central Sweden. Tadpoles were raised individually at two temperatures (20 and 25 °C) until metamorphosis. We measured the morphology of the metamorphs and tested the jumping performance of the froglets after complete tail absorption. We found that early temperature environment affected juvenile morphology, metamorphs from high-temperature environments having relatively longer hindlimbs (tibiofibulas) and longer tails when weight at metamorphosis was accounted for. In absolute terms, froglets from low temperature jumped significantly longer; however, after correcting for size differences the relationship was reversed, individuals raised at high temperature performing better. In both temperatures, relative jumping performance was positively associated with tibiofibula and body length. Populations differed both in metamorphic traits and in jumping capacity, especially at low temperature, suggesting microgeographical variation in temperature sensitivity within the metapopulation. Our results indicate that the temperature environment experienced during the early aquatic stages can influence the morphology and performance of juvenile frogs, and that these effects can be population specific.  相似文献   

11.
Anuran larvae show phenotypic plasticity in age and size at metamorphosis as a response to temperature variation. The capacity for temperature-induced developmental plasticity is determined by the thermal adaptation of a population. Multiple factors such as physiological responses to changing environmental conditions, however, might influence this capacity as well. In anuran larvae, thyroid hormone (TH) levels control growth and developmental rate and changes in TH status are a well-known stress response to sub-optimal environmental conditions. We investigated how chemically altered TH levels affect the capacity to exhibit temperature-induced developmental plasticity in larvae of the African clawed frog (Xenopus laevis) and the common frog (Rana temporaria). In both species, TH level influenced growth and developmental rate and modified the capacity for temperature-induced developmental plasticity. High TH levels reduced thermal sensitivity of metamorphic traits up to 57% (R. temporaria) and 36% (X. laevis). Rates of growth and development were more plastic in response to temperature in X. laevis (+30%) than in R. temporaria (+6%). Plasticity in rates of growth and development is beneficial to larvae in heterogeneous habitats as it allows a more rapid transition into the juvenile stage where rates of mortality are lower. Therefore, environmental stressors that increase endogenous TH levels and reduce temperature-dependent plasticity may increase risks and the vulnerability of anuran larvae. As TH status also influences metabolism, future studies should investigate whether reductions in physiological plasticity also increases the vulnerability of tadpoles to global change.  相似文献   

12.
Abstract.  Lucilia sericata (Meigen) (Diptera: Calliphoridae) shows a facultative diapause in the third, and final larval, instar after the cessation of feeding. The effects of photoperiod and temperature on the induction and duration of diapause were examined in parental (G0) and current (G1) generations. Insects of the G0 generation were reared under four combinations of conditions, involving two photoperiods, LD 16 : 8 and LD 12 : 12 h, and two temperatures, 25 and 20 °C. The G1 generation, present in the eggs laid by these insects, were transferred to 10 combinations of conditions, involving the above two photoperiods and five temperatures, 25, 20, 17.5, 15 and 12.5 °C. In the G1 generation, the time from hatching to cessation of feeding was significantly affected by temperature only, whereas the induction of diapause was influenced by both photoperiod and temperature experienced by the G0 as well as the G1 generation. Short-day and low-temperature conditions in the G0 and in the G1 generation had diapause-inducing effects. In this species, it is likely that, for purposes of acquiring reliable seasonal information, induction of diapause is sensitive to environmental factors both in the G0 and G1 generations. The function of high-intensity diapause, induced by short-day conditions and high temperature in the parental generation, appeared to be the prevention of accidental pupariation in warm autumn weather.  相似文献   

13.
Anuran metamorphosis, the transition from aquatic larvae to terrestrial juveniles, is accompanied by significant morphological, physiological, and behavioral changes. Timing of metamorphosis and final size, which can influence adult fitness, may depend on sufficient energy accumulated during the larval period to support metamorphosis. However, only two species of anurans have been examined for energetic costs of metamorphosis, Rana tigrina and Anaxyrus terrestris. Based on these species, it has been hypothesized that differences in energy expenditure are related to duration of metamorphosis. To compare energetic costs of metamorphosis among species and examine this hypothesis, we quantified the total energy required for metamorphosis of Lithobates palustris tadpoles by measuring oxygen consumption rates over the duration of metamorphic climax using closed-circuit respirometry. Total energy costs for L. palustris were positively related to tadpole mass and duration of metamorphic climax. However, larger tadpoles completed metamorphosis more efficiently because they used proportionally less total energy for metamorphic climax than smaller counterparts. Costs were intermediate to R. tigrina, a larger species with similar metamorphic duration, and A. terrestris, a smaller species with shorter metamorphic climax. The results supported the hypothesis that amphibian species with more slowly developing tadpoles, such as ranids, require more absolute energy for metamorphosis in comparison to more rapidly developing species like bufonids.  相似文献   

14.
This study aimed to address the effect of temperature on the consumption and development rates of Aphidecta obliterata and to compare the responses of Ap. obliterata (specialist) with that of Adalia bipunctata (generalist) to prey limitation. Temperature had a significant and positive effect on the time to egg hatch of Ap. obliterata . The duration of the larval instars was not affected by prey species at 15°C but was significantly shorter, 12.1 days at 20°C compared with 21.1 days at 15°C. The proportion of time spent in each instar, however, was not affected by temperature or prey species, but the duration of the pupal stage was significantly affected by temperature. The average daily consumption of prey aphids increased with instar and was significantly influenced by temperature. There was a significant difference in the length of the pupal stage between coccinellid species but not that of the larval stage. The duration of the larval period increased under conditions of prey shortage. The pupal period of Ap. obliterata was significantly affected by the food regime but not that of Ad. bipunctata . There was a significant interaction between species and food supply on the length of the pupal stage and the larval stage and the final fresh weight achieved by the newly emerged adults. Male adults weighed significantly less than the females in all regimes. Larvae of Ap. obliterata and Ad. bipunctata did not consume any of the alternative prey (Collembola or Psocoptera) provided. There was no significant difference in the consumption of prey between the two coccinellid species. The results suggest that both of these coccinellids are well adapted to low-density-specific prey. There were no obvious differences between the two, which would tend to favour either species in an environment of limited prey.  相似文献   

15.
Determinants of geographic variation in body size are often poorly understood, especially in organisms with complex life cycles. We examined patterns of adult body size and metamorphic traits variation in Iberian spadefoot toad ( Pelobates cultripes ) populations, which exhibit an extreme reduction in adult body size, 71.6% reduction in body mass, within just about 30 km at south-western Spain. We hypothesized that size at and time to metamorphosis would be predictive of the spatial pattern observed in adult body size. Larvae from eight populations were raised in a common garden experiment at two different larval densities that allow to differentiate whether population divergence was genetically based or was simply a reflection of environmental variation and, in addition, whether this population divergence was modulated by differing crowding larval environments. Larger adult size populations had higher larval growth rates, attaining larger sizes at metamorphosis, and exhibited higher survival than smaller-sized populations at both densities, although accentuated at a low larval density. These population differences appeared to be consistent once embryo size variation was controlled for, suggesting that this phenotypic divergence is not due to maternal effects. Our results suggest considerable genetic differentiation in metamorphic traits that parallels and may be a causal determinant of geographic variation in adult body size.  相似文献   

16.
Thymic capacity to induce suppression of antibody production by immunized Xenopus laevis toadlet spleen fragments was tested in co-cultures for different developmental stages (Nieuwkoop, P.D. and J. Faber: Normal Table of Xenopus laevis (Daudin) (North Holland, Amsterdam) 1967). While thymuses of stages 52-54 (premetamorphosis) induced suppression, those of stages 58-62 (metamorphosis) did not. This capacity returned in metamorphic climax (stages 63-65). Tests of lectin-induced suppressor function in spleens of different developmental stages exposed the same pattern of compromised activity during metamorphosis. To test whether larval thymuses could effect suppression, rather than just induce it, antigen-activated thymuses from the different stages were co-cultured with immunized toadlet spleen fragments which had been suppressor-depleted by cyclophosphamide. Only thymuses from premetamorphic larvae suppressed. Thus, when thymic capacity to induce suppression returned in metamorphic climax, it was adult-like: it lacked effector suppressor cells.  相似文献   

17.
The evolution of environmentally-induced changes in phenotype or reaction norm implies both the existence at some time of genetic variation within a population for that plasticity measured by the presence of genotype x environment interaction (G x E), and that phenotypic variation affects fitness. Otherwise, the genetic structure of polygenic traits may restrict the evolution of the reaction norm by the lack of independent evolution of a given trait in different environments or by genetic trade-offs with other traits that affect fitness. In this paper, we analyze the existence of G x E in metamorphic traits to two environmental factors, larval density and pond duration in a factorial experiment with Bufo calamita tadpoles in semi-natural conditions and in the laboratory. Results showed no plastic temporal response in metamorphosis to pond durability at low larval density. The rank of genotypes did not change across different hydroperiods, implying a high genetic correlation that may constrain the evolution of the reaction norm. At high larval density a significant G x E interaction was found, suggesting the potential for the evolution of the reaction norm. A sibship (#1) attained the presumed “optimal” reaction norm by accelerating developmental rate in short duration ponds and delaying it in longer ponds. This could be translated in fitness by an increment in metamorphic survival and size at metamorphosis in short and long ponds respectively with respect to non-plastic sibships. However, genetic variability for plasticity suggests that optimal reaction norm for developmental rates may be variable and hard to achieve in the heterogeneous pond environment. Mass at metamorphosis was not plastic across different pond durations but decreased at high larval density. Significant adaptive plasticity for growth rates appeared in environments that differed drastically in level of crowding conditions, both in the field and in the laboratory. The fact that survival of juveniles metamorphosed at high density ponds was a monotonic function of metamorphic size, implies that response to selection may occur in this population of natterjacks and that genetic variability in plasticity may be a reliable mechanism maintaining adaptive genetic variation in growth rates in the highly variable pond environment.  相似文献   

18.
Morphological changes are described in Japanese flounder Paralichthys olivaceus larvae and juveniles with emphasis on growth during the period of metamorphosis. Ontogenetic changes in condition factor and lipid, glycogen and protein levels were also analysed to determine the utilization of stored energy. Fish grew from 6·6 to 20·3 mm L T(1·15 to 84·4 mg in mass, M ) during the period from 11 to 40 days after hatching (DAH) at 19·3° C. Per cent specific growth rate per day (% G day−1) for wet mass was lowest during the metamorphic phase (21–30 DAH) compared to pre‐(11–20 DAH) and post‐metamorphic (31–40 DAH) phases. When L T and M were expressed as     , the b value was highest during the pre‐metamorphic phase and lowest during the metamorphic phase. These findings indicate that the developmental changes that occur during metamorphosis of Japanese flounder are closely related to the growth pattern. Moisture, lipid and glycogen contents were also at the lowest level during metamorphosis compared to pre‐ and post‐metamorphosis, which suggest that Japanese flounder use their energy reserves to accomplish metamorphosis due to an apparent decline in feeding during this period.  相似文献   

19.
The possibility of deriving a prediction about the effect of seasonal variations in the duration of the planktonic larval phase on the dispersal of larval Dover sole was investigated. During six cruises, from February to May 1992, the distribution of sole larvae was studied along a 100-km transect, from the offshore spawning grounds to the coastal nurseries of the Bay of Biscay (France). Samples ( n = 189) were collected with a suprabenthic sampler, and vertical profiles of water temperature and salinity were recorded simultaneously. Counts of otolith increments of larval stage 4b (onset of metamorphosis) were used to estimate the duration of the planktonic life. Duration of the larval phase decreases by about 15 days (37%) with water temperature increase (between 8° in February and 11.2° C in May). Sole larvae occur from the coastal area to 100 km offshore. Within the same cruise, no difference in the duration of the planktonic life was observed between the larvae caught in the onshore and the offshore area. In spite of seasonal differences in abundance, the extent and the shape of the larval distributions during the period of study suggest that the seasonal variations in the duration of the planktonic life did not affect the larval distribution.  相似文献   

20.
温周期对不同地理种群棉铃虫幼虫发育及蛹滞育的影响   总被引:1,自引:0,他引:1  
陈元生  陈超  涂小云  匡先钜  薛芳森 《昆虫学报》2011,54(11):1288-1296
为了探明不同地理种群棉铃虫Helicoverpa armigera (Hiibner)对温周期的反应,本研究系统调查了棉铃虫广东广州种群(23.08°N,113.14°E)、江西水修种群(29.04°N,115.82°E)、山东泰安种群(36.15°N,116.59°E)和辽宁喀佐种群(41.34°N,120.27°E...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号