首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
C W Hanna  G Kelsey 《Heredity》2014,113(2):176-183
At the heart of genomic imprinting in mammals are imprinting control regions (ICRs), which are the discrete genetic elements that confer imprinted monoallelic expression to several genes in imprinted gene clusters. A characteristic of the known ICRs is that they acquire different epigenetic states, exemplified by differences in DNA methylation, in the sperm and egg, and these imprint marks remain on the sperm- and oocyte-derived alleles into the next generation as a lifelong memory of parental origin. Although there has been much focus on gametic marking of ICRs as the point of imprint specification, recent mechanistic studies and genome-wide DNA methylation profiling do not support the existence of a specific imprinting machinery in germ cells. Rather, ICRs are part of more widespread methylation events that occur during gametogenesis. Instead, a decisive component in the specification of imprints is the choice of which sites of gamete-derived methylation to maintain in the zygote and preimplantation embryo at a time when much of the remainder of the genome is being demethylated. Among the factors involved in this selection, the zinc-finger protein Zfp57 can be regarded as an imprint-specific, sequence-specific DNA binding factor responsible for maintaining methylation at most ICRs. The recent insights into the balance of gametic and zygotic contributions to imprint specification should help understand mechanistic opportunities and constraints on the evolution of imprinting in mammals.  相似文献   

3.
4.
Imprinted genes are epigenetically regulated so that only one allele is expressed in a parent-of-origin-dependent manner. Although they represent a small subset of the mammalian genome, imprinted genes are essential for normal development. The regulatory mechanisms underlying imprinting are complex and have been the subject of extensive investigation. DNA methylation is the best-established epigenetic mark that is critical for the allele-specific expression of imprinted genes. This mark must be correctly established in the germline, maintained throughout life, and erased and reestablished in the germline the next generation. These events coincide with the genome-wide epigenetic reprogramming that occurs during gametogenesis and early embryogenesis; therefore, the establishment and maintenance of DNA methylation must be tightly regulated. Studies on enzymes that participate in both de novo methylation and its maintenance (i.e., the DNMT family) have provided information on how methylation influences imprinting. However, many aspects of the regulation of DNA methylation are unknown, including how methylation complexes are targeted and the molecular mechanisms underlying DNA demethylation. In this review we focus on the epigenetic changes that occur in the germline and early embryo, with an emphasis on imprinting. We summarize recent findings on factors influencing DNA methylation establishment, maintenance, and erasure that have further elucidated the mechanisms of imprinting, while highlighting topics that require further investigation.  相似文献   

5.
Epigenetic regulation of mammalian genomic imprinting   总被引:31,自引:0,他引:31  
Imprinted genes play important roles in development, and most are clustered in large domains. Their allelic repression is regulated by 'imprinting control regions' (ICRs), which are methylated on one of the two parental alleles. Non-histone proteins and nearby sequence elements influence the establishment of this differential methylation during gametogenesis. DNA methylation, histone modifications, and also polycomb group proteins are important for the somatic maintenance of imprinting. The way ICRs regulate imprinting differs between domains. At some, the ICR constitutes an insulator that prevents promoter-enhancer interactions, when unmethylated. At other domains, non-coding RNAs could be involved, possibly by attracting chromatin-modifying complexes. The latter silencing mechanism has similarities with X-chromosome inactivation.  相似文献   

6.
Allele‐specific association of histone modification is observed at the regulatory region of imprinted genes and has been suggested to work as an epigenetic marker for monoallelic gene expression, along with the allelic CpG methylation of DNA. Although the parent‐origin‐specific epigenetic status in imprinted genes is thought to be established during preimplantation development, little is known about the allelic specificity of histone modifications during this period because of the limited volume of material available for analysis. In this study, we first revealed the allelic enrichment of histone modifications and variant histones at the imprinting control regions (ICRs) of four‐cell to blastocyst stage preimplantation embryos by using carrier chromatin immunoprecipitation and sequence polymorphism analysis of immunoprecipitated DNA. We found relative enrichment of histone H3 lysine 9 dimethylation at the imprinted alleles of ICRs and obtained the results suggesting that histone modifications at ICRs are established during a late preimplantation stage. genesis, 47:611–616, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
8.
9.
Imprinted genes are important in development and their allelic expression is mediated by imprinting control regions (ICRs). On their DNA-methylated allele, ICRs are marked by trimethylation at H3 Lys 9 (H3K9me3) and H4 Lys 20 (H4K20me3), similar to pericentric heterochromatin. Here, we investigate which histone methyltransferases control this methylation of histone at ICRs. We found that inactivation of SUV4-20H leads to the loss of H4K20me3 and increased levels of its substrate, H4K20me1. H4K20me1 is controlled by PR-SET7 and is detected on both parental alleles. The disruption of SUV4-20H or PR-SET7 does not affect methylation of DNA at ICRs but influences precipitation of H3K9me3, which is suggestive of a trans-histone change. Unlike at pericentric heterochromatin, however, H3K9me3 at ICRs does not depend on SUV39H. Our data show not only new similarities but also differences between ICRs and heterochromatin, both of which show constitutive maintenance of methylation of DNA in somatic cells.  相似文献   

10.
We have investigated the sequences of the mouse and human H19 imprinting control regions (ICRs) to see whether they contain nucleosome positioning information pertinent to their function as a methylation-regulated chromatin boundary. Positioning signals were identified by an in vitro approach that employs reconstituted chromatin to comprehensively describe the contribution of the DNA to the most basic, underlying level of chromatin structure. Signals in the DNA sequence of both ICRs directed nucleosomes to flank and encompass the short conserved sequences that constitute the binding sites for the zinc finger protein CTCF, an essential mediator of insulator activity. The repeat structure of the human ICR presented a conserved array of strong positioning signals that would preferentially flank these CTCF binding sites with positioned nucleosomes, a chromatin structure that would tend to maintain their accessibility. Conversely, all four CTCF binding sites in the mouse sequence were located close to the centre of positioning signals that were stronger than those in their flanks; these binding sites might therefore be expected to be more readily incorporated into positioned nucleosomes. We found that CpG methylation did not effect widespread repositioning of nucleosomes on either ICR, indicating that allelic methylation patterns were unlikely to establish allele-specific chromatin structures for H19 by operating directly upon the underlying DNA-histone interactions; instead, epigenetic modulation of ICR chromatin structure is likely to be mediated principally at higher levels of control. DNA methylation did, however, both promote and inhibit nucleosome positioning at several sites in both ICRs and substantially negated one of the strongest nucleosome positioning signals in the human sequence, observations that underline the fact that this epigenetic modification can, nevertheless, directly and decisively modulate core histone-DNA interactions within the nucleosome.  相似文献   

11.
Germline histone dynamics and epigenetics   总被引:2,自引:0,他引:2  
Germ cells have the same DNA sequence as somatic cells, but the processes that act on their chromatin are different. Germline chromatin undergoes a series of dramatic remodeling events during the life cycle of an organism. Different aspects of germline chromatin have been dissected in recent years, such as differences between the sex chromosomes and autosomes in histone variants and modifications. Excitingly, histone dynamics have recently been implicated in imprinted X inactivation and genomic imprinting processes that are independent of DNA methylation. Taken together with observations of core histone retention in mature sperm of diverse animals, histones have become prime candidates for mediating germline epigenetic inheritance.  相似文献   

12.
Heterogeneity of DNA methylation status among alleles is observed in various cell types and is involved in epigenetic gene regulation and cancer biology. However, the individual methylation profile within each allele has not yet been examined at the whole-genome level. In the present study, we applied linkage disequilibrium analysis to the DNA methylation data obtained from whole-genome bisulfite sequencing studies in mouse germline and other types of cells. We found that the methylation status of 2 consecutive CpG sites showed deviation from equilibrium frequency toward concordant linkage (both methylated or both unmethylated) in germline cells. In the imprinting loci where methylation of constituent alleles is known, our analysis detected the deviation toward the concordant linkage as expected. In addition, we applied this analysis to the transitional zone between methylated and unmethylated regions and to the cells undergoing epigenetic reprogramming. In both cases, deviation to the concordant-linked alleles was conspicuous, indicating that the methylation pattern is not random but rather concordant within each allele. These results will provide the key to understanding the mechanism underlying allelic heterogeneity.  相似文献   

13.
Only some imprinting control regions (ICRs) acquire their DNA methylation in the male germ line. These imprints are protected against the global demethylation of the sperm genome following fertilisation, and are maintained throughout development. We find that in somatic cells and tissues, DNA methylation at these ICRs is associated with histone H4-lysine-20 and H3-lysine-9 trimethylation. The unmethylated allele, in contrast, has H3-lysine-4 dimethylation and H3 acetylation. These differential modifications are also detected at maternally methylated ICRs, and could be involved in the somatic maintenance of imprints. To explore whether the post-fertilisation protection of imprints relates to events during spermatogenesis, we assayed chromatin at stages preceding the global histone-to-protamine exchange. At these stages, H3-lysine-4 methylation and H3 acetylation are enriched at maternally methylated ICRs, but are absent at paternally methylated ICRs. H4 acetylation is enriched at all regions analysed. Thus, paternally and maternally methylated ICRs carry different histone modifications during the stages preceding the global histone-to-protamine exchange. These differences could influence the way ICRs are assembled into specific structures in late spermatogenesis, and may thus influence events after fertilisation.  相似文献   

14.
Mammalian imprinted genes are clustered in chromosomal domains. Their mono-allelic, parent-of-origin-specific expression is regulated by imprinting control regions (ICRs), which are essential sequence elements marked by DNA methylation on one of the two parental alleles. These methylation “imprints” are established during gametogenesis and, after fertilization, are somatically maintained throughout development. Nonhistone proteins and histone modifications contribute to this epigenetic process. The way ICRs mediate imprinted gene expression differs between domains. At some domains, for instance, ICRs produce long noncoding RNAs that mediate chromatin silencing. Lysine methylation on histone H3 is involved in this developmental process and is particularly important for imprinting in the placenta and brain. Together, the newly discovered chromatin mechanisms provide further clues for addressing imprinting-related pathologies in humans.  相似文献   

15.
16.
Genomic imprinting is an epigenetic process by which specific gene regions are marked by the male and the female germ lines by histone modifications and DNA methylation, so that only the paternal allele or only the maternal allele of a gene is active. Genomic imprints are erased in primordial germ cells, newly established during later stages of germ cell development and stably inherited through somatic cell divisions during postzygotic development. Defects in imprint erasure, establishment or maintenance result in aberrant epigenetic patterns and expression profiles and can cause specific diseases. Imprinting defects can occur spontaneously without any DNA sequence change (primary imprinting defect) or as the result of a mutation in a cis-regulatory element or a trans-acting factor (secondary imprinting defect). The distinction between primary and secondary imprinting defects is important for assessing the risk of recurrence in affected families.  相似文献   

17.
The prenatal period of germ cell development is a key time of epigenetic programming in the male, a window of development that has been shown to be influenced by maternal factors such as dietary methyl donor supply. DNA methylation occurring outside of promoter regions differs significantly between sperm and somatic tissues and has recently been linked with the regulation of gene expression during development as well as successful germline development. We examined DNA methylation at nonpromoter, intergenic sequences in purified prenatal and postnatal germ cells isolated from wildtype mice and mice deficient in the DNA methyltransferase cofactor DNMT3L. Erasure of the parental DNA methylation pattern occurred by 13.5 days post coitum (dpc) with the exception of approximately 8% of loci demonstrating incomplete erasure. For most loci, DNA methylation acquisition occurred between embryonic day 13.5 to 16.5 indicating that the key phase of epigenetic pattern establishment for intergenic sequences in male germ cells occurs prior to birth. In DNMT3L-deficient germ cells at 16.5 dpc, average DNA methylation levels were low, about 30% of wildtype levels; however, by postnatal day 6, about half of the DNMT3L deficiency-specific hypomethylated loci had acquired normal methylation levels. Those loci normally methylated earliest in the prenatal period were the least affected in the DNMT3L-deficient mice, suggesting that some loci may be more susceptible than others to perturbations occurring prenatally. These results indicate that the critical period of DNA methylation programming of nonpromoter, intergenic sequences occurs in male germline progenitor cells in the prenatal period, a time when external perturbations of epigenetic patterns could result in diminished fertility.  相似文献   

18.
Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.  相似文献   

19.
Human embryonic stem (hES) cells and fetal mesenchymal stem cells (fMSC) offer great potential for regenerative therapy strategies. It is therefore important to characterize the properties of these cells in vitro. One major way the environment impacts on cellular physiology is through changes to epigenetic mechanisms. Genes subject to epigenetic regulation via genomic imprinting have been characterized extensively. The integrity of imprinted gene expression therefore provides a measurable index for epigenetic stability. Allelic expression of 26 imprinted genes and DNA methylation at associated differentially methylated regions (DMRs) was measured in fMSC and hES cell lines. Both cell types exhibited monoallelic expression of 13 imprinted genes, biallelic expression of six imprinted genes, and there were seven genes that differed in allelic expression between cell lines. fMSC s exhibited the differential DNA methylation patterns associated with imprinted expression. This was unexpected given that gene expression of several imprinted genes was biallelic. However, in hES cells, differential methylation was perturbed. These atypical methylation patterns did not correlate with allelic expression. Our results suggest that regardless of stem cell origin, in vitro culture affects the integrity of imprinted gene expression in human cells. We identify biallelic and variably expressed genes that may inform on overall epigenetic stability. As differential methylation did not correlate with imprinted expression changes we propose that other epigenetic effectors are adversely influenced by the in vitro environment. Since DMR integrity was maintained in fMSC but not hES cells, we postulate that specific hES cell derivation and culturing practices result in changes in methylation at DMRs.Key words: genomic imprinting, embryonic stem cells, mesenchymal stem cells, differentiation, methylation, epigenetic stability  相似文献   

20.
De novo DNA methylation: a germ cell perspective   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号