首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
氢氧稳定同位素是广泛存在于自然界水体中的环境同位素,其在不同水体中组成特征的差异可以指示水分循环过程及植物用水机制.本研究在北京山区选取了两种主要的绿化树种——常绿针叶林侧柏和落叶阔叶林栓皮栎为研究对象,通过对降水、土壤水、泉水、植物茎干水和叶片水同位素的变化特征进行分析,讨论了水分在大气-土壤-植物连续体中的运动过程.结果表明: 研究区大气降水线方程为δD=7.17δ18O+1.45(R2=0.93), 土壤蒸发线方程为δD=3.85δ18O-38.02(R2=0.76), 降水入渗补给土壤水的过程中存在一定程度的蒸发分馏.在不同季节,降水、土壤水和泉水δD和δ18O值变化规律不同;雨季,δD和δ18O平均值大小为降水>地下水>土壤水,降水和土壤水共同补充地下水;旱季,δD和δ18O值大小排序为降水> 土壤水>地下水,降水和地下水都对土壤水有贡献.侧柏和栓皮栎年内茎干水分δD和δ18O的拟合线性方程分别为δD=5.03δ18O-30.78 和δD=3.0δ18O-48.92,栓皮栎利用的土壤水分相对于侧柏更加富集,其水分来源深度更浅.栓皮栎叶片水分同位素变化特征相对于侧柏对大气微环境的反应更加敏感,且其叶片水分蒸发和同位素动力分馏程度更强,但是它们对环境条件的变化反应一致.  相似文献   

2.
北京土石山区典型植物水分来源   总被引:2,自引:0,他引:2  
在季节性干旱区,水分是限制植物生长的关键因子.为了分析比较北京山区群落植物的水分利用特征,本文利用稳定同位素(D/H、18O/16O)技术,探讨典型群落植物侧柏、荆条、构树和胡枝子的水分来源及其对各水源的利用比率.结果表明: 群落内4种植物的水分来源不同,侧柏主要吸收利用40~60、60~80和80~100 cm深度的土壤水,对这3层的利用率在23.3%~25.9%,对表层0~20和20~40 cm的利用率分别为12.3%和13.0%;荆条主要吸收利用60~80和80~100 cm深度的土壤水,利用率分别为51.9%和25.2%,对其他土壤水利用较少;构树主要吸收利用表层0~20 cm和20~40 cm土壤水,利用率分别为47.5%和36.8%;胡枝子对5个水源层水分均有利用,对0~20、20~40和40~60 cm深度土壤水的利用率在21.4%~22.8%,对60~80和80~100 cm深度土壤水的利用率分别为15.2%和18.3%.侧柏和胡枝子的水分利用深度相似,两个树种混交可能会造成较大的水分竞争;荆条和构树的水分利用深度恰好互补,适宜混交.研究结果可为恢复受损生态环境的最佳植物种组合方式提供参考.  相似文献   

3.
为明确不同林龄中间锦鸡儿水分来源对降雨的响应,利用稳定同位素技术测定青海共和盆地不同林龄的中间锦鸡儿(4a、9 a、17 a和31 a)在降雨前后土壤水、木质部水、地下水和雨水的δ2H、δ18O组成,运用Iso-Source模型计算植物对各潜在水源的利用比例.结果 表明:各林龄中间锦鸡儿的浅层(0~40 cm)土壤水δ...  相似文献   

4.
为了明确喀斯特峰丛洼地不同土地利用类型土壤水分对降水的响应, 采用定位观测法, 选择顺坡种植桂牧1号、顺坡种植玉米、封育、刈割除根、火烧、刈割6种喀斯特峰丛洼地最典型的土地利用方式, 分析了这6种土地利用方式下土壤水分动态变化。结果表明: 研究区2011—2013年的降水量可分为枯水年(2011年)、丰水年(2012年)和平水年(2013年)三种降水年型。枯水年土壤水分年均含量表现为种植桂牧1号>封育>刈割>火烧>刈割除根>种植玉米, 平水年和丰水年均表现为封育>刈割>种植桂牧1号>火烧>刈割除根>种植玉米。封育和桂牧1号土地利用方式在各降水年型下均具有较高的水分含量, 而种植玉米土壤含水量则最低, 其次为刈割除根。降水年型对土壤水分变异系数的影响表现为枯水年>丰水年>平水年的趋势。不同土地利用方式在枯水年、丰水年和平水年三种降水年型中, 土壤水分变化趋势各有特点, 主要受近期降水和土壤蒸发的影响。封育和桂牧1号土壤水分含量高, 两种土地利用方式能显著改善土壤水分状况, 积蓄一定的水分。  相似文献   

5.
稳定同位素技术在植物水分利用研究中的应用   总被引:24,自引:0,他引:24  
近20a稳定同位素技术在植物生态学研究中的应用得到了长足发展,使得对植物与水分关系也有了更深一步的了解。介绍稳定同位素性碳、氢、氧同位素在研究植物水分关系中的应用及进展,以期能为国内植物水分利用研究提供参考。由于植物根系从土壤中吸收水分时并不发生同位素分馏,对木质部水分同位素分析有助于对植物利用水分来源,生态系统中植物对水分的竞争和利用策略的研究,更好地了解生态系统结构与功能。稳定碳同位素作为植物水分利用效率的一个间接指标,在不同水分梯度环境中,及植物不同代谢产物与水分关系中有着广泛的应用。同位素在土壤-植被-大气连续体水分中的应用,有助于了解生态系统的水分平衡。随着稳定同位素方法的使用,植物与水分关系的研究将取得更大的进展。  相似文献   

6.
多枝柽柳(Tamarix ramosissima)作为干旱荒漠区的优势树种,其与风沙长期作用过程中形成了柽柳沙堆,研究沙堆上多枝柽柳水分利用来源及其对各水源的利用比例,可为干旱荒漠区原生植被的保护及恢复提供科学依据。该研究以空间序列代替时间序列的方法,通过野外调查及室内模型分析,解析了不同发育阶段沙堆上多枝柽柳的水分来源及其对各水源的利用比例,揭示了沙堆堆积过程中多枝柽柳的水分利用策略。结果表明:(1)多枝柽柳沙堆土壤水分含量随沙堆堆积增高而存在较大差异,且0–500 cm层土壤平均水分含量依次为雏形阶段(4.57%)>增长阶段(4.46%)>衰退阶段(3.62%)>稳定阶段(3.48%);(2)雏形及增长阶段沙堆土壤含水率在40–180cm层显著升高,稳定及衰退阶段沙堆土壤含水率分别在180–360cm和360–500cm层显著升高。(3)各发育阶段沙堆上, 0–40 cm层土壤含水率及稳定氧同位素比值(δ18O)波动较大,季节变化明显,且随土层深度的增加δ18O趋于稳定,表明表层土壤受外界环境影响较大。(4)春季,多枝柽柳在雏形阶段沙堆上主要利用360–500 c...  相似文献   

7.
鄂尔多斯高原3个水土保持树种的水分利用策略   总被引:2,自引:0,他引:2  
为了解植物对环境的适应对策,通过测定鄂尔多斯高原东部丘陵区3个水土保持树种沙棘、油松和山杏的枝条木质部水和各潜在水源的δ18O值及叶片的δ13C值,应用多元线性混合模型分析各潜在水源的贡献比例,分析3个树种水分来源和水分利用效率的季节动态和种间差异。结果表明: 沙棘、油松和山杏在5月主要利用10 cm深度土壤水,分别占其总水源比例的88.5%、94.0%和91.6%。7月,沙棘主要利用10~25 cm土层土壤水和雨水,比例为44.6%和35.4%;油松主要利用雨水,比例为93.7%;山杏主要利用25~100 cm土层土壤水和雨水,比例分别为55.9%和36.8%。9月,沙棘主要利用25 cm深度和75~100 cm土层土壤水,比例为88.9%;油松主要利用10 cm和50~75 cm土层土壤水,比例为84.5%;山杏利用10~100 cm土层土壤水。5月沙棘的水分利用效率显著高于7月和9月。7月油松的水分利用效率显著高于9月。5月和7月沙棘的水分利用效率显著高于油松和山杏。3个树种在不同季节根据不同水源的可利用性,选择利用不同深度的土壤水或雨水。沙棘和油松干旱时能够提高水分利用效率适应环境变化,可能比山杏更适应当地的半干旱环境。  相似文献   

8.
基于稳定氧同位素确定植物水分来源不同方法的比较   总被引:3,自引:0,他引:3  
利用稳定同位素技术确定植物水分来源,对提高生态水文过程的认识和对干旱半干旱区的生态管理至关重要。目前基于稳定同位素技术确定植物水分来源的方法众多,但不同方法之间对比的研究较少。本研究基于原位样品采集,室内实验测试,利用直接对比法、多元线性混合模型(IsoSource)、贝叶斯混合模型(MixSIR、MixSIAR)和吸水深度模型分析植物水分来源,并对比各方法的优缺点。结果表明:相对于多元线性混合模型(IsoSource)而言,贝叶斯混合模型(MixSIR、MixSIAR)具有更好的水源区分性能,但对数据要求较高,且植物木质部水和潜在水源同位素组成的标准差越小,模型运行结果的可信度更高。本研究中贝叶斯混合模型(MixSIR)为最优解。在利用稳定氢氧同位素技术确定植物水分来源时,可先通过直接对比法定性判断植物可能利用的潜在水源,然后再用多元线性混合模型(IsoSource)、贝叶斯混合模型(MixSIR、MixSIAR)计算出各潜在水源对植物的贡献率和贡献范围,必要时可评估模型性能,选择出最优模型,定量分析植物的水分来源。若植物主要吸收利用不同土层深度的土壤水,可结合吸水深度模型计算出植物...  相似文献   

9.
刘雨  高光耀  李宗善  王聪  田立德 《生态学报》2023,43(19):7924-7935
水分是干旱半干旱地区植被生长的主要限制因子,水分利用是反映植被对环境变化响应的关键生态水文过程。目前缺少对干旱半干旱区草原不同科、属植物水分利用特征差异的系统分析,且植物水分利用特征与环境因子的定量关系需要进一步研究。在内蒙古荒漠草原进行样带调查,采集7个样地0—100 cm深度土壤样品和15种植物根茎结合部(茎秆)、叶片样品,测定土壤水、植物水中δ2H和δ18O和植物叶片δ13C的同位素,利用MixSIAR模型确定不同科、属植物水分来源比例,分析不同科、属植物水分利用来源和水分利用效率的差异,并建立植物水分来源比例及水分利用效率与各环境因子的定量关系。结果表明:(1)禾本科和菊科植物主要利用0—30 cm深度土壤水(55.63%和51.84%),其叶片δ13C(-26.61‰和-27.91‰)均低于其他科(包括柽柳科、藜科和蔷薇科)(-26.36‰),且其他科主要利用60—100 cm深度土壤水(36.83%),水分利用策略更有利于在干旱条件下生存。(2)针茅属植物对0—30 cm深度土壤水的利用...  相似文献   

10.
西双版纳地区丛林式橡胶林内植物的水分利用策略   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
北方土石山区典型树种耗水特征及环境影响因子   总被引:7,自引:0,他引:7  
研究北方土石山区植物耗水特征和环境影响因子对于构建稳定的植被生态系统具有重要意义,能够为当地植被恢复策略提供科学指导。在北京林业大学西山试验林场于2016年7月至10月利用热扩散探针的方法,结合同步观测的土壤含水率和气象因子,对刺槐和油松人工混交林进行蒸腾观测和分析。结果表明:(1)尽管刺槐和油松蒸腾的日变化规律相近,但二者蒸腾的季节变化规律不同;(2)两个树种蒸腾与VPD(饱和水汽压差)成顺时针时滞。刺槐蒸腾与太阳辐射成顺时针时滞,油松则成逆时针时滞;(3)二者与大气环境的耦合程度均较高(Ω0.1),其气孔活动能够有效地控制蒸腾;(4)影响植物蒸腾的主要环境因子为太阳辐射(P0.01)、VPD(P0.01)和风速(P0.01),其中由VPD引起的蒸腾量高于太阳辐射;(5)浅层土壤(0—50cm)的水分条件可能并不是影响植物蒸腾的重要因素。研究表明,在实际管理中可以采取调控气孔导度的手段来减少刺槐和油松人工林的耗水量,来降低水分这一人工林成活的限制因子,从而提高造林成活率。  相似文献   

13.
14.
为防止北方土石山区的土地和植被在人类活动下进一步退化,为冬奥会赛后制定战略性植被恢复计划,以白桦天然林、落叶松人工林、天然灌草地和弃耕农地为研究对象,基于土壤容重、孔隙度和土壤养分含量等13种土壤理化指标,对冀北土石山区不同土地利用类型土壤质量进行综合评价。结果表明: 冀北土石山区不同土地利用类型土壤质量呈现出白桦天然林>天然灌草地>落叶松人工林>弃耕农地。白桦天然林的土壤质量显著高于其他3种土地利用类型,其土壤全氮(3.24±1.42 g·kg-1)和全磷(0.59±0.10 g·kg-1)含量较高,土壤养分的长期积累是阻止白桦天然林土壤退化的最主要原因;天然灌草地受到土壤粗粒含量和地形因素的影响,土壤质量仅次于白桦天然林;经过40年植被恢复的落叶松人工林土壤物理性质得到改良,土壤砾石含量显著降低,而土壤养分指标未发生显著变化;弃耕农田土壤质量最低的主要原因是植被覆盖低及低海拔区域较高的人类活动强度。受土壤全氮含量的影响,4种土地利用类型下的土壤质量随海拔升高而增加,且均在1700 m左右达到峰值。综上,建议加强在低海拔生态脆弱区域的封禁管理和生态恢复措施,同时兼顾高密度林分的可持续发展,增强人工林的生态适应性。  相似文献   

15.
凋落物是草地生态系统的重要组成部分和养分循环的重要途径,为探明草地凋落物对土壤养分的贡献,于2017年3月至2018年1月,采用土钻法、收集器法和分解袋法研究3种石漠化(潜在、中度和强度)草地凋落物的产量、组成、分解、养分释放及对石漠化的响应.结果表明:3种石漠化草地的凋落物组成以叶为主,占比84.39%—89.73%...  相似文献   

16.
孙守家  孟平  张劲松  黄辉  万贤崇 《生态学报》2010,30(14):3718-3726
通过对比核桃枝条和绿豆茎内δD值差异来分析核桃和绿豆水分来源和利用。结果表明,核桃-绿豆农林复合系统的根系在表层土壤(0—30cm)中交叉存在,生态位重叠。旱季中表层土壤含水量与δD值之间存在显著的负相关关系(R2=0.77,P=0.02),雨季相关关系不显著(R2=0.03,P=0.73)。δD值分析表明,旱季中核桃利用深层土壤(30—80cm)水分占总水分来源的51%以上,雨季中则主要利用浅层土壤水分,间作绿豆和单作绿豆主要利用表层土壤水分。雨季中表层土壤水分能同时满足核桃和绿豆生长需要,但复合系统中光能竞争导致间作绿豆光合速率显著地低于单作绿豆。旱季间作绿豆0—20cm土壤水分含量、凌晨叶片水势和光合速率明显高于单作绿豆,显示间作绿豆体内水分状况好于单作绿豆。线性模型分析结果显示间作绿豆体内约有1.58%—5.39%的水分来核桃夜晚水力提升,表明复合系统在旱季一定程度上缓冲季节性水分胁迫对农作物生长的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号