首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adequate protection and sustainable management of a tropical rain forest requires a good knowledge of its biodiversity. Although considerable parts of Guyana's North-West District have been allocated as logging concessions, little has been published on the forest types present in this region. The present paper reviews the floristic composition, vegetation structure, and diversity of well-drained mixed and secondary forests in northwest Guyana. Trees, shrubs, lianas, herbs and hemi-epiphytes were inventoried in four hectare plots: two in primary forests, one in a 20-year-old secondary forest and one in a 60-year-old secondary forest. The primary forests largely corresponded with the Eschweilera–Licania association described by Fanshawe, although there were substantial variations in the floristic composition and densities of dominant species. The late-succession forest contained the highest number species and was not yet dominated by Lecythidaceae and Chrysobalanaceae. There is a need for updating the existing vegetation maps of northwest Guyana, as they were based on limited information. Large-scale forest inventories may provide a fair indication of species dominance and forest composition, but do not give a reliable insight in floristic diversity. Although previous reports predicted a general low diversity for the North-West District, the forests plots of this research were among the most diverse studied in Guyana so far. These results will hopefully influence the planning of protected areas in Guyana.  相似文献   

2.
The crustose lichen flora of fifteen areas in boreal coniferous forests from southern Sweden to Lapland was surveyed. Many of these areas are included in a national programme for monitoring long-term environmental change, the PMK programme. In all 190 species were recorded, 129 of them occurring on bark of conifers and lignum. Some species were found exclusively in forests with a long continuity. By using ordination and hierarchical classifications further species with similar habitat requirements were identified. An Indicator Species Index of Forest Continuity (ISIFC) was designed. Only two of the twenty index species occur on deciduous trees. The ISIFC was highly correlated with forest continuity and also with occurrence of species listed as threatened. Correlations with macroclimatic variables are considered sampling artifacts, and microclimatic factors are suggested to be of primary importance for species occurring in forests with a long continuity.  相似文献   

3.
The four-horned antelope is endemic to the Indian sub-continent. It was formerly distributed widely in deciduous forests throughout its range, but the current distributional patterns of this low-density species are largely unknown and conservation efforts are hampered by the lack of information on species–habitat relationships. We investigated the habitat factors influencing four-horned antelope occurrence and abundance in Bandipur National Park, an important four-horned antelope conservation site in India. Detection/non-detection data, collected under a systematic sampling framework, were used to test a priori hypotheses incorporating covariates believed to influence occurrence and abundance. The best fitting models for four-horned antelope occurrence and relative abundance reveal that the tree-savanna deciduous habitat sub-type, characterized by relatively open habitats with a lower tree density and a high degree of deciduousness, is most preferred by the species. Four-horned antelope conservation efforts in Bandipur National Park and other reserves should be focused on areas typified by tree-savanna habitats. Four-horned antelope occurrence was negatively related to the alien weed Lantana camara . The prolific spread of this weed in Indian deciduous forests is a likely threat.  相似文献   

4.
Ectomycorrhizal (ECM) fungi historically were considered poorly represented in Neotropical forests but in the central Guiana Shield substantial areas are dominated by leguminous ECM trees. In the Upper Potaro Basin of Western Guyana, ECM fungi were sampled for 7?years during the rainy seasons of 2000–2008 in three 1-ha plots in primary monodominant forests of the ECM canopy tree Dicymbe corymbosa (Fabaceae subfam. Caesalpinioideae). Over the plot sampling period sporocarps of 126 species of putative or confirmed ECM fungi were recovered. These taxa represented 13 families and 25 genera of primarily Agaricomycetes, but also Ascomycota (Elaphomycetaceae), the majority of which are new to science. Russulaceae contained the most species (20 Russula; 9 Lactarius), followed by Boletaceae (8 genera, 25 spp.), Clavulinaceae (17 Clavulina), and Amanitaceae (16 Amanita). An additional 46 species of ECM fungi were collected in forests of the Upper Potaro Basin outside the study plots between 2000 and 2010, bringing the regional number of ECM species known from sporocarps to 172. This is the first long-term ECM macrofungal dataset from an ECM-dominated Neotropical forest, and sporocarp diversity is comparable to that recorded for ECM-diverse temperate and boreal forests. While a species accumulation curve indicated that ECM sporocarp diversity was not fully recovered inside of the plots,?~80% of the total species were recovered in the first year. Sequence data from ECM roots have confirmed the ECM status of 56 taxa represented by corresponding sporocarp data. However,?>50% of ECM fungal species from roots remain undiscovered as sporocarps, leading to a conservative estimate of?>?250 ECM species at the Potaro site. Dicymbe forests in Guyana are a hotspot for ECM fungal diversity in the Neotropics.  相似文献   

5.
Natural landscapes characterized by heavy disturbance regimes were displaced in Europe by managed cultural landscapes over the past centuries. The associated loss of biological legacies, such as dead or dying trees, has exposed numerous saproxylic species to high risks of extinction. In contrast, extensive wilderness forests in Northern Mongolia have been sustained owing to significant cultural differences. Here we used saproxylic beetle abundance data gathered during two sampling campaigns in the Mongolian taiga to address whether (1) the saproxylic beetle fauna of the Mongolian taiga is comparable to that of European boreal forests, (2) fires are a natural disturbance regime, indicated by the occurrence of many pyrophilous species, and (3) species rare in Europe are also rare in the Northern Mongolian wilderness. Of 191 saproxylic beetle species identified, 150 (79 %) were also found in Europe. The high number of pyrophilous beetle species (20) indicated that natural species communities are well adapted to this disturbance regime. The species rarity in Germany was significantly positively correlated with the species rarity in Finland, but the species rarity in these two countries was negatively correlated with that in the Mongolian wilderness. Our results indicated that wilderness areas with natural disturbances provide biological legacies important for rare species. Therefore, exploitation of the unique, remaining natural landscapes of the Palaearctic wilderness areas should be stopped. Moreover, we urge conservationists to expand controlled burning for restoration at relict sites of rare boreal species also outside Fennoscandia.  相似文献   

6.
Forest age is one of the most simple but ecologically effective key values that may be controlled by forest management. Young and mature but managed forests differ significantly from old-growth forests in species composition, structure and socio-ecological function. Human land-use has already caused the loss or dramatic reduction in occurrence of some entire species assemblages, especially of logging-sensitive species, in Central European forests. These general statements also apply to beech forests, beech (Fagus sylvatica) being the naturally dominating tree species in Central Europe. Based on data for breeding birds (from 258 sampling plots in a sub-montane and 228 plots in a montane area), molluscs (36 plots in the sub-montane and 79 plots in the montane area) and lichens (84 plots in the montane forest), this paper aims at identifying significant forest age threshold ranges for the occurrence of these old-growth sensitive taxa. The sampling plots in the sub-montane zone (420–520 m a.s.l.) are in beech-oak forests, plots in the montane zone (650–1150 m a.s.l.) are in beech-spruce-fir forests. Stand ages in both areas range up to around 350–400 years. Threshold values for the total number of species related to stand age were calculated by recursive partitioning.In all three taxonomic groups the number of species per plot significantly increases with forest age. The same analysis was run for red-listed lichen and mollusc species as well as hole-nesting bird species. The threshold values obtained are very similar to those for the whole species assemblages, except for molluscs where considerably lower threshold values are computed with red-listed species assemblages. Regarding the confidence intervals, the difference pattern between the whole species datasets and the more sensitive species subsets is inconsistent. Threshold values in sub-montane beech forests range from 100 to 170 years and in mixed montane forests from 160 to 220 years.These threshold levels are clearly incompatible with economic interests that aim on reducing the rotation period in beech stands to less than 140 years to avoid formation of red heartwood. It would therefore seem to be essential to establish a network of trees and stands that are never logged and may thus act as areas for retreat and dispersion for logging-sensitive species.  相似文献   

7.
Presence or absence of threatened species in samples is information that is widely used in designing and implementing conservation actions. We explored the effectiveness of beetle (Coleoptera) inventories and contribution of different sampling methods in revealing occurrences of threatened and near threatened species in boreal forests. The number of species caught using traps in a particular area proved to be a useful indicator of the representativeness of data, the relationship between total number of species and the number of threatened and near threatened species being almost exponential. Samples containing less than 200 trapped species (or 2000 individuals) are almost useless in surveying threatened and near threatened species. The probability of finding such species increases considerably when the number of trapped species exceeds 400. Window traps attached directly on the trunks of dead trees proved to be the most efficient sampling method in trapping threatened beetles, whereas many other standard methods gave relatively poor results. We suggest that the best alternative in surveying threatened species in boreal forests is a combination of intensive direct searching and trunk window traps. Finding threatened beetles with rigorous probability requires very large sample sizes, even if the most effective sampling methods are used. For example, ranking 10 boreal forest areas to be protected according to the occurrence of threatened species with some reliability may require trapping of over 100000 beetle individuals. Collecting and identifying these large samples routinely in conservation actions is not feasible, which means that shortcuts (indicators etc.) are necessary. However, a lot of good-quality inventories with appropriate sampling efforts are needed before these shortcuts can be identified and elaborated. Such inventories are also crucial for the improvement of the classification of threatened species and full assessment on how past forest management has eventually affected the biota.  相似文献   

8.
Species-area relationships predict that there is a positive relationship between the number of species and the size of an area. It has been suggested that species richness will covary with area because larger areas have a greater diversity of habitats. Moreover, habitat diversity may operate in conjunction with riverine barriers to influence primate biogeography. Few studies have determined if and how these hypotheses relate to primate diversity in Guyana. To test these biogeographic hypotheses, I used data from 1,725 km of primate surveys I conducted in Guyana. I estimated geographic ranges for each of the 8 primate species via a GIS system. Geographic range size is a major determinant of the number of sightings of the 8 primate species. Primate species diversity is strongly negatively correlated with the number of rivers crossed moving in a clockwise pattern from eastern to NW Guyana. Interfluvial and habitat areas influence primate species diversity in Guyana. However, my data on primate biogeography in Guyana do not support the hypothesis that habitat diversity within the interfluvial areas effects primate diversity. Although the species-area relationship is considered the closest thing to a rule in ecology, researchers should be wary of too readily applying and accepting the model at all scales in biogeographic studies.  相似文献   

9.
Forest management alters the pattern of forest dynamics from that in natural conditions in the boreal region. In order to examine how certain forestry measures matching natural dynamics affect forest insects, we compared assemblages of saproxylic Coleoptera on dead, standing birch trunks left behind in eight clear-cut areas with corresponding assemblages in seven mature forests in southern and eastern Finland. We used trunk-window traps for sampling. Distinct beetle assemblages were associated with the different habitats. Median numbers of species or specimens caught did not differ between closed forests and clear-cuts, but individual beetle species occurred unevenly among the habitats. Several beetle species associated with open forest habitat, e.g. burned forests or storm-damage areas, including species regarded as threatened in Finland, were found almost exclusively, in clear-cuts. Correspondingly, a number of beetle species occurring frequently in closed forests were not found in clear-cuts. We conclude that dead trunks left in the clear-cut areas may host not only generalist saproxylic species but also many beetle species specialized to warm, sun-exposed environments, and such species may not be able to survive in closed forests. Management measures matching suppressed natural disturbances are found useful in preserving diversity in managed forests.  相似文献   

10.
Abstract: For eleven tree species, differing in seed mass, germination success (emergence success for two small-seeded species) and the causes of failure to germinate were studied in the forest understorey and in logging gaps in the tropical rain forests of Guyana. In the forest understorey, germination success increased with seed mass. However, as gap size increased the difference between smaller and larger seeded species diminished because germination success of smaller-seeded species increased slightly, while that of larger-seeded species decreased dramatically. The negative effect of gap size on germination success of larger-seeded species was caused by an increased risk of desiccation with gap size, which was a far more important seed mortality agent for larger than for smaller-seeded species. Generally, seeds of smaller-seeded species suffered more from insect predation and were removed at higher rates than larger-seeded species. On the other hand, larger-seeded species were eaten more by mammals than smaller-seeded species. It is concluded that logging can result in shifts in the species composition in the tropical rain forests of Guyana which are dominated by species with large seeds, since germination success of larger-seeded species is dramatically reduced in large logging gaps.  相似文献   

11.
There is a realization that managed forests and other natural areas in the landscape matrix can and must make significant contributions to biodiversity conservation. Often, however, there are no consistent baseline vegetation or wildlife data for assessing the status of biodiversity elements across protected and managed areas for conservation planning, nor is there a rapid and efficient means to acquire those data. We used a unified vegetation classification and simple animal sampling design to describe the patterns of abundance of selected mammals as indicator, or characteristic, species in different vegetation types and protected areas vs. managed forest units in the Terai Conservation Area (TCA) in northern Uttar Pradesh state, India. We quantified the relative abundance of 15 mammals of conservation concern from dung counts in vegetation sampling plots within 122 sample patches in 13 vegetation types and 4 management units. Assemblages of species differed both among vegetation types and among management units. Species assemblages in the two protected areas differed strongly from those in two managed forests. Grasslands in protected areas were the most species diverse among vegetation types and had several indicator species. Protected forests were dominated by chital (Axis axis) and nilgai (Boselaphus tragocamelus) in a second species group. A third species group in open grasslands and savannas in managed forests was characterized by cattle (Bos taurus) and Indian hare (Lepus nigricollis). Protected areas clearly are the core conservation area of the TCA for their relatively high habitat value and species diversity, and their protected status minimizes human disturbance. Impacts of human use are high in managed forests, indicating their compromised value for biodiversity conservation. Our simple assessment methodology gives managers a simple way to assess the status of important mammals across landscape conservation units.  相似文献   

12.
Species distribution modeling using museum and herbarium collections has been greatly facilitated by analytical algorithms such as MaxEnt. The ability to use herbarium and museum collections to inform conservation decision-making can greatly enhance conservation efforts in biodiversity rich countries when human capacity and in-country data are limited. Guyana is used as a case study for landscape scale biodiversity assessment under such constraints. I compiled specimen records for seven taxon-groups (invertebrates, amphibians, reptiles, birds, mammals, ferns and non-seed plants, and seed plants), across the Guiana Shield, South America, to assess landscape scale biodiversity richness. Collector and taxonomic bias were addressed a priori in MaxEnt by generating a bias surface layer to down-weight areas of high collection intensity by smoothing the sampling distribution. I summed modeled output for each taxon-group to generate taxon-group specific floral, faunal, and all-taxa biodiversity density surfaces. These surfaces were used to (1) identify areas of relative high biodiversity density; (2) assess possible conservation areas; and (3) compare modeled areas of conservation interest with those proposed by the Government of Guyana. In addition, I compared proposed conservation sites with the location of indigenous (Amerindian) and non-indigenous settlements, and lands used for natural resource extraction. I present three conservation scenarios based on the all-taxa biodiversity surface: (i) biodiversity-only, (ii) biodiversity and available lands; and (iii) collaboration with indigenous peoples. The conservation assessment used here provides an objective basis for selecting conservation sites. Model output can also be used to focus biodiversity assessments on poorly modeled and sampled locations.  相似文献   

13.
Tylopilus orsonianus sp. nov. and Tylopilus eximius (Boletaceae, Basidiomycota) are described for the first time from the Pakaraima Mountains of Guyana. Both boletes occur in forests dominated by ectomycorrhizal trees in the genus Dicymbe (Caesalpiniaceae). A key to Tylopilus species distinguishes those known to occur in Guyana.  相似文献   

14.
Prioritizing areas for management of non-native invasive plants is critical, as invasive plants can negatively impact plant community structure. Extensive and multi-jurisdictional inventories are essential to prioritize actions aimed at mitigating the impact of invasions and changes in disturbance regimes. However, previous work devoted little effort to devising sampling methods sufficient to assess the scope of multi-jurisdictional invasion over extensive areas. Here we describe a large-scale sampling design that used species occurrence data, habitat suitability models, and iterative and targeted sampling efforts to sample five species and satisfy two key management objectives: 1) detecting non-native invasive plants across previously unsampled gradients, and 2) characterizing the distribution of non-native invasive plants at landscape to regional scales. Habitat suitability models of five species were based on occurrence records and predictor variables derived from topography, precipitation, and remotely sensed data. We stratified and established field sampling locations according to predicted habitat suitability and phenological, substrate, and logistical constraints. Across previously unvisited areas, we detected at least one of our focal species on 77% of plots. In turn, we used detections from 2011 to improve habitat suitability models and sampling efforts in 2012, as well as additional spatial constraints to increase detections. These modifications resulted in a 96% detection rate at plots. The range of habitat suitability values that identified highly and less suitable habitats and their environmental conditions corresponded to field detections with mixed levels of agreement. Our study demonstrated that an iterative and targeted sampling framework can address sampling bias, reduce time costs, and increase detections. Other studies can extend the sampling framework to develop methods in other ecosystems to provide detection data. The sampling methods implemented here provide a meaningful tool when understanding the potential distribution and habitat of species over multi-jurisdictional and extensive areas is needed for achieving management objectives.  相似文献   

15.
Citizen science-based research has been used effectively to estimate animal abundance and breeding patterns, to monitor animal movement, and for biodiversity conservation and education. Here, we evaluate the feasibility of using social media observations to assess the distribution of small apes in Peninsular Malaysia. We searched for reports of small ape observations in Peninsular Malaysia on social media (e.g., blogs, Facebook, Instagram, Twitter, YouTube, iNaturalist, etc.), and also used online, radio, print messaging, and word of mouth to invite citizen scientists such as birders, amateur naturalists, hikers, and other members of the public to provide information about small ape observations made during their activities. These reports provided new information about the occurrence of all three species of small apes (Hylobates agilis, Hylobates lar, and Symphalangus syndactylus) in Peninsular Malaysia. Social media users reported observations of small apes in almost every state. Despite the fact that small apes are believed to occur primarily in the interior of large forested areas, most observations were from fairly small (<100 km2) forests near areas of high traffic and high human population (roads and urban areas). This suggests that most outdoor enthusiasts primarily visit well-traveled and easily accessible areas, which results in biased sampling if only incidental observations reported on social media are used. A more targeted approach specifically soliciting reports from citizen scientists visiting large, less-accessible forests may result in better sampling in these habitats. Social media reports indicated the presence of small apes in at least six habitats where they had not been previously reported. We verified the reported data based on whether reports included a date, location, and uploaded photographs, videos and/or audio recordings. Well-publicized citizen science programs may also build awareness and enthusiasm about the conservation of vulnerable wildlife species.  相似文献   

16.
Forest inventories are largely neglected in the debate of national parks selection in Guyana (and probably elsewhere). Because taxonomic data are often scant and biased towards are as of high collecting effort, large scale forest inventory data can be a useful tool adding to a knowledge database for forests. In this paper the use of forest inventories to select national parks in Guyana is assessed. With the data of a large scale inventory five forest regions could be distinguished and two were added on the base of existing other information. Forest composition in Guyana is largely determined by geology at a national level and soil type at regional level. Species diversity is higher in the south of Guyana, possibly due to higher disturbance and is also higher on the better soils. It is concluded that a selection of national parks in Guyana should include a sample of all seven regions, including as much soil variation as possible. Because of land use conflicts in central Guyana, this area is in need of quick attention of Guyana's policy makers.  相似文献   

17.
Aim  To evaluate a suite of species distribution models for their utility as predictors of suitable habitat and as tools for new population discovery of six rare plant species that have both narrow geographical ranges and specialized habitat requirements.
Location  The Rattlesnake Creek Terrane (RCT) of the Shasta-Trinity National Forest in the northern California Coast Range of the United States.
Methods  We used occurrence records from 25 years of US Forest Service botanical surveys, environmental and remotely sensed climate data to model the distributions of the target species across the RCT. The models included generalized linear models (GLM), artificial neural networks (ANN), random forests (RF) and maximum entropy (ME). From the results we generated predictive maps that were used to identify areas of high probability occurrence. We made field visits to the top-ranked sites to search for new populations of the target species.
Results  Random forests gave the best results according to area under the curve and Kappa statistics, although ME was in close agreement. While GLM and ANN also gave good results, they were less restrictive and more varied than RF and ME. Cross-model correlations were the highest for species with the most records and declined with record numbers. Model assessment using a separate dataset confirmed that RF provided the best predictions of appropriate habitat. Use of RF output to prioritize search areas resulted in the discovery of 16 new populations of the target species.
Main conclusions  Species distribution models, such as RF and ME, which use presence data and information about the background matrix where species do not occur, may be an effective tool for new population discovery of rare plant species, but there does appear to be a lower threshold in the number of occurrences required to build a good model.  相似文献   

18.
This paper presents the results of a study conducted at the request of the Government of Guyana by the Centre for the Study of Biological Diversity at the University of Guyana, and the Smithsonian Institution. The purpose of the study was to evaluate the utility of using systematic collections in identifying areas with a high priority for conservation. A biodiversity database and a gazetteer were assembled and interpreted primarily through the use of maps generated in ARC/INFO and ArcView. The data were examined to determine coverage and completeness, and while in general the results support a continued use of the methodology for making informed decisions in conservation related issues, several recommendations are offered in order to enhance the data. The primary use of the results of this study is in the identification of areas of interest for conservation and in the location of eleven areas covering most ecoregions in Guyana that are in need of additional study. The eleven areas have been chosen to avoid areas that are already allocated to logging and mining concessions or Amerindian lands. While it is true that this study would benefit from additional data and further analysis of those data, it is also true that decisions concerning areas for conservation in Guyana are being made in the near future, and if any data are to be used in this process, it will be those data presented in this paper.  相似文献   

19.
The largest standardised database available to date for arthropods in native forests of the Azores archipelago was used to determine the minimum optimal set of native forest fragments needed to accomplish four different targets of species occurrence (presence-absence) and abundance (20, 50 and 80%) using different groups of arthropods and all data combined. The results showed that occurrence and 20% abundance targets gave similar optimal solutions for most of the groups considered. At least one fragment on each of the seven studied islands was required to accomplish any occurrence and abundance target. To achieve 80% of abundance for all species, all fragments were necessary and to guarantee 50% of the overall abundance of endemics, 17 out of 18 native forests were needed. A suggestion is made to apply a measure of biotic integrity related to disturbance to select, among alternative optimal solutions, the set of areas that will help to guarantee the viability of populations. Some guidelines for the selection of priority areas for conservation in the Azores are presented.  相似文献   

20.
Aim Restoration of habitats may be used as a conservation tool when ecosystems have lost their natural structure, dynamics or functioning over large areas. Controlled and planned use of fire could be an effective way to restore habitats of many threatened species in boreal forests where fire suppression has been effective. We asked whether the large‐scale landscape context affects the occurrence of rare and threatened species in forest habitats that have been burned to restore their fire‐related structures. Location Boreal forests in southern Finland. Methods We designed a large‐scale field experiment that included nine Pinus sylvestris forests (5–10 ha each) in southern Finland. Sites were located in two regions: (1) in eastern region with shorter management history and (2) in western region where intensive forestry has continued longer. We evaluated whether restoration of dead/burned wood is beneficial for rare and conservation‐dependent species and measured the recovery of pyrophilous and red‐listed insects (beetles and flatbugs) in burned forests, using standardized sampling effort. Altogether, 956 individuals of 29 red‐listed and pyrophilous species were sampled. Results Rare species colonized areas quickly, but there was a clear difference in species richness between the regions. The eastern forests harboured higher species richness after restoration. In these sites, the average species richness was 13.7 species per site, whereas in western forests it was 5.0 species per site. Similar pattern was also observed in subgroups: the corresponding numbers for pyrophilous species were 9.7 vs. 3.8, for red‐listed 8.7 vs. 2.3 and for red‐listed pyrophiles 4.7 vs. 1.2. Main conclusions Introducing fire back to boreal forests can aid in the recovery of rare species, but the landscape context considerably affects the success of restoring species. If restored habitats are located in landscapes that have lost their natural properties long ago, the success of restoration seems to be more challenging than in landscapes where habitats have been modified more recently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号