首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
厌氧状态下植物蛋白质的功能,合成及其调节   总被引:3,自引:0,他引:3  
植物的生长发育过程中常常遇到下列逆境条件,它们是:干旱、涝害、高温或低温、盐害、重金属离子、高强度辐射、有害气体、以及致病因子感染等。由于植物的不能运动性,它们必须对自身的代谢及结构进行必要的调整以应付这些逆境条件。为了这一目的,正常植物  相似文献   

2.
本文论述了蛋白质生物合成的遗传信息的来源,基因与蛋白质合成的遗传信息的关系,翻译的准确性的依据,真核生物蛋白质生物合成的特点,并就蛋白质合成及其调节研究的最新进展作了介绍。  相似文献   

3.
植物过敏性蛋白质及其生物学功能   总被引:2,自引:0,他引:2  
在引起I型超敏反应的变应原中 ,植物的花粉、果实和汁液可以分别作为吸入性变应原 (inhalentallergen)、食入性变应原 (ingestentallergen)、接触性变应原 (contactentallergen)使过敏者患上鼻炎、哮喘、枯草热等疾病。而其中引起这些超敏反应的植物类蛋白质本身在植物体内亦行使着特定的生物学功能。对这些植物类过敏性蛋白质的研究不仅在植物学本身研究中具有一定意义 ,同时在变态反应性疾病的免疫治疗中亦具有重要的应用价值。目前 ,这类涉及植物学、免疫学和变态反应学的研究逐渐形成了一个新的交叉研究领域。  相似文献   

4.
近年来我们对体内的蛋白质生物合成,已有了稍为深入的了解,但是还不能解答,哺乳动物体内从同一受精卵发育、分化而来的各种组织或细胞,理应含有相同遗传信息,何以其所合成的蛋白质并不完全相同?例如,胰岛β细胞合成的蛋白质主要是胰岛素,而肝细胞合成的蛋白质却主要是血浆清蛋白。不仅如此,即使在同一种细胞中,不同时间合成的蛋白质的种类和数量亦可有所不同,这又是为什么? 据了解,在体内各种蛋白质的合成并非漫  相似文献   

5.
植物蛋白质合成延伸因子   总被引:1,自引:0,他引:1  
蛋白质的生物合成是一个需要许多大分子如起动因子、延伸因子、终止因子、核糖体、信使RNA、氨酰合成酶和tR NA协同作用的复杂的生理生化过程。植物蛋白质合成延伸因子eEF1和eEF2通过在核糖体上催化氨基酸链的延伸而推动、控制蛋白质的合成。文章介绍植物蛋白质生物合成延伸因子的研究进展  相似文献   

6.
植物离子通道特征、功能、调节与分子生物学   总被引:6,自引:1,他引:6  
本文对植物离子通道的特征、生理功能、影响通道启闭的因素和通道分子生物学研究的新进展作了较为系统的综述  相似文献   

7.
本文对植物离子通道的特征、生理功能、影响通道启闭的因素和通道分子生物学研究的新进展作了较为系统的综述。  相似文献   

8.
植物蔗糖转运蛋白及其功能调节研究进展   总被引:1,自引:0,他引:1  
综述了高等植物蔗糖转运蛋白基因家族的分类,蔗糖转运蛋白的细胞定位,蔗糖转运蛋白的功能调节,以及果实中糖运转的特性等方面的研究进展,并提出了深入研究果实蔗糖运转蛋白的展望。  相似文献   

9.
钙调节蛋白及其在植物体内的功能   总被引:21,自引:0,他引:21  
1967~1970年期间张槐耀(W.Y.Chen-ng)在提纯研究环腺苷酸磷酸二脂酶时在一个偶然的机会中首先在动物里发现了它的激活因子—钙调节蛋白(Calmodulin简称CaM,下同)。十年后,Anderson和Corm-ier与 Waisman和 Wang(1978)分别证实植物内NAD激酶的激活蛋白实际上也就是  相似文献   

10.
种子萌发时胚的生长需要营养物质。禾谷类的种子在胚乳中贮藏着丰富的养分。这些贮藏物质的动用主要受植物激素赤霉素(GA)的控制。GA是在胚中合成,经过盾片输送到胚乳周围的糊粉层细胞-GA发生作用的靶细胞。糊粉层组织由均一的、不分裂的、富含蛋白质的二到三层细胞组成,这些细胞对GA反应时合成多种水解酶如a-淀粉酶和蛋白酶。这些酶被分泌释放到胚乳中去,水解大分子贮藏物质淀粉和蛋白质等形  相似文献   

11.
Small GTP-binding Proteins and their Functions in Plants   总被引:2,自引:0,他引:2  
Small GTP-binding proteins exist in eukaryotes from yeast to animals to plants and constitute a superfamily whose members function as molecular switches that cycle between “active” and “inactive” states. They regulate a wide variety of cell functions such as signal transduction, cell proliferation, cytoskeletal organization, intracellular membrane trafficking, and gene expression. In yeast and animals, this superfamily is structurally classified into at least five families: the Ras, Rho, Rab, Arf/Sar1, and Ran families. However, plants contain Rab, Rho, Arf, and Ran homologs, but no Ras. Small GTP-binding proteins have become an intensively studied group of regulators not only in yeast and animals but also in plants in recent years. In this article we briefly review the class and structure of small GTP-binding proteins. Their working modes and functions in animals and yeast are listed, and the functions of individual members of these families in plants are discussed, with the emphasis on the recently revealed plant-specific roles of these proteins, including their cross-talk with plant hormones and other signals, regulation of organogenesis (leaf, root, and embryo), polar growth, cell division, and involvement in various stress and defense responses.  相似文献   

12.
Maleeva  Yu. V.  Neverov  K. V.  Obukhov  Yu. N.  Kritsky  M. S. 《Molecular Biology》2019,53(6):876-888
Molecular Biology - Water soluble chlorophyll-binding proteins (WSCPs) of higher plants differ from most proteins containing chlorophyll or bacteriochlorophyll in that they are soluble in watr and...  相似文献   

13.
14.
G-四链体结构是近年来发现的特殊核酸二级结构,它在体内极易形成,分布十分广泛并且具有重要的生物学功能。研究者们已经在体外检测到G-四链体的存在并解析出其晶体结构,各种检测该结构的方法如特异性荧光探针、抗体等也不断被发现或合成。G-四链体不仅广泛分布于端粒、启动子区、外显子等具有重要功能的基因区域,在5'非编码区(5'UTR)、内含子区、3'非编码区(3'UTR)等也有广泛存在。相应区域的G-四链体参与到端粒延长、DNA复制、转录、减数分裂、基因重组等重要的生命过程,发挥抗肿瘤、抗病毒、抑制血管新生等作用。目前基于G-四链体结构的抗肿瘤药物已经进入临床试验阶段并取得了良好的疗效。G-四链体结构的内源性调节包括多种内源性蛋白以及碱基的甲基化等,维持其含量与结构的平衡状态。此外,外源性小分子也可对体内G-四链体的平衡状态发挥调节作用。本文将从化学、生物和医学的角度对G-四链体结构的检测方法及其特殊功能和调控进行系统的论述和展望。  相似文献   

15.
固有无序蛋白质是一类在生理条件下缺乏稳定三维结构而具有正常功能,参与信号转导、转录调控、胁迫应答等多种生物学过程的蛋白质.植物中许多逆境响应蛋白是固有无序蛋白质,通过其结构无序或部分无序区域在蛋白质 蛋白质、蛋白质 膜脂、蛋白质 核酸的互作中发挥重要作用.本文主要对固有无序蛋白质的类别、氨基酸组成和结构特点以及在逆境胁迫下其稳定细胞膜、保护核酸和蛋白质、调控基因表达等分子功能进行综述,以拓展对逆境胁迫下蛋白质作用分子机制的认识.  相似文献   

16.
Selenium (Se) has chemical properties similar to sulfur, but slight differences can lead to altered tertiary structure and dysfunction of proteins and enzymes, if selenocysteine is incorporated into proteins in place of cysteine. In some areas of California with irrigation agriculture elevated Se concentration in drainage and shallow groundwaters caused bioaccumulation of Se in wetlands and Se toxicity to wildlife. Among higher plants Se accumulators are tolerant to high Se concentrations whereas non-accumulators are Se-sensitive. Algae show a requirement of Se for growth and development, but no Se essentiality has been demonstrated for higher plants, possibly with the exception of Se accumulators. Higher plants take up Se preferentially as selenate via the high affinity sulfate permease. Contents of Se in agricultural crops are usually below 1 mg kg?1 DW, and hence such crops are considered safe for human and animal consumption even when grown on moderately high Se soils. Sulfate salinity inhibits uptake of selenate by many plant species. Assimilation of selenate by non-accumulators leads to synthesis of selenocysteine and selenomethionine; Se-cysteine is readily incorporated into proteins. High Se can interfere with S and N metabolism in non-accumulators. In contrast, Se accumulators sequester Se mainly in non-protein selenoamino acids. Among several selenoenzymes identified in bacteria and mammals, Se-dependent glutathione peroxidase which catalyses the reduction of organic peroxides and H2O2 has been demonstrated convincingly in algae; in higher plants, however, the experimental evidence regarding its occurrence is controversial. All organisms including higher plants contain Se-cysteyl-tRNAs that decode UGA. Selenocysteine is proposed to function as 21st proteinaceous amino acid and thus is suggested to have a biological role in higher plants. Biogeochemical cycling of Se involves significant volatilization of methylated selenides such as dimethyl selenide to the atmosphere from higher plants as well as freshwater algae, but Se exchange between oceans and the atmosphere appears to proceed as net flux to the oceans.  相似文献   

17.
18.
核糖体灭活蛋白在植物中的作用   总被引:6,自引:0,他引:6  
植物核糖体灭活蛋白 (ribosome -inactivatingproteins ,RIPs)能够破坏真核或原核细胞的核糖体大亚基RNA ,使核糖体失活而不能与蛋白质合成过程中的延伸因子相结合 ,从而导致蛋白质合成受到抑制。不同的核糖体对不同RIPs的敏感性不同 ,RIPs对自体或异体核糖体的作用也有很大区别。RIPs对病毒有很强的抑制作用 ,并且有些RIPs表现出对某些真菌和昆虫的抗性 ,因此认为核糖体灭活蛋白在植物的防御反应中扮演重要角色。另外 ,RIPs还可能参与了细胞代谢、细胞死亡等生理调控过程。  相似文献   

19.
核仁一直被认为只是核糖体合成和加工的场所,但是近年研究发现它具有其他功能.核仁是一个高度动态的亚细胞结构,通常情况下核仁蛋白质在核仁内外不断穿梭完成对于核糖体的运输.但在细胞应激反应时核仁成为细胞应激的感受器(cell stress sensor),核仁蛋白质在核仁内外的定位分布发生改变,同时伴随功能改变,介导细胞的应激反应.  相似文献   

20.
R环(R-loop)是一种DNA∶RNA杂合链(DNA∶RNA hybrids),由一条RNA单链侵入双链DNA,与其中一条DNA模板链结合,从而释放出一条DNA单链而产生。R-loop在细胞生命活动中扮演着重要角色,与基因组稳定性、转录调控,以及表观修饰等重要生物学过程有着密不可分的关系。很多因素参与对R-loop的调控,例如RNA转录和加工、染色体的修饰、DNA损伤反应等;同时,许多酶蛋白,如核糖核酸酶、解旋酶和拓扑异构酶等也参与调节细胞内的R-loop水平。了解R-loop的调控机制及其生物学功能有助于更好地理解基因组稳定性的维持机制,为治疗骨髓增生异常综合征、白血病、乳腺癌、前列腺癌等疾病开拓新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号