首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seventy cultivars of Prunus avium that had been assigned to incompatibility groups or to the O group of universal donors, primarily by the John Innes Institute, were analysed for stylar ribonucleases to check or determine their incompatibility, S, alleles. Three ’new’ bands were detected and ascribed to new alleles S 12 to S 14 . For most of the groups that had previously been genotyped most of the cultivars had the genotypes expected, although various exceptions were found. In group VIII none of the cultivars tested had the correct genotype of S 2 S 5 but this genotype occurred in ’Malling Black Eagle’. For the three groups not previously genotyped we assigned genotypes: group X, S 6 S 9 ; group XI, S 2 S 7 ; and group XII S 6 S 13 . We confirmed group XIV, which had been rejected by Canadian work. Group O comprised a range of genotypes. In collating these results and those of our previous ribonuclease studies we propose five new groups: group XV, S 5 S 6 ; group XVI, S 3 S 9 ; group XVII, S 4 S 6 ; group XVIII, S 1 S 9 ; and group XIX, S 3 S 13 . Several predictions were confirmed by test crossing; thus the three members of the proposed group XV, ’Colney’, ’Erianne’ and ’Zweitfruhe’, were cross-incompatible, as were the two members of proposed group XVIII, ’Norbury’s Early Black’ and ’Smoky Dun.’ Received: 25 March 2000 / Accepted: 12 January 2001  相似文献   

2.
The (in)compatibility genotypes of two self-compatible sweet cherry selections, JI 2420 and JI 2434, originating from the John Innes Institute were re-examined. The selections and seedlings derived from them were analysed for stylar ribonucleases, which are known to correlate with S alleles, and the outcome of test crosses was recorded. JI 2420, which had been reported previously as S 3 S 4 ", where " indicates loss of pollen activity, was deduced to have the genotype S 4 S 4 ’. For JI 2434, which had been reported previously as S 3 S 4 0 , S 3 S 3 0 or S 3 S 3 ", where 0 indicates loss of pollen and stylar activity, two different clones were identified. One, at East Malling, was deduced to be S 3 "S 4 ; the other, at Ahrensburg, appeared to be S 3 S 3 " or S 3 S 3 0 . Received: 28 October 1999 / Accepted: 24 November 1999  相似文献   

3.
4.
5.
Genetic linkage map in sour cherry using RFLP markers   总被引:6,自引:0,他引:6  
 Restriction fragment length polymorphism (RFLP) linkage maps of two tetraploid sour cherry (Prunus cerasus L., 2n=4x=32) cultivars, Rheinische Schattenmorelle (RS) and Erdi Botermo (EB), were constructed from 86 progeny from the cross RS×EB. The RS linkage map consists of 126 single-dose restriction fragment (SDRF, Wu et al. 1992) markers assigned to 19 linkage groups covering 461.6 cM. The EB linkage map has 95 SDRF markers assigned to 16 linkage groups covering 279.2 cM. Fifty three markers mapped in both parents were used as bridges between both maps and 13 sets of homologous linkage groups were identified. Homoeologous relationships among the sour cherry linkage groups could not be determined because only 15 probes identified duplicate loci. Fifty nine of the markers on the linkage maps were detected with probes used in other Prunus genetic linkage maps. Four of the sour cherry linkage groups may be homologous with four of the eight genetic linkage groups identified in peach and almond. Twenty one fragments expected to segregate in a 1 : 1 ratio segregated in a 2 : 1 ratio. Three of these fragments were used in the final map construction because they all mapped to the same linkage group. Six fragments exhibited segregation consistent with the expectations of intergenomic pairing and/or recombination. Received: 1 April 1998 / Accepted: 9 June 1998  相似文献   

6.
 Stylar proteins were surveyed by non-equilibrium pH gradient electrofocusing to identify S-RNases associated with gametophytic self-incompatibility in nine apricot cultivars. RNase activities associated with the alleles of incompatibility S 1 , S 2 , S 5 , and S 6 and with the allele of compatibility Sc were clearly identified. Two other bands that we considered related to the alleles S 3 and S 4 were unique to cultivars Sunglo and Harcot, respectively. Two generations of 17 seedlings from the cross Moniquí× Pepito and 38 from Gitano × Pepito were used to determine the inheritance of the S-RNases. Inheritance of these RNase bands followed the expected segregation ratios and the band combinations correlated perfectly with the known self-incompatibility status of the seedlings determined after self-pollination and observation of pollen tube growth. All evidence presented in this study strongly suggests that RNases are associated with gametophytic self-incompatibility of apricot and that RNases may be the S-gene products. This is the first report identifying S-RNases and describing the inheritance of these S-RNases in apricot. Received: 19 February 1998 / Revision accepted: 2 April 1998  相似文献   

7.
 Recent advances have expanded the potential usefulness of molecular techniques for plant genetic research. AFLP is a powerful technique, allowing rapid and reliable analysis of multiple, potentially polymorphic sites in a single experiment. Because AFLP technology requires no a priori knowledge of genome structure or preparation of molecular probes, it is immediately useful for a wide variety of plant species. However, because AFLP markers are dominant, costly, and technologically demanding, the technique has limited application for large-scale, locus-specific uses. In carrot, the Y 2 locus controls carotene accumulation in the root xylem core. Although carrot is an important source of dietary carotene, little is known about the regulation and biosynthesis of carotenes in carrot. We identified six AFLP fragments linked to the Y 2 locus through a combination of F2 mapping and bulked segregant analysis. We have developed a procedure for generating simple, codominant, PCR-based markers from dominant AFLP fragments using a Y 2 -linked AFLP fragment as a model. Our converted marker requires only a simple PCR followed by standard agarose gel electrophoresis. It is rapid, simple, reliable, comparatively inexpensive, codominant, and non-radioactive. Conversion of AFLP fragments to forms better adapted to large-scale, locus-specific applications greatly expands the usefulness of this molecular technique. Received: 16 February 1998 / Accepted: 7 April 1998  相似文献   

8.
 Isoenzymes were used to evaluate gene diversity and genetic differentiation among six populations of wild cherry (Prunus avium L.) in France. We contrast the genetic characteristics of a population resulting from a recent colonization with those of a much older population of the same species. No significant genetic structure was observed among populations; in this respect wild cherry does not differ from other forest trees. No founder effects could be detected in the newly colonized population. To explain the results, we discuss classic explanations for the lack of genetic differentiation among populations, including balancing selection and neutral drift/migration. In order to account for the absence of founder effects, we propose a hypothesis based on the life cycle of forest trees, namely that the length of the juvenile phase reduces the impact of small numbers of initial founders. Received : 26 November 1996 / Accepted : 20 December 1996  相似文献   

9.
 A PCR-based marker (E20570) linked to the gene Gm4t, which confers resistance to a dipteran pest gall midge (Orseolia oryzae), has been mapped using the restriction fragment length polymorphism (RFLP) technique in rice. Gm4t is a dominant resistance gene. We initially failed to detect useful polymorphism for this marker in a F3 mapping population derived from a cross between two indica parents, ‘Abhaya’בShyamala’, with as many as 35 restriction enzymes. ‘Abhaya’ carries the resistance gene Gm4t and ‘Shyamala’ is susceptible to gall midge. Subsequently, E20570 was mapped using another mapping population represented by a F2 progeny from a cross between ‘Nipponbare’, a japonica variety, and ‘Kasalath’, an indica variety, in which the gene Gm4t was not known to be present. Gm4t mapped onto chromosome 8 between markers R1813 and S1633B. Our method, thus, presents an alternative way of mapping genes which otherwise would be difficult to map because of a lack of polymorphism between closely related parents differing in desired agronomic traits. Received: 1 April 1997 / Accepted: 13 May 1997  相似文献   

10.
Three progenies of sour cherry (Prunus cerasus) were analysed to correlate self-(in)compatibility status with S-RNase phenotype in this allotetraploid hybrid of sweet and ground cherry. Self-(in)compatibility was assessed in the field and by monitoring pollen tube growth after selfing. The S-RNase phenotypes were determined by isoelectric focusing of stylar proteins and staining for RNase activity and, for the parents, confirmed by PCR. Seedling phenotypes were generally consistent with disomic segregation of S-RNase alleles. The genetic arrangements of the parents were deduced to be ‘Köröser’ (self-incompatible) S 1 S 4 .S B S D , ‘Schattenmorelle’ (self-compatible) S 6 S 13 .S B S B , and clone 43.87 (self-compatible) S 4 S 13 .S B S B , where “.” separates the two homoeologous genomes. The presence of S 4 and S 6 alleles at the same locus led to self-incompatibility, whereas S 13 and S B at homoeologous loci led to self-compatibility. The failure of certain heteroallelic genotypes in the three crosses or in the self-incompatible seedlings indicates that S 4 and S 6 are dominant to S B . However, the success of S 13 S B pollen on styles expressing corresponding S-RNases indicates competitive interaction or lack of pollen-S components. In general, the universal compatibility of S 13 S B pollen may explain the frequent occurrence of S 13 and S B together in sour cherry cultivars. Alleles S B and S D , that are presumed to derive from ground cherry, and S 13 , presumably from sweet cherry, were sequenced. Our findings contribute to an understanding of inheritance of self-(in)compatibility, facilitate screening of progenies for self-compatibility and provide a basis for studying molecular interactions in heteroallelic pollen.  相似文献   

11.
Rye (Secale cereale L.) is considered to be the most aluminum (Al)-tolerant species among the Triticeae. It has been suggested that aluminum tolerance in rye is controlled by three major genes (Alt genes) located on rye chromosome arms 3RL, 4RL, and 6RS, respectively. Screening of an F6 rye recombinant inbred line (RIL) population derived from the cross between an Al-tolerant rye (M39A-1–6) and an Al-sensitive rye (M77A-1) showed that a single gene controls aluminum tolerance in the population analyzed. In order to identify molecular markers tightly linked to the gene, we used a combination of amplified fragment length polymorphism (AFLP) and bulked segregant analysis techniques to evaluate the F6 rye RIL population. We analyzed approximately 22,500 selectively amplified DNA fragments using 204 primer combinations and identified three AFLP markers tightly linked to the Alt gene. Two of these markers flanked the Alt locus at distance of 0.4 and 0.7 cM. Chromosomal localization using cloned AFLP and a restriction fragment length polymorphism (RFLP) marker indicated that the gene was on the long arm of rye chromosome 4R. The RFLP marker (BCD1230) co-segregated with the Alt gene. Since the gene is on chromosome 4R, the gene was designated as Alt3. These markers are being used as a starting point in the construction of a high resolution map of the Alt3 region in rye. Received: 29 March 2000 / Accepted: 9 July 2001  相似文献   

12.
 The presence of a codominant AFLP marker, EAA/MCAT10, correlates with the primary source of resistance to root-knot nematodes (Meloidogyne incognita and M. javanica) in rootstock cultivars of peach [Prunus persica (L.) Batsch]. Two allelic DNA fragments of this AFLP marker were cloned, sequenced and converted to sequence tagged sites (STS). Four nucleotide differences (i.e. one addition and three substitutions) were observed between the two clones. Furthermore, there was a diagnostic Sau3 AI cleavage site (GATC) in the large fragment that was absent from the small fragment (GTTC at this site). The applicability of this STS marker system to peach germplasm improvement was evaluated: genomic DNAs of cross parents (i.e. ‘Lovell’ and ‘Nemared’), four F1 hybrids (K62-67, K62-68, P101-40 and P101-41) and two F2 populations (from K62-68 and P101-41), as well as DNA from a test panel of 18 rootstock cultivars or selections, were PCR-amplified with the Mij3F/Mij1R primer pair and then digested with Sau3 AI. The banding patterns showed that the EAA/MCAT10 STS markers can clearly distinguish the three genotypes – homozygous resistant, heterozygous resistant and homozygous susceptible – in the ‘Lovell’בNemared’ cross. In addition, results from the rootstock survey were consistent with each rootstock’s phenotypic response to nematode infection, except for ‘Okinawa’, ‘Flordaguard’ and ‘Yunnan’ where root-knot resistance may have arisen independently. Therefore, the EAA/MCAT10 STS markers will be a useful tool to initiate marker assisted selection studies in peach rootstock breeding for root-knot nematode resistance. Received: 4 January 1999 / Accepted: 4 January 1999  相似文献   

13.
A chromosomal region originating from Malus floribunda 821 confers Vf scab resistance to many isolates of Venturia inaequalis. Twelve DNA markers located in this region were used to scan the equivalent of 31 cM in 98 Malus accessions. This allowed a molecular diagnosis of a source of resistance in apple germplasm with the aid of pedigree information, and in the context of a limited marker survey representing other chromosomes. At least five marker alleles were present in all scab-resistant breeding selections or varieties arising from M. floribunda. The validity of findings based on RAPD markers was confirmed with SCAR assays and Southern-hybridisation experiments. The order of markers determined in previous mapping studies was confirmed and sets of recombinants identified that establish reliable fine-mapping orders within 0.7 cM of the resistance locus. None of the marker alleles were present in the accessions that are either susceptible or possess weak polygenic resistance to scab. The presence of some alleles corresponding to those present at least 5.3 cM from Vf in M. floribunda was detected in some accessions. Other major sources of scab resistance do not appear to possess alleles in common with the Vf region, which will simplify future allelism tests. The results are discussed in the context of the introgression of resistance loci together with marker-assisted selection. The use of breeding pedigrees to assist in fine-scale mapping and map-based cloning is discussed. Received: 16 February 1999 / Accepted: 11 March 1999  相似文献   

14.
Summary Under controlled growth chamber conditions of 30 °C, seed set after selfing is possible in normally self-incompatible rye plants. Within selfed progenies produced by this method, plants homozygous at the peroxidase isozyme locus Prx 7 were crossed to heterozygous individuals. Segregation at the Prx 7 locus in progenies of these crosses provides clear evidence of a close linkage between Prx 7 and one of the two incompatibility loci in rye. A recombination fraction in the range of 0–2% was calculated from the segregation data. In rye, Prx 7 is linked with a phosphoglucoisomerase locus (Pgi). The similarity between the observations in Secale cereale and those made in Lolium perenne is discussed.  相似文献   

15.
16.
QTL analysis of flower and fruit traits in sour cherry   总被引:2,自引:0,他引:2  
The map locations and effects of quantitative trait loci (QTLs) were estimated for eight flower and fruit traits in sour cherry (Prunus cerasus L.) using a restriction fragment length polymorphism (RFLP) genetic linkage map constructed from a double pseudo-testcross. The mapping population consisted of 86 progeny from the cross between two sour cherry cultivars, Rheinische Schattenmorelle (RS)×Erdi Botermo (EB). The genetic linkage maps for RS and EB were 398.2 cM and 222.2 cM, respectively, with an average interval length of 9.8 cM. The RS/EB linkage map that was generated with shared segregating markers consisted of 17 linkage groups covering 272.9 cM with an average interval length of 4.8 cM. Eleven putatively significant QTLs (LOD >2.4) were detected for six characters (bloom time, ripening time, % pistil death, % pollen germination, fruit weight, and soluble solids concentration). The percentage of phenotypic variation explained by a single QTL ranged from 12.9% to 25.9%. Of the QTLs identified for the traits in which the two parents differed significantly, 50% had allelic effects opposite to those predicted from the parental phenotype. Three QTLs affecting flower traits (bloom time, % pistil death, and % pollen germination) mapped to a single linkage group, EB 1. The RFLP closest to the bloom time QTL on EB 1 was detected by a sweet cherry cDNA clone pS141 whose partial amino acid sequence was 81% identical to that of a Japanese pear stylar RNase. Received: 4 March 1999 / Accepted: 27 August 1999  相似文献   

17.
Marker selection (MS) and doubled-haploid (DH) technologies have the potential to reduce the time taken to breed new cereal cultivars. However, a limiting factor is the potential increased genetic drift. The aim of this study was to design and test a genetic model for predicting the sample sizes needed to maintain genetic variation among DH plants following marker selection. The model estimates the amount of the genome that is fixed during the production of DH populations of a given size using a given number of markers. To test the model, doubled-haploids were produced from wheat plants selected for three PCR-based markers. When the genetic variation of the DH population (108 plants), produced from 15 selected F2 plants homozygous at three loci, was compared to the genetic variation of an unselected F3 population (200 plants), five of the six measured quantitative traits were identical and normally distributed. This model should prove to be a valid breeding tool, allowing a breeder to apply MS to a breeding programme and estimate the minimum DH population sizes required for minimal loss of genetic variation through genetic drift. Received: 16 October 2000 / Accepted: 20 March 2001  相似文献   

18.
A Brassica juncea mapping population was generated and scored for seed coat colour. A combination of bulked segregant analysis and AFLP methodology was employed to identify markers linked to seed coat colour in B. juncea. AFLP analysis using 16 primer combinations revealed seven AFLP markers polymorphic between the parents and the bulks. Individual plants from the segregating population were analysed, and three AFLP markers were identified as being tightly linked to the seed coat colour trait and specific for brown-seeded individuals. Since AFLP markers are not adapted for large-scale application in plant breeding, our objective was to develop a fast, cheap and reliable PCR-based assay. Towards this goal, we employed PCR-walking technology to isolate sequences adjacent to the linked AFLP marker. Based on the sequence information of the cloned flanking sequence of marker AFLP8, primers were designed. Amplification using the locus-specific primers generated bands at 0.5 kb and 1.2 kb with the yellow-seeded parent and a 1.1-kb band with the brown-seeded parent. Thus, the dominant AFLP marker (AFLP8) was converted into a simple codominant SCAR (Sequence Characterized Amplified Region) marker and designated as SCM08. Scoring of this marker in a segregating population easily distinguished yellow- and brown-seeded B. juncea and also differentiated between homozygous (BB) and heterozygous (Bb) brown-seeded individuals. Thus, this marker will be useful for the development of yellow seed B. juncea cultivars and facilitate the map-based cloning of genes responsible for seed coat colour trait. Received: 2 October 1999 / Accepted: 11 November 1999  相似文献   

19.
We calculated the wind-induced bending moments and stresses generated in the stems of five Prunus serotina conspecifics differing in height and canopy shape and size (based on detailed measurements of stem projected area and location with respect to ground level) to test the hypothesis that wind-loads generate uniform and constant stress levels along the lengths of tree twigs, branches, and trunks. These calculations were performed using five different wind speed profiles to evaluate the relative importance of the shape of wind speed profiles versus the ’geometry’ of tree shape on stem stress distributions and magnitudes. Additionally, we evaluated the effect of absolute tree size and stem taper on wind- induced stresses by scaling the size of smaller conspecifics to the absolute height of the largest of the five trees yet retaining the original stem proportions (i.e., diameter relative to stem length) for each plant. Finally, we also determined how the factor of safety for wind-loading (i.e., the quotient of stem yield stress and wind-load stress) changed as a function of tree size (and, presumably, age). Our results indicate that wind-load stress levels (1) vary along stem length even for the same wind speed profile and the same maximum wind speed; (2) would increase to dangerous levels with increasing tree height if it were not for ontogenetic changes in stem taper and canopy shape that reduce stress intensities to manageable levels; (3) tend to be more dependent on stem taper and canopy shape and size than on the shape of the wind speed profile; and (4) the factor of safety against wind-induced mechanical failure decreases as trees get larger, but varies along the length of large trees such that preferential stem failure is likely and functionally adaptive. We thus (1) reject the hypothesis of constant wind-induced stress levels; (2) support the view that size-dependent changes in stem taper are required to maintain wind-load mechanical reliability; and (3) suggest that certain portions of mature trees are ’designed’ to fail under high winds speeds, thereby reducing drag and the bending moments and stresses experienced by trunks. Received: 24 May 1999 / Accepted: 8 October 1999  相似文献   

20.
 The variety Vitis vinifera cv Sultanine presents a type of seedlessness in which fertilization occurs but seeds subsequently fail to develop. It has been suggested that this trait might be controlled by three complementary recessive genes regulated by a dominant gene named I. Bulk segregant analysis was used to search for random amplified polymorphic DNA (RAPD) markers linked to the I gene in progeny obtained by crossing two partially seedless genotypes. One hundred and forty decamer primers were screened using bulks obtained by pooling the DNA of extreme individuals from the phenotypic distribution. We identified two RAPD markers which appeared tightly linked to I (at 0.7 and 3.5 cM respectively). The closest marker was used to develop a codominant SCAR (sequence characterized amplified region), named SCC8. This latter marker appeared of great value either to exclude from the progeny potentially seeded individuals or to select for seedless individuals. Indeed, all the seeded individuals of the progeny were found to be homozygous scc8 -/scc8 -, and all the individuals homozygous SCC8 +/SCC8 + were seedless. Moreover, this marker was successfully applied to other natural seedless varieties where codominance persisted. SCC8 was also used to dissect more precisely the genetics of seedlessness. ANOVA analysis indicated that this SCAR marker accounted for at least 64.9% of the phenotypic variation of the seed’s fresh weight and for at least 78.7% of the phenotypic variation of the seed’s dry matter. These results confirmed the presence of a major gene, and also the existence of other complementary recessive genes, controlling the expression of seedlessness. Received: 29 July 1997 / Accepted: 16 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号