首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Pattison DI  Davies MJ 《Biochemistry》2006,45(26):8152-8162
Hypochlorous acid (HOCl) is a powerful oxidant generated from H(2)O(2) and Cl(-) by the heme enzyme myeloperoxidase, which is released from activated leukocytes. HOCl possesses potent antibacterial properties, but excessive production can lead to host tissue damage that is implicated in a wide range of human diseases (e.g., atherosclerosis). Histamine and carnosine have been proposed as protective agents against such damage. However, as recent studies have shown that histidine-containing compounds readily form imidazole chloramines that can rapidly chlorinate other targets, it was hypothesized that similar reactions may occur with histamine and carnosine, leading to propagation, rather than prevention, of HOCl-mediated damage. In this study, the reactions of HOCl with histamine, histidine, carnosine, and other compounds containing imidazole and free amine sites were examined. In all cases, rapid formation (k, 1.6 x 10(5) M(-)(1) s(-)(1)) of imidazole chloramines was observed, followed by chlorine transfer to yield more stable, primary chloramines (R-NHCl). The rates of most of these secondary reactions are dependent upon substrate concentrations, consistent with intermolecular mechanisms (k, 10(3)-10(4) M(-)(1) s(-)(1)). However, for carnosine, the imidazole chloramine transfer rates are independent of the concentration, indicative of intramolecular processes (k, 0.6 s(-)(1)). High-performance liquid chromatography studies show that in all cases the resultant R-NHCl species can slowly chlorinate N-alpha-acetyl-Tyr. Thus, the current data indicate that the chloramines formed on the imidazole and free amine groups of these compounds can oxidize other target molecules but with limited efficiency, suggesting that histamine and particularly carnosine may be able to limit HOCl-mediated oxidation in vivo.  相似文献   

2.
To investigate neutrophil interactions with mediators released by mast cells at sites of inflammation, stimulated neutrophils were incubated with histamine. No accumulation of chlorinated histamine derivatives was detected in the medium. Instead, histamine inhibited the formation of chloramine derivatives of other amines. Incubation with radiolabeled histamine resulted in rapid uptake of label into the cells, and most of the label could be extracted and recovered as histamine. About 3% of the label taken up was incorporated into acid-precipitable forms. Uptake depended on myeloperoxidase (MPO)-catalyzed formation of chlorinating agents. Uptake was promoted by adding MPO and blocked by the MPO inhibitor dapsone, catalase, scavengers for hypochlorous acid and chloramines, or in a low-chloride medium, but not by histamine receptor antagonists. Incubation of histamine with MPO, hydrogen peroxide, and chloride resulted in formation of mono- and dichloramine derivatives of the primary amino group. Above pH 7.0, the chloramines were primarily in uncharged, lipophilic forms as indicated by partitioning into organic solvents. Histamine is a cation at neutral pH, but chlorination eliminated the charge on the amino group and shifted the pKa of the imidazole ring, resulting in formation of neutral histamine-chloramines. Incubation of neutrophils or other blood cells with radiolabeled histamine-chloramines resulted in rapid uptake of label, indicating membrane permeation by the uncharged, lipid-soluble forms. Incubation with labeled histamine-dichloramine also resulted in acid-precipitable incorporation. The results indicate that MPO-catalyzed chlorination of histamine could modulate histamine activity, tissue distribution, and metabolism at sites of inflammation.  相似文献   

3.
Abstract

To investigate neutrophil interactions with mediators released by mast cells at sites of inflammation, stimulated neutrophils were incubated with histamine. No accumulation of chlorinated histamine derivatives was detected in the medium. Instead, histamine inhibited the formation of chloramine derivatives of other amines. Incubation with radiolabeled histamine resulted in rapid uptake of label into the cells, and most of the label could be extracted and recovered as histamine. About 3% of the label taken up was incorporated into acid-precipitable forms. Uptake depended on myeloperoxidase (MPO)-catalyzed formation of chlorinating agents. Uptake was promoted by adding MPO and blocked by the MPO inhibitor dapsone, catalase, scavengers for hypochlorous acid and chloramines, or in a low-chloride medium, but not by histamine receptor antagonists. Incubation of histamine with MPO, hydrogen peroxide, and chloride resulted in formation of mono- and di-chloramine derivatives of the primary amino group. Above pH 7.0, the chloramines were primarily in uncharged, lipophilic forms as indicated by partitioning into organic solvents. Histamine is a cation at neutral pH, but chlorination eliminated the charge on the amino group and shifted the pKa of the imidazole ring, resulting in formation of neutral histamine-chloramines. Incubation of neutrophils or other blood cells with radiolabeled histamine-chloramines resulted in rapid uptake of label, indicating membrane permeation by the uncharged, lipid-soluble forms. Incubation with labeled histamine-dichloramine also resulted in acid-precipitable incorporation. The results indicate that MPO-catalyzed chlorination of histamine could modulate histamine activity, tissue distribution, and metabolism at sites of inflammation.  相似文献   

4.
Twenty-one isolated, perfused, spontaneously rhythmic guinea pig hearts (Langendorff preparation) were used to investigate the effects of coronary perfusion pressure (CPP) on the coronary vasoactive response to a continuous infusion of histamine. Heart rate (HR), coronary perfusate flow (CPF), left ventricular pressure, dp/dtmax, oxygen extraction, and myocardial oxygen consumption (MVO2) were measured at constant CPP of 40 (n = 9), 53 (n = 6), and 65 cm H2O (n = 6) in the absence and presence of continuous intracoronary infusion of histamine [0.9 +/- 0.2 microgram/(min X g)]. At 40 cm H2O histamine caused significant coronary vasodilation. At 65 cm H2O histamine caused significant coronary vasoconstriction. At an intermediate pressure of 53 cm H2O histamine had no effect on CPF. At all three pressures HR, left ventricular pressure, dp/dtmax, and oxygen extraction increased significantly in response to histamine. MVO2 was unchanged by histamine at 65 cm H2O (flow was reduced but extraction increased. MVO2 increased modestly but significantly at 53 cm H2O (12% increase; flow unchanged but extraction increased), and increased prominently at 40 cm H2O (50% increase; flow and extraction increased). We conclude that the coronary vascular effects of continuously infused histamine are dependent on the preexisting, steady-state level of CPP in the isolated perfused guinea pig heart.  相似文献   

5.
The effect of myeloperoxidase, hydrogen peroxide (H2O2) and a halide (Cl) on the opsonizing molecules in immunoglobulin G (IgG) and complement factor C3b was assayed. At concentrations of the enzyme (1 microgram/ml) that can be found in the extracellular fluid during inflammation, the myeloperoxidase-H2O2-Cl system inhibited the opsonizing effect of IgG and C3b measured as phagocytic uptake and superoxide generation. The effect was related to the enzymatic peroxidative activity of the protein. The presence of albumin (10 mg/ml) reduced the effect of myeloperoxidase with 10-20%. Taurine, which in the presence of myeloperoxidase-H2O2-Cl forms hydrophilic chloramines, and D-penicillamine, which scavenges HOCl, neutralize the inhibitory effect of myeloperoxidase. This suggests that either hypochlorous acid or lipophilic chloramines may exert its effect by oxidizing free sulphydryl groups exposed on the opsonizing ligands. Since the myeloperoxidase-H2O2-halide system also affects chemotactic factors, leukotrienes, proteinases and membrane receptors, the system may in several ways affect the development of the inflammatory response.  相似文献   

6.
Histamine has been shown to play a role in arthropod vision; it is the major neurotransmitter of arthropod photoreceptors. Histamine-gated chloride channels have been identified in insect optic lobes. We report the first isolation of cDNA clones encoding histamine-gated chloride channel subunits from the fruit fly Drosophila melanogaster. The encoded proteins, HisCl1 and HisCl2, share 60% amino acid identity with each other. The closest structural homologue is the human glycine alpha3 receptor, which shares 45 and 43% amino acid identity respectively. Northern hybridization analysis suggested that hisCl1 and hisCl2 mRNAs are predominantly expressed in the insect eye. Oocytes injected with in vitro transcribed RNA, encoding either HisCl1 or HisCl2, produced substantial chloride currents in response to histamine but not in response to GABA, glycine, and glutamate. The histamine sensitivity was similar to that observed in insect laminar neurons. Histamine-activated currents were not blocked by picrotoxinin, fipronil, strychnine, or the H2 antagonist cimetidine. Co-injection of both hisCl1 and hisCl2 RNAs resulted in expression of a histamine-gated chloride channel with increased sensitivity to histamine, demonstrating coassembly of the subunits. The insecticide ivermectin reversibly activated homomeric HisCl1 channels and, more potently, HisCl1 and HisCl2 heteromeric channels.  相似文献   

7.
The chloroperoxidase-catalyzed reactions of NAD(P)H with H2O2 in the presence of Cl- or Br- have been characterized. With 1 mol H2O2 per mol of NADH, one atom of 36Cl was incorporated into the 264-nm-absorbing intermediate product. This species was oxidized enzymatically by a second mole of H2O2 to a species distinct from NAD+, which retained one Cl atom. Spectroscopically identical species were also produced by reaction of NADH with one and two molar ratios of HOCl, respectively. These data indicate that, with respect to halogenation activities, chloroperoxidase functions similarly to myeloperoxidase, i.e., produces HOCl as the first product of Cl- oxidation by H2O2. Moreover, rapid chlorination of NAD(P)H followed by oxidation may be an important and highly lethal microbicidal effect of HOCl produced by myeloperoxidase in activated neutrophils.  相似文献   

8.
Oxidation of chloride and thiocyanate by isolated leukocytes   总被引:8,自引:0,他引:8  
Peroxidase-catalyzed oxidation of chloride (Cl-) and thiocyanate (SCN-) was studied using neutrophils from human blood and eosinophils and macrophages from rat peritoneal exudates. The aims were to determine whether Cl- or SCN- is preferentially oxidized and whether leukocytes oxidize SCN- to the antimicrobial oxidizing agent hypothiocyanite (OSCN-). Stimulated neutrophils produced H2O2 and secreted myeloperoxidase. Under conditions similar to those in plasma (0.14 M Cl-, 0.02-0.12 mM SCN-), myeloperoxidase catalyzed the oxidation of Cl- to hypochlorous acid (HOCl), which reacted with ammonia and amines to yield chloramines. HOCl and chloramines reacted with SCN- to yield products without oxidizing activity, so that high SCN- blocked accumulation of chloramines in the extracellular medium. Under conditions similar to those in saliva and the surface of the oral mucosa (20 mM Cl-, 0.1-3 mM SCN-), myeloperoxidase catalyzed the oxidation of SCN- to OSCN-, which accumulated in the medium to concentrations of up to 40-70 microM. Sulfonamide compounds increased the yield of stable oxidants to 0.2-0.3 mM by reacting with OSCN- to yield derivatives analogous to chloramines. Stimulated eosinophils produced H2O2 and secreted eosinophil peroxidase, which catalyzed the oxidation of SCN- to OSCN- regardless of Cl- concentration. Stimulated macrophages produced H2O2 but had low peroxidase activity. OSCN- was produced when SCN- was 0.1 mM or higher and myeloperoxidase, eosinophil peroxidase, or lactoperoxidase was added. The results indicate that SCN- rather than Cl- may be the physiologic substrate (electron donor) for eosinophil peroxidase and that OSCN- may contribute to leukocyte antimicrobial activity under conditions that favor oxidation of SCN- rather than Cl-.  相似文献   

9.
Stimulated neutrophils discharge large quantities of superoxide (O2.-), which dismutates to form H2O2. In combination with Cl-, H2O2 is converted into the potent oxidant hypochlorous acid (HOCl) by the haem enzyme myeloperoxidase. We have used an H2O2 electrode to monitor H2O2 uptake by myeloperoxidase, and have shown that in the presence of Cl- this accurately represents production of HOCl. Monochlorodimedon, which is routinely used to assay production of HOCl, inhibited H2O2 uptake by 95%. This result confirms that monochlorodimedon inhibits myeloperoxidase, and that the monochlorodimedon assay grossly underestimates the activity of myeloperoxidase. With 10 microM-H2O2 and 100 mM-Cl-, myeloperoxidase had a neutral pH optimum. Increasing the H2O2 concentration to 100 microM lowered the pH optimum to pH 6.5. Above the pH optimum there was a burst of H2O2 uptake that rapidly declined due to accumulation of Compound II. High concentrations of H2O2 inhibited myeloperoxidase and promoted the formation of Compound II. These effects of H2O2 were decreased at higher concentrations of Cl-. We propose that H2O2 competes with Cl- for Compound I and reduces it to Compound II, thereby inhibiting myeloperoxidase. Above pH 6.5, O2.- generated by xanthine oxidase and acetaldehyde prevented H2O2 from inhibiting myeloperoxidase, increasing the initial rate of H2O2 uptake. O2.- allowed myeloperoxidase to function optimally with 100 microM-H2O2 at pH 7.0. This occurred because, as previously demonstrated, O2.- prevents Compound II from accumulating by reducing it to ferric myeloperoxidase. In contrast, at pH 6.0, where Compound II did not accumulate, O2.- retarded the uptake of H2O2. We propose that by generating O2.- neutrophils prevent H2O2 and other one-electron donors from inhibiting myeloperoxidase, and ensure that this enzyme functions optimally at neutral pH.  相似文献   

10.
Pattison DI  Davies MJ 《Biochemistry》2005,44(19):7378-7387
Hypochlorous acid (HOCl) is a powerful oxidant generated from H(2)O(2) and chloride ions by the heme enzyme myeloperoxidase (MPO) released from activated leukocytes. In addition to its potent antibacterial effects, excessive HOCl production can lead to host tissue damage, with this implicated in human diseases such as atherosclerosis, cystic fibrosis, and arthritis. HOCl reacts rapidly with biological materials, with proteins being major targets. Chlorinated amines (chloramines) formed from Lys and His side chains and alpha-amino groups on proteins are major products of these reactions; these materials are however also oxidants and can undergo further reactions. In this study, the kinetics of reaction of His side-chain chloramines with other protein components have been investigated by UV/visible spectroscopy and stopped flow methods at pH 7.4 and 22 degrees C, using the chloramines of the model compound 4-imidazoleacetic acid and N-alpha-acetyl-histidine. The second-order rate constants decrease in a similar order (Cys > Met > disulfide bonds > Trp approximately alpha-amino > Lys > Tyr > backbone amides > Arg) to the corresponding reactions of HOCl, but are typically 5-25 times slower. These rate constants are consistent with His side-chain chloramines being important secondary oxidants in HOCl-mediated damage. These studies suggest that formation and subsequent reactions of His side-chain chloramines may be responsible for the targeted secondary modification of selected protein residues by HOCl that has previously been observed experimentally and highlight the importance of chloramine structure on their subsequent reactivity.  相似文献   

11.
Histamine is stored in granules of mast cells and basophils and released by inflammatory mediators. It has the potential to intercept some of the HOCl generated by the neutrophil enzyme, myeloperoxidase, to produce histamine chloramine. We have measured rate constants for reactions of histamine chloramine with methionine, ascorbate, and GSH at pH 7.4, of 91 M(-1)s(-1), 195 M(-1)s(-1), and 721 M(-1)s(-1), respectively. With low molecular weight thiols, the reaction was with the thiolate and rates increased exponentially with decreasing thiol group pK(a). Comparing rate constants for different chloramines reacting with ascorbate or a particular thiol anion, these were higher when there was less negative charge in the vicinity of the chloramine group. Histamine chloramine was the most reactive among biologically relevant chloramines. Consumption of histamine chloramine and oxidation of intracellular GSH were examined for human fibroblasts. At nontoxic doses, GSH loss over 10 min was slightly greater than that with HOCl, but the cellular uptake of histamine chloramine was 5-10-fold less. With histamine chloramine, GSSG was a minor product and most of the GSH was converted to mixed disulfides with proteins. HOCl gave a different profile of GSH oxidation products, with significantly less GSSG and mixed disulfide formation. There was irreversible oxidation and losses to the medium, as observed with HOCl and other cell types. Thus, histamine chloramine shows high preference for thiols both in isolation and in cells, and in this respect is more selective than HOCl.  相似文献   

12.
Acid back diffusion into the rat stomach mucosa leads to gastric vasodilation. We hypothesized that histamine, if released from the rat mucosa under such conditions, is mast cell derived and involved in the vasodilator response. Gastric blood flow (GBF) and luminal histamine were measured in an ex vivo chamber. Venous histamine was measured from totally isolated stomachs. Mucosal mast cells (MMC), submucosal connective tissue mast cells (CTMC), and chromogranin A-immunoreactive cells (CgA IR) were assessed morphometrically. After mucosal exposure to 1.5 M NaCl, the mucosa was subjected to saline at pH 5.5 (control) or pH 1.0 (H(+) back diffusion) for 60 min. H(+) back diffusion evoked a marked gastric hyperemia, increase of luminal and venous histamine, and decreased numbers of MMC and CTMC. CgA IR cells were not influenced. Depletion of mast cells with dexamethasone abolished (and stabilization of mast cells with ketotifen attenuated) both hyperemia and histamine release in response to H(+) back diffusion. GBF responses to H(+) back diffusion were attenuated by H(1) and abolished by H(3) but not H(2) receptor blockers. Our data conform to the idea that mast cells are involved in the gastric hyperemic response to acid back diffusion via release of histamine.  相似文献   

13.
The role of histamine as a mediator of hypoxic pulmonary vasoconstriction was examined in intact anesthetized dogs. Antagonism of histamine vasoconstrictor (H1) receptors with a classic antihistaminic drug (chlorpheniramine) failed to prevent or modify the pulmonary vascular responses to hypoxia (10% O2). Blockade of histamine vasodilator (H2) receptors with a newly synthesized blocking agent (metiamide) potentiated the vasoconstriction induced by hypoxia and prevented the normal increase in heart rate. Combined H1- and H2-receptor blockade also did not prevent or reduce the hypoxic pulmonary pressor response, although it did effectively abolish the cardiovascular actions of infused histamine. In other dogs, histamine infused (3.6 mug/kg per min) during hypoxia attenuated the pulmonary vasoconstriction induced by hypoxia. The results imply that, in the dog, histamine does not mediate hypoxic pulmonary vasoconstriction. However, histamine does appear to be released during hypoxia, and it may play a role in modulating the pulmonary vascular responses to hypoxia by opposing the hypoxia induced vasoconstriction. The results also imply that histamine may be responsible for the increase in heart rate during hypoxia.  相似文献   

14.
N-acetyl-L-tyrosine (N-acTyr), with the alpha amine residue blocked by acetylation, can mimic the reactivity of exposed tyrosyl residues incorporated into polypeptides. In this study chlorination of N-acTyr residue at positions 3 and 5 in reactions with NaOCl, chloramines and the myeloperoxidase (MPO)-H2O2-Cl- chlorinating system were invesigated. The reaction of N-acTyr with HOCl/OCl- depends on the reactant concentration ratio employed. At the OCl-/N-acTyr (molar) ratio 1:4 and pH 5.0 the chlorination reaction yield is about 96% and 3-chlorotyrosine is the predominant reaction product. At the OCl-/N-acTyr molar ratio 1:1.1 both 3-chlorotyrosine and 3,5-dichlorotyrosine are formed. The yield of tyrosine chlorination depends also on pH, amounting to 100% at pH 5.5, 91% at pH 4.5 and 66% at pH 3.0. Replacing HOCl/OCl- by leucine/chloramine or alanine/chloramine in the reaction system, at pH 4.5 and 7.4, produces trace amount of 3-chlorotyrosine with the reaction yield of about 2% only. Employing the MPO-H2O2-Cl- chlorinating system at pH 5.4, production of a small amount of N-acTyr 3-chloroderivative was observed, but the reaction yield was low due to the rapid inactivation of MPO in the reaction system. The study results indicate that direct chlorination of tyrosyl residues which are not incorporated into the polypeptide structure occurs with excess HOCl/OCl- in acidic media. Due to the inability of the myeloperoxidase-H2O2-Cl- system to produce high enough HOCl concentrations, the MPO-mediated tyrosyl residue chlorination is not effective. Semistable amino-acid chloramines also appeared not effective as chlorine donors in direct tyrosyl chlorination.  相似文献   

15.
Alterations in tissue viscance (Vti) and collateral resistance (Rcoll) are both used as indexes of peripheral lung responses. However, it is not known whether the two responses reflect the effects of activation of the same contractile elements. We measured differential responses in Vti and Rcoll to histamine and leukotriene (LT) C4 to determine whether each evoked a similar pattern of response. Using the wedged bronchoscope constant-flow technique, we measured Rcoll in lobar segments of anesthetized, paralyzed, open-chest, mechanically ventilated mongrel dogs. In addition, we measured (with an alveolar capsule) alveolar pressure (PA) within the segment under study. This allowed us to calculate Vti, the component of the PA change in phase with segment flow. Rcoll and Vti measurements were obtained under base-line conditions and after local delivery of aerosols generated from histamine and LTC4. In five out of five lobes studied with both histamine and LTC4, the fractional Rcoll response to histamine was greater than the fractional Rcoll response to LTC4. In contrast, in four out of five lobes examined, the fractional increase in Vti accompanying the histamine response was less than the fractional increase in Vti accompanying LTC4 administration. These data suggest that anatomically distinct contractile elements influence Vti and Rcoll insofar as LTC4 and histamine evoke quantitatively different changes in these two indexes of peripheral lung responses.  相似文献   

16.
Nonuniform effects of histamine on small pulmonary vessels in cats   总被引:2,自引:0,他引:2  
In in vivo cat lung, using an X-ray TV system, we analyzed responses in internal diameter (ID), flow velocity, and volume flow of arteries and veins (100-500 microns ID) to histamine (8-15 micrograms/kg iv) under three conditions. With histamine alone, three types of ID response (constriction, dilatation, and no change) occurred in parallel-arranged arteries. Relative frequency and magnitude of constriction were maximum in arteries of 300-400 micron ID, whereas those of dilatation were maximum in arteries of 100-200 micron ID. In veins, relatively uniform constriction occurred. Under H2-blockade, histamine caused greater constriction than that with histamine alone in arteries and veins of 300-500 micron ID. Under beta-blockade, with histamine, ID of all vessels decreased significantly below the ID sizes under the above two conditions, and no dilatation occurred. In two parallel arteries that showed opposite ID changes to histamine, flow velocity increased, but volume flow decreased in a constricted artery while it increased in a dilated one. Those data indicated that, with histamine, qualitatively and quantitatively nonuniform ID response was induced in both parallel- and series-arranged small pulmonary arteries and, in turn, produced heterogeneous flow distribution. Factors to cause the nonuniformity may be partly explained by difference in density of H2- and beta-receptors in vascular walls.  相似文献   

17.
The binding of histamine, 4-methylhistamine (a histamine type 2 receptor agonist), cimetidine (a histamine type 2 receptor antagonist), and telemethylhistamine (an inactive analog) to human peripheral blood mononuclear cell subsets was investigated by flow cytometry by using conjugates of these ligands coupled to fluorescein-labeled human serum albumin. Our results indicate that binding of fluorescent protein conjugates of histamine and its analogs does not selectively identify a lymphocyte subset(s) that mediates the immunomodulatory effects of histaminergic ligands. Conjugates with both low (2.5 to 2.8:1) and high (28 to 57:1) ligand to protein coupling ratios were used. No binding above background could be detected for the low mole ratio reagents. The high mole ratio reagents were bound by 95 to 99% of all lymphocytes when used at ligand concentrations of 50 microM or greater. At lower ligand concentrations, the number of lymphocytes exceeding a set fluorescence threshold was decreased, but fluorescence distributions remained unimodal at all concentrations used (1 to 500 microM). Monocytes also bound the high mole ratio reagents and gave rise to a second high-intensity peak in the fluorescence distribution unless they were excluded by other means. Levels of conjugate binding detected by flow cytometry did not parallel ligand potencies at classical histamine type 2 receptors; at equivalent ligand concentrations, approximately equal amounts of histamine or 4-methylhistamine conjugate were bound per lymphocyte, and only 30% less telemethylhistamine conjugate was bound. Competition with free ligands (10(2)- to 10(4)-fold excess histamine, 4-methylhistamine, cimetidine, or telemethylhistamine) did not significantly decrease the level of binding observed for the high mole ratio reagents at bound ligand concentrations of 1 to 25 microM. Dual staining with fluorescein-labeled conjugate and phycoerythrin-labeled monoclonal antibodies Leu-3ab (anti-helper T), Leu-2a (anti-suppressor T), Leu-M3 (anti-monocyte), or anti-HLA-DR (B cells and monocytes) was also carried out. The extent of conjugate binding to helper and suppressor cells was identical for each of the ligands used, but higher levels of conjugate binding were seen for monocytes and B cells than for T cells in every case. Our data do not exclude the possibility of enhanced conjugate binding to small numbers of activated (HLA-DR positive) T cells that might be involved in mediation of histamine effects.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Myeloperoxidase (donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7) was isolated from leukocytes of patients with chronic granulocyte leukemia. In the presence of H2O2 and Cl- at pH 4.0-6.6 the myeloperoxidase catalyses chlorination of taurine to monochloramine taurine and simultaneously undergoes inactivation. The myeloperoxidase inactivation rate depends on the concentration of H2O2 and Cl-: both the initial rate of chlorination and myeloperoxidase inactivation rate increase with increasing concentration of H2O2. However, an increase in concentration of Cl- results in a decrease in enzyme inactivation. At a given H2O2 concentration, myeloperoxidase inactivation is a first order reaction, which implied that the enzyme may react with a substrate a limited number of times.  相似文献   

19.
Hypochlorous acid (HOCl), generated by myeloperoxidase from H2O2 and Cl-, plays an important role in host defense and inflammatory tissue injury. We report here the identification of products generated from 2'-deoxyguanosine (dGuo) with HOCl. When 1 mM dGuo and 1 mM HOCl were reacted at pH 7.4 and 37 degrees C for 15 min and the reaction was terminated with N-acetylcysteine (N-AcCys), two products were generated in addition to 8-chloro-2'-deoxyguanosine (8-Cl-dGuo). One was identified as an amino-imidazolone nucleoside (dIz), a previously reported product of dGuo with other oxidation systems. The other was identified as a novel diimino-imidazole nucleoside, 2,5-diimino-4-[(2-deoxy-beta-D-erythro-pentofuranosyl)amino]-2H,5H-imidazole (dDiz) by spectrometric measurements. The yields were 1.4% dDiz, 0.6% dIz and 2.4% 8-Cl-dGuo, with 61.5% unreacted dGuo. Precursors of dDiz and dIz containing a chlorine atom were found in the reaction solution in the absence of termination by N-AcCys. dDiz, dIz and 8-Cl-dGuo were also formed from the reaction of dGuo with myeloperoxidase in the presence of H2O2 and Cl- under mildly acidic conditions. These results imply that dDiz and dIz are generated from dGuo via chlorination by electrophilic attack of HOCl and subsequent dechlorination by N-AcCys. These products may play a role in cytotoxic and/or genotoxic effects of HOCl.  相似文献   

20.
Peroxidation of SCN- to OSCN-, catalysed by myeloperoxidase and lactoperoxidase, was studied. The rate of this reaction showed sharp optima between pH 5 and 7.5, the position of which is determined by the concentrations of both SCN- and H2O2. At low pH values, both SCN- and H+ inhibited myeloperoxidase and lactoperoxidase competitively with respect to H2O2. The inhibition constants of SCN- for myeloperoxidase and lactoperoxidase (2 and 6 mM, respectively) are independent of pH. For these enzymes a Ki for H+ of 1 microM was found that corresponded to an ionisable group on the enzymes (pKa = 6) which controls the enzymic activity. A kinetic expression is proposed that explains most of the data. The physiological consequences of the corresponding mechanism are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号