首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of the insect growth and ecdysis inhibitor azadirachtin on ecdysone 20-monooxygenase activity were examined in three insect species. Homogenates of wandering stage third instar larvae of Drosophila melanogaster, or abdomens from adult female Aedes aegypti, or fat body or midgut from last instar larvae of Manduca sexta were incubated with radiolabelled ecdysone and increasing concentrations of azadirachtin and the ecdysone 20-monoxygenase activity quantified by radioassay. Azadirachtin was found to inhibit in a dose-response fashion the ecdysone 20-monooxygenase activity associated with all the insect preparations. The concentration of azadirachtin required to elicit approximately 50% inhibition of the ecdysone 20-monooxygenase activity ranged from a low of 1 x 10(-4) M for Drosophila to a high of 4 x 10(-4) M for Manduca midgut.  相似文献   

2.
Drosophila melanogaster glutathione S-transferase DmGSTS1-1 (earlier designated as GST-2) is related to sigma class GSTs and was previously described as an indirect flight muscle-associated protein with no known catalytic properties. We now report that DmGSTS1-1 isolated from Drosophila or expressed in Escherichia coli is essentially inactive toward the commonly used synthetic substrate 1-chloro-2,4-dinitrobenzene (CDNB), but has relatively high glutathione-conjugating activity for 4-hydroxynonenal (4-HNE), an electrophilic aldehyde derived from lipid peroxidation. 4-HNE is thought to have signaling functions and, at higher concentrations, has been shown to be cytotoxic and involved in the etiology of various degenerative diseases. Drosophila strains carrying P-element insertions in the GstS1 gene have a reduced capacity for glutathione conjugation of 4-HNE. In flies with both, one, or none of the GstS1 alleles disrupted by P-element insertion, there is a linear correlation between DmGSTS1-1 protein content and 4-HNE-conjugating activity. This correlation indicates that in adult Drosophila 70 +/- 6% of the capacity to conjugate 4-HNE is attributable to DmGSTS1-1. The high abundance of DmGSTS1-1 (approximately 2% of the soluble protein in adult flies) and its previously reported localization in tissues that are either highly aerobic (indirect flight muscle) or especially sensitive to oxidative damage (neuronal tissue) suggest that the enzyme may have a protective role against deleterious effects of oxidative stress. Such function in insects would be analogous to that carried out in mammals by specialized alpha class glutathione S-transferases (e.g. GSTA4-4). The independent emergence of 4-HNE-conjugating activity in more than one branch of the glutathione S-transferase superfamily suggests that 4-HNE catabolism may be essential for aerobic life.  相似文献   

3.
The low dose (0.05-0.1 mM) influence of alkylating agents on germ cell survival and male fertility, the level of embryonic and postembryonic lethality as well as the sex-linked recessive lethal (SLRL) frequency induced by high alkylating agent doses was studied in Drosophila melanogaster. The pretreatment of adult males with low doses of methyl and ethyl methanesulfonate (MMS and EMS) did not change or even enhanced EMS cytotoxicity and mutagenicity in both mature sperm and premeiotic cells. On the contrary, the low EMS dose pretreatment of larvae protected them against higher mutagen doses increasing male fertility, decreasing embryonic and postembryonic lethality in F1, and leading to three-fold reduction in the SLRL frequency in F2. The adaptive response was dependent on the Drosophila developmental stage exposed to challenge mutagen doses, since the protection was maximal in larvae and practically absent when the high dose was administered to adult males. The adaptive response observed does not seem to be associated with DNA repair, but it is rather due to other protective mechanisms.  相似文献   

4.
Ras signaling has been shown to play an important role in promoting cell survival in many different tissues. Here we show that upregulation of Ras activity in adult Drosophila neurons induces neuronal cell death, as evident from the phenotype of vacuolar peduncle (vap) mutants defective in the Drosophila RasGAP gene, which encodes a Ras GTPase-activating protein. These mutants show age-related brain degeneration that is dependent on activation of the EGF receptor signaling pathway in adult neurons, leading to autophagic cell death (cell death type 2). These results provide the first evidence for a requirement of Egf receptor activity in differentiated adult Drosophila neurons and show that a delicate balance of Ras activity is essential for the survival of adult neurons.  相似文献   

5.
The glucose dehydrogenase gene (Gld) in Drosophila melanogaster exhibits a unique spatial and temporal pattern of expression. GLD expression switches from a non-sex-limited state at the pupal stage to a male-limited state at the adult stage. At the adult stage, the enzyme is restricted to the ejaculatory duct. Within the genus Drosophila, the ejaculatory duct has undergone a simple morphological divergence. In order to determine whether correlated changes in GLD expression had occurred, GLD activity during the pupal and adult stages was determined for several Drosophila species. It was found that virtually all of the species exhibit pupal GLD activity, whereas only those species with an expanded ejaculatory duct express male-limited GLD. The results of interspecific genital imaginal disc transplantation experiments indicate that the expanded morphology and GLD expression do not require any species- or sex-specific diffusible factors. An apparent regulatory polymorphism exists within the D. takahashii species with respect to male-limited GLD expression.   相似文献   

6.
It is determined to what extent certain inhibitors of the xenobiotic metabolizing enzyme systems have an influence on the mutagenicity of various pro-mutagens in Drosophila. 1-Phenylimidazole (PhI) is used as an inhibitor of the cytochrome P-450 (P-450) mediated monooxygenase activities. Iproniazid (Ipr) is a typical monoamine oxidase (MAO) inhibitor which as well seems capable of inhibiting to a certain extent P-450 mediated metabolism. N, N-Dimethyl benzylamine (N, N-DMB) is used as a competitive substrate for the N-oxidizing flavin-containing dimethylaniline monooxygenase (FDMAM). The enzyme-inhibiting activities of PhI and Ipr were determined in vitro using microsomes obtained from Drosophila larvae and adults. Both compounds were capable of inhibiting benzo[a]pyrene (BP) hydroxylation and p-nitroanisole (p-NA) demethylation, although for Ipr 100-fold higher concentrations were required compared to PhI. As model-mutagens were used: the nitrosamines dimethylnitrosamine (DMN) and diethylnitrosamine (DEN), the triazenes 1-(2,4,6-trichlorophenyl)-3,3-dimethyltriazene (Cl3PDMT), 1-(3-pyridyl)-3,3-dimethyltriazene (PyDMT) and dacarbazine (DTIC), the hydrazines procarbazine (PCZ), 1,1-dimethylhydrazine (1,1-DMH) and 1,2-dimethylhydrazine (1,2-DMH) as well as the pyrrolizidine alkaloid seniciphylline (SPh). Simultaneous or pretreatment with Ipr results in a clear decrease of the mutagenicity of Cl3PDMT, while PhI pretreatment leads to an increased mutagenicity. This indicates that these two inhibitors do not inhibit the same enzyme or isozyme. For SPh too, Ipr pretreatment results in some decrease of the mutagenicity. This is in contrast to DEN, where the activation is clearly inhibited by PhI while Ipr has only a minor effect. For DMN, DTIC and PCZ both Ipr and PhI pretreatment caused considerable decreases of the mutagenicity. Inhibition of the FDMAM catalyzed activity by N,N-DMB resulted in an increase of mutagenicity with Cl3PDMT, in a moderate decrease of mutagenicity with DTIC, and a marked decrease with DMN, which was strongly inhibited. In contrast to the clear-cut mutagenicity of PCZ, 1,1-DMH and 1,2-DMH are not mutagenic in Drosophila. No change was observed upon inhibition of the various metabolizing activities. Apart from using strain differences in metabolizing activities and enzyme induction, enzyme inhibition can also be used to determine the influence of metabolism on the in vivo mutagenicity of promutagens in Drosophila.  相似文献   

7.
We have previously reported (Petruzzelli, L., Herrera, R., Garcia, R., and Rosen, O. M. (1985) Cancer Cells 3, 115-121) that adult Drosophila melanogaster contain a specific, high-affinity insulin-binding protein. Insulin-dependent protein tyrosine kinase activity has now been identified in Drosophila. Activity first appears at 6-12 h of embryogenesis, increases during the 12-18-h period and falls to low levels in the adult. 125I-insulin was cross-linked specifically and with high affinity to a protein (Mr = 135,000) throughout embryogenesis and in the adult. However, during the 6-12- and 12-18-h periods of embryogenesis when insulin-dependent protein tyrosine kinase activity is expressed, another protein (Mr = 100,000) becomes cross-linked to 125I-insulin. Crosslinking to both proteins was competitively inhibited by the addition of 100 nM insulin. We conclude that the insulin-binding and insulin-dependent protein tyrosine kinase activities of the mammalian insulin receptor are conserved in Drosophila. However, the insulin-dependent protein tyrosine kinase activity of the receptor is detected only during specific times in embryogenesis.  相似文献   

8.
Alcohol consumption causes disruptions in a variety of daily rhythms, including the sleep-wake cycle. Few studies have explored the effect of alcohol exposure only during developmental stages preceding maturation of the adult circadian clock, and none have examined the effects of alcohol on clock function in Drosophila. This study investigates developmental and behavioral correlates between larval ethanol exposure and the adult circadian clock in Drosophila melanogaster, a well-established model for studying circadian rhythms and effects of ethanol exposure. We reared Drosophila larvae on 0%, 10%, or 20% ethanol-supplemented food and assessed effects upon eclosion and the free-running period of the circadian rhythm of locomotor activity. We observed a dose-dependent effect of ethanol on period, with higher doses resulting in shorter periods. We also identified the third larval instar stage as a critical time for the developmental effects of 10% ethanol on circadian period. These results demonstrate that developmental ethanol exposure causes sustainable shortening of the adult free-running period in Drosophila melanogaster, even after adult exposure to ethanol is terminated, and suggests that the third instar is a sensitive time for this effect.  相似文献   

9.
We isolated a cDNA encoding an inositol 1,4,5-trisphosphate receptor (InsP3R) of Drosophila melanogaster. The predicted Drosophila InsP3R (2,833 amino acids) has extensive sequence similarity to the mouse InsP3R. The polypeptide encoded by the cDNA was functionally expressed and showed characteristic InsP3-binding activity. The Drosophila InsP3R gene is located at the region 83A5-9 on the third chromosome and expresses throughout development but predominantly in the adult. Localization of the InsP3R mRNA in adult tissues suggests strong expression in the retina and antenna, indicating the involvement of the InsP3R in visual and olfactory transduction. In addition, the InsP3R mRNA is abundant in the legs and thorax, which are enriched with a muscular system. Such localization is apparently consistent with the quantitatively predominant sites for [3H]InsP3 binding in Drosophila and the fleshfly (Boettcherisca peregrina). The present study points to the likely functional importance of the InsP3/Ca2+ signaling system in Drosophila.  相似文献   

10.
Cyclin-dependent kinase 5 activator (Cdk5alpha) is an activator of Cdk5 kinase activity and its expression is restricted to neurons. The complex of Ckd5/Cdk5alpha is essential for neurite outgrowth during neuronal differentiation and possibly also for neuronal degeneration. Here we report the isolation and characterization of a Drosophila Cdk5alpha-like molecule (dCdk5alpha). The gene encoding this molecule is localized in the Drosophila chromosome region of 31D1-31D2. The expression of this gene is differentially regulated with a very low level at earlier developmental stages and reaches the highest level in the adult. The C-terminal of this molecule shares high homology with the mammalian Cdk5alpha molecule. Constitutive over-expression of dCdk5alpha in transgenic flies significantly prolongs their recovery time from 5 min to O(2) deprivation or anoxia in older flies (15 days) but not in young ones (4 days). In addition, anoxia up-regulated the expression of this gene. Taken together, the results in this report and others provide a framework for genetically dissecting the functions of Cdk5alpha/Cdk5 complex in the CNS.  相似文献   

11.
The mutagenic profiles in Drosophila and the influence of inhibition of metabolism on genotoxic activity were determined for hexamethylphosphoric triamide (HMPA), some synthetically prepared presumed metabolites and ethylated analogs. Demethylated HMPA metabolites are considerably less mutagenic than HMPA, dependent on the degree of demethylation. The mutagenicity of the presumptive primary metabolite, hydroxymethyl pentamethylphosphoramide (HM-Me5-PA), is comparable to HMPA and can be decreased considerably by inhibition of the metabolism by 1-phenylimidazole or iproniazid. This suggests that further oxidative metabolism is required for mutagenic activity. The mutagenicity of the doubly hydroxylated HMPA metabolite, N,N'-bis(hydroxymethyl)-tetramethylphosphoramide (N,N'-(HM)2-Me4-PA) can also be decreased by inhibition of metabolism, whereas the 3-fold hydroxylated N,N',-N"-(HM)3-Me3-PA is not affected by pretreatment with enzyme inhibitors, indicating that no further oxidative metabolism is required for its activation. A second hydroxylation on 1 dimethylamino group, forming N,N-(HM)2-Me4-PA, results in a drastic loss of mutagenic activity. Further oxidation of HM-Me5-PA to formyl pentamethylphosphoramide (formyl-Me5-PA) also leads to a strong reduction of the genotoxic activity. The rearrangement product of N-oxidation, N-[bis(dimethylamino)phosphinyl)-oxy)dimethylamine (HMPOA) is not mutagenic in Drosophila. The very low mutagenicity of hexaethylphosphoramide (Et6-PA) allowed us to study the mutagenicity of some ethyl-hydroxymethyl hybrid compounds. For the ethylated phosphoramides also the presence of only 1 hydroxymethyl group is insufficient for mutagenic activity, whereas the introduction of 2 or 3 hydroxymethyl groups resulted in considerable genotoxicity in the sex-linked recessive lethal (SLRL) test as well as in the ring-X loss test. It is concluded that the bioactivation of HMPA in Drosophila proceeds via multiple metabolic hydroxylations to form multifunctional, cross-linking agents. The presence of an oxygen atom on the phosphorus appears to be a prerequisite for the genotoxic activity of HMPA as hexamethylphosphorus triamide (HMPT), a derivative lacking this oxygen, is only weakly mutagenic in Drosophila. The results presented in this paper do not support the theory that formaldehyde is the active principle of activated HMPA.  相似文献   

12.
Benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, 2-acetylaminofluorene, 2-aminoanthracene, and 1-aminopyrene, when fed to adult Drosophila melanogaster males, gave a negative mutagenic response in the X-linked recessive lethal assay. Benzo[a]pyrene was also ineffective in inducing "Minutes". Aflatoxin B1, EMS and DMN gave a positive response which was dependent on the concentration of mutagen fed. Whole fly homogenates prepared from adult Drosophila were assayed for mixed-function oxidase activity in the Salmonella/microsome test. Crude Drosophila microsomes activated 2-acetylaminofluorene, 2-aminofluorene, 2,7-diaminofluorene, 2-aminoanthracene, 1-aminopyrene, and aflatoxin B1. Tests with benzo[a]pyrene, pyrene, 1,2,3,4-dibenz[a]anthracene, and 7-12-dimethylbenz[a]anthracene were negative.  相似文献   

13.
The effects of the natural compound 2-methoxy-1,4-naphthoquinone, isolated from the leaves of Impatiens glandulifera and the synthetic compounds 2-propoxy-1,4-naphthoquinone and 2-isopropoxy-1,4-naphthoquinone on ecdysone 20-monooxygenase (E-20-M) activity were examined in three insect species. Homogenates of wandering stage third instar larvae of Drosophila melanogaster, or abdomens from adult female Aedes aegypti, or fat body or midgut from fifth instar larvae of Manduca sexta were incubated with radiolabelled ecdysone and increasing concentrations (from 1 x 10(-8) to 1 x 10(-3) M) of the three compounds. All three compounds were found to inhibit in a dose-dependent fashion the E-20-M activity in the three insect species. The concentration of these compounds required to elicit a 50% inhibition of this steroid hydroxylase activity in the three insect species examined ranged from approximately 3 x 10(-5) to 7 x 10(-4) M.  相似文献   

14.
Glial cells provide support and protection for neurons in the embryonic and adult brain, mediated in part through the phagocytic activity of glia. Glial cells engulf apoptotic cells and pruned neurites from the developing nervous system, and also clear degenerating neuronal debris from the adult brain after neural trauma. Studies indicate that Drosophila melanogaster is an ideal model system to elucidate the mechanisms of engulfment by glia. The recent studies reviewed here show that many features of glial engulfment are conserved across species and argue that work in Drosophila will provide valuable cellular and molecular insight into glial engulfment activity in mammals.  相似文献   

15.
Ecdysterone-sensitive clones cultured in vitro were isolated from established cell lines of Drosophila melanogaster. The clones FC and 89K are ecdysterone-inducible for two enzymatic activities: acetylcholinesterase and beta-galactosidase. No activity could be detected in untreated cells, whereas after treatment with 50-250 nM ecdysterone, the activity appeared after one day and increased during 3-4 days. We wanted to modulate the response of the cells by varying the conditions of the hormonal stimulus. Mimicking the physiological situation of Drosophila (the ecdysterone peak corresponding to the molts is preceded by low levels) we pretreated the cells with a subthreshold concentration (1-5 nM) for 2 days and then we added the stimulating concentration of 50-250 nM ecdysterone. The enzymatic activities were then detectable within the following hours and the final level of induction was about twice the one of cells without pretreatment. Thus, the continuous presence of a subthreshold concentration of ecdysterone provokes the maturation of the cells which become able to respond to the hormonal stimulus by a quicker and higher enzymatic induction. The cellular maturation seems to be a critical period. It is altosid-sensitive. Altosid (a juvenile hormone analog) abolishes the effects of the ecdysterone-induced maturation.  相似文献   

16.
Myoblast fusion provides a fundamental, conserved mechanism for muscle fiber growth. We demonstrate here that the functional contribution of Wsp, the Drosophila homolog of the conserved actin nucleation-promoting factor (NPF) WASp, is essential for myoblast fusion during the formation of muscles of the adult fly. Disruption of Wsp function results in complete arrest of myoblast fusion in all muscles examined. Wsp activity during adult Drosophila myogenesis is specifically required for muscle cell fusion and is crucial both for the formation of new muscle fibers and for the growth of muscles derived from persistent larval templates. Although Wsp is expressed both in fibers and individual myoblasts, its activity in either one of these cell types is sufficient. SCAR, a second major Arp2/3 NPF, is also required during adult myoblast fusion. Formation of fusion-associated actin 'foci' is dependent on Arp2/3 complex function, but appears to rely on a distinct, unknown nucleator. The comprehensive nature of these requirements identifies Arp2/3-based branched actin polymerization as a universal mechanism underlying myoblast fusion.  相似文献   

17.
18.
Cloning and characterization of a Drosophila tyramine receptor.   总被引:7,自引:3,他引:4       下载免费PDF全文
Receptors for biogenic amines such as dopamine, serotonin and epinephrine belong to the family of receptors that interact with G proteins and share a putative seven transmembrane domain structure. Using a strategy based on nucleotide sequence homology between the corresponding genes, we have isolated Drosophila cDNA clones encoding a new member of the G protein-coupled receptor family. This protein exhibits highest homology to the human alpha 2 adrenergic receptors, the human 5HT1A receptor and a recently cloned Drosophila serotonin receptor. The corresponding mRNA is found predominantly in adult Drosophila heads. Membranes from mammalian cells expressing this receptor displayed high affinity binding sites for [3H]yohimbine, an alpha 2 adrenergic receptor antagonist (Kd = 4.45 x 10(-9) M). Tyramine was the most efficient of the putative Drosophila neurotransmitters at displacing [3H]yohimbine binding (EC50 = 1.25 x 10(-6) M). Furthermore tyramine induced an inhibition of adenylate cyclase activity in NIH 3T3 cells expressing this receptor. The Drosophila tyramine receptor that we have isolated might therefore be an invertebrate equivalent of the mammalian alpha 2 adrenergic receptors.  相似文献   

19.
Insulin signaling pathways are implicated in several physiological processes in invertebrates, including the control of growth and life span; the latter of these has also been correlated with juvenile hormone (JH) deficiency. In turn, JH levels have been correlated with sex-specific differences in locomotor activity. Here, the involvement of the insulin signaling pathway in sex-specific differences in locomotor activity was investigated in Drosophila. Ablation of insulin-producing neurons in the adult pars-intercerebralis was found to increase trehalosemia and to abolish sexual dimorphism relevant to locomotion. Conversely, hyper-insulinemia induced by insulin injection or by over-expression of an insulin-like peptide decreases trehalosemia but does not affect locomotive behavior. Moreover, we also show that in the head of adult flies, the insulin receptor (InR) is expressed only in the fat body surrounding the brain. While both male and female InR mutants are hyper-trehalosemic, they exhibit similar patterns of locomotor activity. Our results indicate that first, insulin controls trehalosemia in adults, and second, like JH, it controls sex-specific differences in the locomotor activity of adult Drosophila in a manner independent of its effect on trehalose metabolism.  相似文献   

20.
The activities of several drug metabolizing enzymes were compared in microsomes from larvae and adult Drosophila. The cytochrome P-450 content and the benzo[a]pyrene (BP) hydroxylation, p-nitroanisole demethylation and 3- and 4-hydroxylation of biphenyl were 4-20-fold higher in microsomes from adult flies, while 7-ethoxycoumarin deethylase activity and cytochrome c reductase activity were about the same in the two stages. 2-OH-biphenyl was formed in trace amounts by microsomes from adult flies but not to any detectable amount by microsomes from larvae. Pretreatment with phenobarbital (PB), Aroclor 1254 (PCB) or beta-naphthoflavone (BNF) increased the cytochrome P-450 content and the various cytochrome P-450-mediated reactions up to 7-fold in larvae. The effects of the pretreatments were weaker in adult flies, where the increase never was more than 3-fold, and many reactions were unaffected by the pretreatments. BNF was thus inefficient in enhancing all reactions, except a slight (1.3-fold) increase in the formation of 4-OH-biphenyl. Microsomes from both stages exhibited increases in specific protein bands with apparent molecular weights of 51 000-58 000 in the sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis following treatment with PB, PCB and BNF. Differences were observed between larvae and adults with respect both to the number of and the molecular weights of the increased protein bands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号