首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starvation (24h) increased the maximum activity of carnitine palmitoyltransferase 1 in rat liver and increased the concentration of malonyl-CoA required to cause 50% inhibition of the enzyme (I50). Re-feeding (24h) with a standard cube diet or a high-carbohydrate diet reversed both of these changes, whereas re-feeding with a high-fat diet did not. Administration of cycloheximide (200 micrograms/100 g body wt.) blocked the increases in carnitine palmitoyltransferase 1 activity and I50 on starvation. It is suggested that increase in carnitine palmitoyltransferase 1 activity in starvation may involve synthesis of new enzyme.  相似文献   

2.
1. The content of carnitine, acylcarnitine and total acid soluble carnitine in brown adipose tissue of rats increases rapidly after birth, attaining a peak on about day 10 and then decreases. Similar changes with age were found for carnitine acetyltransferase activity in mitochondria from brown adipose tissue and heart. The activity of this enzyme in brain and in liver is much smaller, but also increases postnatally. 2. The activity of carnitine palmitoyltransferase in brown adipose tissue, however, decreases after birth then increases later in life. 3. Exposure of 18-day-old rats to the cold for 20 days leads to an increase in carnitine content in brown adipose tissue and raises the activity of carnitine acetyltransferase. The activity of carnitine palmitoyltransferase is not affected by cold adaptation.  相似文献   

3.
The effects of prolonged ethanol feeding on both carnitine palmitoyltransferase I activity and enzyme sensitivity to inhibition by malonyl-CoA were studied in rat liver, heart, skeletal muscle and kidney cortex mitochondria. Heart and skeletal muscle enzymes showed the highest specific activity and sensitivity to malonyl-CoA. Carnitine palmitoyltransferase I in extrahepatic tissues showed no changes on ethanol feeding. Only the liver enzyme activity was altered after long term ethanol administration, by suffering a progressive decrease in activity and a parallel increase in sensitivity to malonyl-CoA. These alterations reversed after 10 days of ethanol withdrawal. These results are discussed in relation to the control of carnitine palmitoyltransferase I and the effects of ethanol on fatty acid metabolism.  相似文献   

4.
1. Liver carnitine acyltransferase activities with palmitoyl-CoA and octanoyl-CoA as substrates and heart carnitine palmitoyltransferase were measured as overt activities in whole mitochondria or in mitochondria disrupted by sonication or detergent treatment. All measurements were made in sucrose/KCl-based media of 300 mosmol/litre. 2. In liver mitochondria, acyltransferase measured with octanoyl-CoA, like carnitine palmitoyltransferase, was found to have latent and overt activities. 3. Liver acyltransferase activities measured with octanoyl-CoA and palmitoyl-CoA differed in their response to changes in [K+], Triton X-100 treatment and, in particular, in their response to Mg2+. Mg2+ stimulated activity with octanoyl-CoA, but inhibited carnitine palmitoyltransferase. 4. The effects of K+ and Mg2+ on liver overt carnitine palmitoyltransferase activity were abolished by Triton X-100 treatment. 5. Heart overt carnitine palmitoyltransferase activity differed from the corresponding activity in liver in that it was more sensitive to changes in [K+] and was stimulated by Mg2+. Heart had less latent carnitine palmitoyltransferase activity than did liver. 6. Overt carnitine palmitoyltransferase in heart mitochondria was extremely sensitive to inhibition by malonyl-CoA. Triton X-100 abolished the effect of low concentrations of malonyl-CoA on this activity. 7. The inhibitory effect of malonyl-CoA on heart carnitine palmitoyltransferase could be overcome by increasing the concentration of palmitoyl-CoA.  相似文献   

5.
Malonyl-CoA and 2-tetradecylglycidyl-CoA (TG-CoA) are potent inhibitors of mitochondrial carnitine palmitoyltransferase I (EC 2.3.1.21). To gain insight into their mode of action, the effects of both agents on mitochondria from rat liver and skeletal muscle were examined before and after membrane disruption with octylglucoside or digitonin. Pretreatment of intact mitochondria with TG-CoA caused almost total suppression of carnitine palmitoyltransferase I, with concomitant loss in malonyl-CoA binding capacity. However, subsequent membrane solubilization with octylglucoside resulted in high and equal carnitine palmitoyltransferase activity from control and TG-CoA pretreated mitochondria; neither solubilized preparation showed sensitivity to malonyl-CoA or TG-CoA. Upon removal of the detergent by dialysis the bulk of carnitine palmitoyltransferase was reincorporated into membrane vesicles, but the reinserted enzyme remained insensitive to both inhibitors. Carnitine palmitoyltransferase containing vesicles failed to bind malonyl-CoA. With increasing concentrations of digitonin, release of carnitine palmitoyltransferase paralleled disruption of the inner mitochondrial membrane, as reflected by the appearance of matrix enzymes in the soluble fraction. The profile of enzyme release was identical in control and TG-CoA pretreated mitochondria even though carnitine palmitoyltransferase I had been initially suppressed in the latter. Similar results were obtained when animals were treated with 2-tetradecylglycidate prior to the preparation of liver mitochondria. We conclude that malonyl-CoA and TG-CoA interact reversibly and irreversibly, respectively, with a common site on the mitochondrial (inner) membrane and that occupancy of this site causes inhibition of carnitine palmitoyltransferase I, but not of carnitine palmitoyltransferase II. Assuming that octylglucoside and digitonin do not selectively inactivate carnitine palmitoyltransferase I, the data suggest that both malonyl-CoA and TG-CoA interact with a regulatory locus that is closely juxtaposed to but distinct from the active site of the membrane-bound enzyme.  相似文献   

6.
Administration to normal rats of 100 mg of streptozotocin/kg body weight produced ketotic diabetic rats in which the affinity of carnitine palmitoyltransferase for malonyl-CoA was decreased by 10-fold and its activity was increased by 30%, but the injection of insulin brought the affinity and the activity back to normal within 4 h. Administration of 60 mg of streptozotocin/kg produced non-ketotic diabetic rats and caused a less substantial change in the affinity of carnitine palmitoyltransferase for malonyl-CoA. In the BB Wistar diabetic rat, the onset of diabetes also increased the activity of carnitine palmitoyltransferase and decreased its affinity for malonyl-CoA. Injection of insulin brought both of these values back to normal within 2 h. The total activity of mitochondrial carnitine palmitoyltransferase (outer + inner activities) was 40% greater in the BB Wistar diabetic rat, but treatment with insulin did not decrease the total activity to normal values within 2 h. The elevated activity and decreased affinity for malonyl-CoA found in fasting rats did not respond to short-term insulin treatment. The evaluation of a previous report that cycloheximide blocks the effects of starvation indicated that cycloheximide did not act by inhibiting protein synthesis, but produced its effect by preventing gastric emptying. Current data suggest that diabetes increases the activity of carnitine palmitoyltransferase and greatly diminishes the affinity of the enzyme for malonyl-CoA and that the severity of diabetes is associated with differences in the affinity of the enzyme for its inhibitor. Insulin acts on the outer carnitine palmitoyltransferase to reverse these effects very rapidly, but diabetes produces some change in the total activity that is not reversed by short-term treatment with insulin.  相似文献   

7.
Prolonged physical exercise increased the activity of carnitine palmitoyltransferase I in rat heart and skeletal muscle mitochondria, whereas enzyme sensitivity to inhibition by malonyl-CoA remained unchanged. Nevertheless, inhibition of carnitine palmitoyltransferase I activity by small decreases in pH was attenuated in heart and skeletal muscle mitochondria from exercised animals. Liver enzyme did not suffer any alteration by endurance exercise.  相似文献   

8.
The effects of various inhibitors of carnitine palmitoyltransferase I were examined in mitochondria from rat liver and skeletal muscle. Three types of inhibitors were used: malonyl-CoA (reversible), tetradecylglycidyl-CoA and three of its analogues (irreversible), and 2-bromopalmitoyl-CoA (essentially irreversible when added with carnitine). Competitive binding studies between labeled and unlabeled ligands together with electrophoretic analysis of sodium dodecyl sulfate-solubilized membranes revealed that in mitochondria from both tissues all of the inhibitors interacted with a single protein. While the binding capacity for inhibitors was similar in liver and muscle (6-8 pmol/mg of mitochondrial protein) the proteins involved were of different monomeric size (Mr 94,000 and 86,000, respectively). Treatment of mitochondria with the detergent, octyl glucoside, yielded a soluble form of carnitine palmitoyltransferase and residual membranes that were devoid of enzyme activity. The solubilized enzyme displayed the same activity regardless of whether carnitine palmitoyltransferase I of the original mitochondria had first been exposed to an irreversible inhibitor or destroyed by chymotrypsin. It eluted as a single activity peak through four purification steps. The final product from both liver and muscle migrated as single band on sodium dodecyl sulfate-polyacrylamide electrophoresis with Mr of approximately 80,000. The data are consistent with the following model. The inhibitor binding protein is carnitine palmitoyltransferase I itself (as opposed to a regulatory subunit). The hepatic monomer is larger than the muscle enzyme. Each inhibitor interacts via its thioester group at the palmitoyl-CoA binding site of the enzyme but also at a second locus that is probably different for each agent and dictated by the chemical substituent on carbon 2. Disruption of the mitochondrial inner membrane by octyl glucoside causes inactivation of carnitine palmitoyltransferase I while releasing carnitine palmitoyltransferase II in active form. The latter is readily purified, is a smaller protein than carnitine palmitoyltransferase I, and has the same molecular weight in liver and muscle. It is insensitive to inhibitors where on or off the mitochondrial membrane.  相似文献   

9.
We have previously reported that a D-galactosamine injection induces a decrease of carnitine palmitoyltransferase I activity correlated with a depletion of total phospholipid content in the mitochondrial membrane. The impact of a short-term clofibrate treatment on these membrane alterations is investigated, i.e., the kinetic properties of carnitine palmitoyltransferase I, including its sensitivity to malonyl-CoA and mitochondrial membrane content of the various phospholipids. A 4-day clofibrate treatment increases by 42% the apparent Km value of carnitine palmitoyltransferase I for palmitoyl-CoA, while the sensitivity of the enzyme to malonyl-CoA appears slightly decreased. Simultaneously, the cardiolipin content is increased by 70% in the mitochondrial membrane, whereas the phosphatidylethanolamine and phosphatidylcholine contents remain almost unaffected. This 4-day clofibrate treatment prevents the inhibition of carnitine palmitoyltransferase I activity subsequent to galactosamine administration but induces an increase in the apparent Km value for palmitoyl-CoA and a decrease of the sensitivity of the enzyme to malonyl-CoA. The contents of phospholipids which are decreased by galactosamine (phosphatidylcholine, -21%; phosphatidylethanolamine, -29%; cardiolipin, -40%) regain the control values when galactosamine administration is preceded by a clofibrate treatment. The data suggest that the clofibrate treatment counteracts the inhibition of activity of carnitine palmitoyltransferase I through the maintenance of mitochondrial membrane integrity.  相似文献   

10.
A. Van Tol  W. C. Hü  lsmann 《BBA》1969,189(3):342-353
1. The distribution of palmitoyl-CoA:carnitine palmitoyltransferase has been studied in subcellular fractions of rat liver. By using two different estimations for the enzyme activity and by differential centrifugation and linear sucrose density gradient centrifugation, the enzyme is shown to be localized both in mitochondria and microsomes.

2. The mitochondrial palmitoyl-CoA: carnitine palmitoyltransferase is localized in the inner membrane plus matrix fraction.

3. During palmitate oxidation by isolated mitochondria, in the presence of a physiological concentration of carnitine, palmitoylcarnitine accumulates. From this and experiments with sonicated mitochondria, it is concluded that the capacities of long-chain fatty acid activation and of palmitoyl-CoA:carnitine palmitoyltransferase in vitro by far exceed the capacity of fatty acid oxidation.  相似文献   


11.
Peroxisomal carnitine palmitoyltransferase was purified by solubilization using Tween 20 and KCl from the large granule fraction of the liver of clofibrate-treated chick embryo, DEAE-Sephacel and blue Sepharose CL-6B column chromatography. The peroxisomal carnitine palmitoyltransferase was an Mr 64,000 polypeptide; the mitochondrial carnitine palmitoyltransferase had a subunit molecular weight of 69,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The carnitine acetyltransferase was an Mr 64,000 polypeptide. Antibody against purified peroxisomal carnitine palmitoyltransferase reacted only with peroxisomal carnitine palmitoyltransferase, but not with mitochondrial carnitine palmitoyltransferase or carnitine acetyltransferase. In addition, anti-peroxisomal carnitine palmitoyltransferase reacted only with the protein in peroxisomes purified from chick embryo liver by sucrose density gradient centrifugation. Thus, it was confirmed that purified peroxisomal carnitine palmitoyltransferase was a peroxisomal protein. Compared with mitochondrial carnitine palmitoyltransferase, peroxisomal carnitine palmitoyltransferase was extremely resistant to inactivation by trypsin. The pH optimum of peroxisomal carnitine palmitoyltransferase was 8.5, differing from that of mitochondrial carnitine palmitoyltransferase. The Km value of peroxisomal carnitine palmitoyltransferase for palmitoyl-CoA (32 microM) was similar to that of the mitochondrial one, whereas those values for L-carnitine (140 microM), palmitoyl-L-carnitine (43 microM) and CoA (9 microM) were lower than those of mitochondrial carnitine palmitoyltransferase. Peroxisomal carnitine palmitoyltransferase exhibited similar substrate specificities in both the forward and reverse reactions, with the highest activity toward lauroyl derivatives. Furthermore, this enzyme showed relatively high affinities for long-chain acyl derivatives (C10-C16) and similar Km values (30-50 microM) for acyl-CoAs, acylcarnitine and CoA, and a constant Km value (approximately 150 microM) for carnitine. These results indicate that peroxisomal carnitine palmitoyltransferase played a role in the modulation of the intracellular CoA/long-chain acyl-CoA ratio at the hatching stage of chicken when long-chain fatty acids are actively oxidized in peroxisomes.  相似文献   

12.
Exposure of rat liver mitochondrial membranes to octyl glucoside, Triton X-100, or Tween 20 solubilized an active and tetradecylglycidyl-CoA (TG-CoA)-insensitive carnitine palmitoyltransferase (presumed to be carnitine palmitoyltransferase II). The residual membranes after octyl glucoside or Triton X-100 treatment were devoid of all transferase activity. By contrast, Tween 20-extracted membranes were still rich in transferase; this was completely blocked by TG-CoA and thus was presumed to be carnitine palmitoyltransferase I. The residual carnitine palmitoyltransferase activity disappeared from the membranes upon subsequent addition of octyl glucoside or Triton X-100 and could not be recovered in the supernatant fraction. Antibody raised against purified rat liver transferase II (Mr 80,000) recognized only this protein in immunoblots from untreated liver mitochondrial membranes containing both transferases I and II. Tween 20-extracted membranes, which contained only transferase I, did not react with the antibody. Purified transferase II from skeletal muscle (also of Mr 80,000) was readily recognized by the antiserum, suggesting antigenic similarity with the liver enzyme. These and other studies on the effects of detergents on the mitochondrial [3H]TG-CoA binding protein provide further support for the model of carnitine palmitoyltransferase proposed in the preceding paper. They suggest that: 1) carnitine palmitoyltransferases I and II in rat liver are immunologically distinct proteins; 2) transferase I is more firmly anchored into its membrane environment than transferase II; 3) association of carnitine palmitoyltransferase I with a membrane component(s) is necessary for catalytic activity. While carnitine palmitoyltransferase I is a different protein in liver and muscle, it seems likely that both tissues share the same transferase II.  相似文献   

13.
1. Hepatic carnitine palmitoyltransferase activity was measured over a range of concentrations of palmitoyl-CoA and in the presence of several concentrations of the inhibitor malonyl-CoA. These measurements were made in mitochondria obtained from the livers of fed and starved (24 h) virgin female and fed and starved pregnant rats. 2. In the fed state overt carnitine palmitoyltransferase activity was significantly lower in virgin females than in age-matched male rats. 3. Starvation increased overt carnitine palmitoyltransferase activity in both virgin and pregnant females. This increase was larger than in the male and was greater in pregnant than in virgin females. 4. In the fed state pregnancy had no effect on the Hill coefficient or the [S]0.5 when palmitoyl-CoA was varied as substrate. Pregnancy did not alter the sensitivity of the enzyme to inhibition by malonyl-CoA. 5. Starvation decreased the sensitivity of the enzyme to malonyl-CoA. The change in sensitivity was similar in male, virgin female and pregnant rats. 6. The possible relevance of these findings to known sex differences and changes with pregnancy in hepatic fatty acid oxidation and esterification are discussed.  相似文献   

14.
Solubilization of rat liver mitochondria in 5% Triton X-100 followed by chromatography on a hydroxylapatite column resulted in the identification of malonyl-CoA binding protein(s) distinct from a major carnitine palmitoyltransferase activity peak. Further purification of the malonyl-CoA binding protein(s) on an acyl-CoA affinity column followed by sodium dodecyl sulfate gel electrophoresis indicated proteins with Mr mass of 90 and 45-33 kDa. A purified liver malonyl-CoA binding fraction, which was devoid of carnitine palmitoyltransferase, and a soluble malonyl-CoA-insensitive carnitine palmitoyltransferase were reconstituted by dialysis in a liposome system. The enzyme activity in the reconstituted system was decreased by 50% in the presence of 100 microM malonyl-CoA. Rat liver mitochondria carnitine palmitoyltransferase may be composed of an easily dissociable catalytic unit and a malonyl-CoA sensitivity conferring regulatory component.  相似文献   

15.
The kinetics of purified beef heart mitochondrial carnitine palmitoyltransferase have been extensively investigated with a semiautomated system and the computer program TANKIN and shown to be sigmoidal with both acyl-CoA and L-carnitine. In contrast, Michaelis-Menten kinetics were found with carnitine octanoyltransferase. The catalytic activity of carnitine palmitoyltransferase is strongly pH dependent. The K0.5 and Vmax are both greater at lower pH. The K0.5 for palmitoyl-CoA is 1.9 and 24.2 microM at pH 8 and 6, respectively. The K0.5 for L-carnitine is 0.2 and 2.9 mM at pH 8 and 6, respectively. Malonyl-CoA (20-600 microM) had no effect on the kinetic parameters for palmitoyl-CoA at both saturating and subsaturating levels of L-carnitine. We conclude that malonyl-CoA is not a competitive inhibitor of carnitine palmitoyltransferase. The purified enzyme contained 18.9 mol of bound phospholipid/mol of enzyme which were identified as cardiolipin, phosphatidylethanolamine, and phosphatidylcholine by thin-layer chromatography. The data are consistent with the conclusion that native carnitine palmitoyltransferase exhibits different catalytic properties on either side of the inner membrane of mitochondria due to its non-Michaelis-Menten kinetic behavior, which can be affected by pH differences and differences in membrane environment.  相似文献   

16.
The activation of overt carnitine palmitoyltransferase activity that occurs when rat liver mitochondria are incubated at near-physiological temperatures and ionic strengths was studied for mitochondria obtained from animals in different physiological states. In all instances, it was found to be due exclusively to an increase in the catalytic capacity of the enzyme and not to an increase in affinity of the enzyme for palmitoyl-CoA. The enzyme in mitochondria from fed animals always showed a larger degree of activation than that in mitochondria from starved animals. This was the case even for mitochondria (e.g. from fed diabetic animals) in which the kinetic characteristics of carnitine palmitoyltransferase were more similar to those for the enzyme in mitochondria from starved rats. Glucagon treatment of rats before isolation of the mitochondria did not affect the characteristics either of the kinetic parameters of overt carnitine palmitoyltransferase or of its activation in vitro.  相似文献   

17.
Liver mitochondria prepared by differential centrifugation are contaminated by significant quantities of peroxisomes and microsomal fractions. 'Easily solubilized carnitine palmitoyltransferase' prepared from liver mitochondria is thought to originate from the outer surface of the mitochondrial inner membrane. We have characterized the carnitine palmitoyltransferase activities of freeze-thaw extracts of rat liver mitochondrial preparations. Chromatography on Sephadex G-100 yields two broad peaks of carnitine decanoyltransferase activity: one eluted at the end of the void volume, which can be removed (precipitated) by ultracentrifugation; the second peak represents the soluble activity and is eluted at an Mr near 70,000. The activity in the soluble peak is precipitated by an antibody raised against carnitine octanoyltransferase purified from mouse liver peroxisomes. In contrast, antibody raised against carnitine palmitoyltransferase purified from liver mitochondrial membranes had no effect (P. Brady & L. Brady, personal communication). The carnitine acyltransferase activities of the Mr-70,000 peak in the presence or absence of Tween 20 showed maximum activity with decanoyl-CoA and about one-third of this activity with palmitoyl-CoA, similar to peroxisomal carnitine octanoyltransferase. These data show that 7500 g preparations of liver mitochondria isolated by differential centrifugation are enriched by peroxisomal carnitine octanoyltransferase (approx. 20% of the protein of the fraction is peroxisomal) and indicate that this enzyme may be the one reported as 'overt' or 'easily solubilized' mitochondrial carnitine palmitoyltransferase.  相似文献   

18.
Carnitine palmitoyltransferase II of rat heart mitochondria was purified to homogeneity by a rapid method exploiting the hydrophobic nature of the protein. The method involves solubilization of mitochondrial membrane proteins by detergents and subsequent fractionation by hydrophobic affinity chromatography. Sepharose, cross-linked via a primary amino group of 1,omega-diaminoalkane, 4-aminobutyric acid, 6-aminocaproic acid, or 6-aminohexanol, was found to reversibly bind carnitine palmitoyltransferase under nondenaturing conditions. A homologous series of n-alkyl-agarose resins with n = 2 to 8 and phenyl-Sepharose were also found to reversibly bind the enzyme. Alkyl-Superose, phenyl-Superose, and Superose 12 chromatographies were also very useful in fractionating the enzyme. Successive chromatography on three or four hydrophobic columns yielded a highly pure enzyme preparation. The purified preparation appeared as one major protein band on polyacrylamide electrophoresis gels in the presence of sodium dodecyl sulfate (M(r) 68,000). The isolated enzyme had significant activity (sp act = 15.0 mumol/min/mg protein when 80 microM palmitoyl-CoA and 20 mM carnitine were used as substrates). Antibodies against this protein recognized (in immunoblots) one major protein band in crude preparations of rat heart mitochondria (M(r) 68,000), indistinguishable from purified carnitine palmitoyltransferase II. L-Palmitoylcarnitine (0.1 mM) and coenzyme A (0.1 mM), products of the enzyme-catalyzed reaction, inhibited carnitine palmitoyltransferase activity 66 and 71%, respectively. D-Palmitoylcarnitine (0.1 mM), however, did not inhibit the activity. Malonyl-CoA, a specific inhibitor of membrane-bound carnitine palmitoyltransferase I, did not show significant inhibition.  相似文献   

19.
Administration of lovastatin to male, Sprague-Dawley rats by addition of the drug to the normal chow diet caused a two-fold increase in the activity of the hepatic mitochondrial outer carnitine palmitoyltransferase, but lovastatin apparently did not affect the sensitivity of the outer carnitine palmitoyltransferase to inhibition by malonyl-CoA. There was also no effect of lovastatin on the activity of the hepatic mitochondrial inner carnitine palmitoyltransferase. Feeding of cholestyramine to rats did not affect either the mitochondrial outer carnitine palmitoyltransferase or the mitochondrial inner carnitine palmitoyltransferase.  相似文献   

20.
1. Hepatic carnitine palmitoyltransferase activity was measured over a range of concentrations of palmitoyl-CoA and in the presence of several concentrations of the inhibitor malonyl-CoA. These measurements were made in mitochondria obtained from the livers of fed and starved (24 h) normal rats and of fed and starved thyroidectomized rats. 2. In the fed state thyroidectomy substantially decreased overt carnitine palmitoyltransferase activity and also decreased both the Hill coefficient and the s0.5 when palmitoyl-CoA concentration was varied as substrate. Thyroidectomy did not appreciably alter the inhibitory effect of malonyl-CoA on the enzyme. 3. Starvation increased overt carnitine palmitoyltransferase activity in both the fed and the thyroidectomized state. In percentage terms this response to starvation was substantially greater after thyroidectomy. In both the hypothyroid and normal states starvation decreased sensitivity to inhibition by malonyl-CoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号