首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg(-1) i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart.  相似文献   

2.
Modifications in the Ca(2+)-uptake and -release functions of the sarcoplasmic reticulum (SR) may be a major component of the mechanisms underlying thyroid state-dependent alterations in heart rate, myocardial contractility, and metabolism. We investigated the influence of hyperthyroid state on the expression and functional properties of the ryanodine receptor (RyR), a major protein in the junctional SR (JSR), which mediates Ca(2+) release to trigger muscle contraction. Experiments were performed using homogenates and JSR vesicles derived from ventricular myocardium of euthyroid and hyperthyroid rabbits. Hyperthyroidism, with attendant cardiac hypertrophy, was induced by the injection of L-thyroxine (200 microg/kg body wt) daily for 7 days. Western blotting analysis using cardiac RyR-specific antibody revealed a significant increase (>50%) in the relative amount of RyR in the hyperthyroid compared with euthyroid rabbits. Ca(2+)-dependent, high-affinity [(3)H]ryanodine binding was also significantly greater ( approximately 40%) in JSR from hyperthyroid rabbits. The Ca(2+ )sensitivity of [(3)H]ryanodine binding and the dissociation constant for [(3)H]ryanodine did not differ significantly between euthyroid and hyperthyroid hearts. Measurement of Ca(2+)-release rates from passively Ca(2+)-preloaded JSR vesicles and assessment of the effect of RyR-Ca(2+)-release channel (CRC) blockade on active Ca(2+)-uptake rates revealed significantly enhanced (>2-fold) CRC activity in the hyperthyroid, compared with euthyroid, JSR. These results demonstrate overexpression of functional RyR in thyroid hormone-induced cardiac hypertrophy. Relative abundance of RyR may be responsible, in part, for the changes in SR Ca(2+) release, cytosolic Ca(2+) transient, and cardiac systolic function associated with thyroid hormone-induced cardiac hypertrophy.  相似文献   

3.
Human studies reveal sex differences in myocardial function as well as in the incidence and manifestation of heart disease. Myocellular Ca(2+) cycling regulates normal contractile function; whereas cardiac dysfunction in heart failure has been associated with alterations in Ca(2+)-handling proteins. Beta-adrenergic receptor (beta-AR) signaling regulates activity of several Ca(2+)-handling proteins and alterations in beta-AR signaling are associated with heart disease. This study examines sex differences in expression of beta(1)-AR, beta(2)-AR, and Ca(2+)-handling proteins including: L-type calcium channel (Ca(v)1.2) , ryanodine calcium-release channels (RyR), sarcoplasmic reticular Ca(2+) ATPase (SERCA2), phospholamban (PLB) and Na(+)-Ca(2+) exchange protein (NCX) in healthy hearts from male and female Sprague-Dawley rats. Protein levels were examined using Western blot analysis. Abundance of mRNA was determined by real time RT-PCR normalized to abundance of GAPDH mRNA. Contraction parameters were measured in right ventricular papillary muscle in the presence and absence of isoproterenol. Results demonstrate that female ventricle has significantly higher levels of Ca(v)1.2, RyR, and NCX protein compared to males. Messenger RNA abundance for RyR, and NCX protein was significantly higher in females whereas Ca(v)1.2 mRNA was higher in males. No differences were detected in beta-ARs, SERCA2 or PLB. Female right papillary muscle had a faster maximal rate of force development and decline (+/- dF/dt). There were no sex differences in response to isoproterenol. Results show significant sex differences in expression of key ventricular Ca(2+)-handling proteins that are associated with small functional differences in +/- dF/dt. Further studies will determine whether differences in the abundance of these key proteins play a role in sex disparities in the incidence and manifestation of heart disease.  相似文献   

4.
The sarco/endoplasmic reticulum (SR) Ca(2+)-ATPase SERCA2a has a key role in controlling cardiac contraction and relaxation. In hypothyroidism, decreased expression of the thyroid hormone (TH)-responsive SERCA2 gene contributes to slowed SR Ca(2+) reuptake and relaxation. We investigated whether cardiac expression of a TH-insensitive SERCA2a cDNA minigene can rescue SR Ca(2+) handling and contractile function in female SERCA2a-transgenic rats (TG) with experimental hypothyroidism. Wild-type rats (WT) and TG were rendered hypothyroid by 6-N-propyl-2-thiouracil treatment for 6 wk; control rats received no treatment. In vivo measured left ventricular (LV) hemodynamic parameters were compared with SERCA2a expression and function in LV tissue. Hypothyroidism decreased LV peak systolic pressure, dP/dt(max), and dP/dt(min) in both WT and TG. However, loss of function was less in TG. Thus slowed relaxation in hypothyroidism was found to be 1.5-fold faster in TG compared with WT (P < 0.05). In parallel, a 1.4-fold higher V(max) value of homogenate SR Ca(2+) uptake was observed in hypothyroid TG (P < 0.05 vs. hypothyroid WT), and the hypothyroidism-caused decline of LV SERCA2a mRNA expression in TG by -24% was markedly less than the decrease of -49% in WT (P < 0.05). A linear relationship was observed between the SERCA2a/PLB mRNA ratio values and the V(max) values of SR Ca(2+) uptake when the respective data of all experimental groups were plotted together (r = 0.90). The data show that expression of the TH-insensitive SERCA2a minigene compensates for loss of expressional activity of the TH-responsive native SERCA2a gene in the female hypothyroid rat heart. However, SR Ca(2+) uptake and in vivo heart function were only partially rescued.  相似文献   

5.
There is increasing evidence to suggest that Ca2+-calmodulin dependent protein kinase (CaMK) regulates the sarcoplasmic reticulum (SR) function and thus plays an important role in modulating the cardiac performance. Because intracellular Ca2+-overload is an important factor underlying cardiac dysfunction in a heart disease, its effect on SR CaMK was examined in the isolated rat heart preparations. Ca2+-depletion for 5 min followed by Ca2+-repletion for 30 min, which is known to produce intracellular Ca2+-overload, was observed to attenuate cardiac function as well as SR Ca2+-uptake and Ca2+-release activities. Attenuated SR function in the heart was associated with reduced CaMK phosphorylation of the SR Ca2+-cycling proteins such as Ca2+-release channel, Ca2+-pump ATPase, and phospholamban, decreased CaMK activity, and depressed levels of SR Ca2+-cycling proteins. These results indicate that alterations in cardiac performance and SR function following the occurrence of intracellular Ca2+-overload may partly be due to changes in the SR CaMK activity.  相似文献   

6.
The subcellular distribution of the Ca(2+)-release channel/ryanodine receptor in adult rat papillary myofibers has been determined by immunofluorescence and immunoelectron microscopical studies using affinity purified antibodies against the ryanodine receptor. The receptor is confined to the sarcoplasmic reticulum (SR) where it is localized to interior and peripheral junctional SR and the corbular SR, but it is absent from the network SR where the SR-Ca(2+)-ATPase and phospholamban are densely distributed. Immunofluorescence labeling of sheep Purkinje fibers show that the ryanodine receptor is confined to discrete foci while the SR-Ca(2+)-ATPase is distributed in a continuous network-like structure present at the periphery as well as throughout interior regions of these myofibers. Because Purkinje fibers lack T- tubules, these results indicate that the ryanodine receptor is localized not only to the peripheral junctional SR but also to corbular SR densely distributed in interfibrillar spaces of the I-band regions. We have previously identified both corbular SR and junctional SR in cardiac muscle as potential Ca(2+)-storage/Ca(2+)-release sites by demonstrating that the Ca2+ binding protein calsequestrin and calcium are very densely distributed in these two specialized domains of cardiac SR in situ. The results presented here provide strong evidence in support of the hypothesis that corbular SR is indeed a site of Ca(2+)-induced Ca2+ release via the ryanodine receptor during excitation contraction coupling in cardiac muscle. Furthermore, these results indicate that the function of the cardiac Ca(2+)-release channel/ryanodine receptor is not confined to junctional complexes between SR and the sarcolemma.  相似文献   

7.
Regulation of cellular Ca(2+) cycling is central to myocardial contractile function. Loss of Ca(2+) regulation is associated with cardiac dysfunction and pathology. Estrogen has been shown to modify contractile function and to confer cardioprotection. Therefore, we investigated the effect of estrogen on expression of rat heart myocardial Ca(2+)-handling proteins and beta-adrenergic receptor (beta(1)-AR) and examined functional correlates. Female rats were sham-operated (SHAM) or ovariectomized. Two weeks after ovariectomy rats were injected (i.p.) daily with estradiol benozoate (OVX+EB) or sesame oil (OVX) for 2 weeks. Protein abundance was measured by immunoblotting and mRNA was quantified by real-time RT-PCR. OVX significantly decreased estrogen and progesterone levels and EB replacement returned both estrogen and progesterone to physiological levels. OVX induced a 75% reduction of uterine weight and a gain in body weight. Replacement restored weights to SHAM level. OVX increased and estrogen-replacement normalized abundance of beta(1)-AR and L-type Ca(2+) channel (Cav1.2) protein. OVX decreased sodium-Ca(2+) exchange protein (NCX) and estrogen restored protein abundance to SHAM levels. Sarcoplasmic reticular ATPase (SERCA), phospholamban (PLB), and ryanodine receptor (RyR) abundance was not altered by hormone status. Levels of mRNA encoding for beta(1)-AR, Cav1.2, and NCX were not influenced by OVX or estrogen replacement. OVX had no effect on SERCA and PLB mRNA level but estrogen replacement elicited a significant increase compared to OVX and SHAM. Estrogen-dependent changes in Ca(2+)-handling proteins and beta(1)-AR are theoretically consistent reduced myocellular Ca(2+) load. However, hormone-dependent alterations in protein were not associated with changes in contractile function.  相似文献   

8.
Abnormal release of Ca(2+) from sarcoplasmic reticulum (SR) via the cardiac ryanodine receptor (RyR2) may contribute to contractile dysfunction in heart failure (HF). We previously demonstrated that RyR2 macromolecular complexes from HF rat were significantly more depleted of FK506 binding protein (FKBP12.6). Here we assessed expression of key Ca(2+) handling proteins and measured SR Ca(2+) content in control and HF rat myocytes. Direct measurements of SR Ca(2+) content in permeabilized cardiac myocytes demonstrated that SR luminal [Ca(2+)] is markedly lowered in HF (HF: DeltaF/F(0) = 26.4+/-1.8, n=12; control: DeltaF/F(0) = 49.2+/-2.9, n=10; P<0.01). Furthermore, we demonstrated that the expression of RyR2 associated proteins (including calmodulin, sorcin, calsequestrin, protein phosphatase 1, protein phosphatase 2A), Ca(2+) ATPase (SERCA2a), PLB phosphorylation at Ser16 (PLB-S16), PLB phosphorylation at Thr17 (PLB-T17), L-type Ca(2+) channel (Cav1.2) and Na(+)- Ca(2+) exchanger (NCX) were significantly reduced in rat HF. Our results suggest that systolic SR reduced Ca(2+) release and diastolic SR Ca(2+) leak (due to defective protein-protein interaction between RyR2 and its associated proteins) along with reduced SR Ca(2+) uptake (due to down-regulation of SERCA2a, PLB-S16 and PLB-T17), abnormal Ca(2+) extrusion (due to down-regulation of NCX) and defective Ca(2+) -induced Ca(2+) release (due to down-regulation of Cav1.2) could contribute to HF.  相似文献   

9.
Although activation of the renin-angiotensin system (RAS) is known to produce ventricular remodeling and congestive heart failure (CHF), its role in inducing changes in the sarcoplasmic reticulum (SR) protein and gene expression in CHF is not fully understood. In this study, CHF was induced in rats by ligation of the left coronary artery for 3 weeks and then the animals were treated orally with or without an angiotensin converting enzyme inhibitor, enalapril (10 mg/kg/day) or an angiotensin II receptor antagonist, losartan (20 mg/kg/day) for 4 weeks. Sham-operated animals were used as control. The animals were hemodynamically assessed and protein content as well as gene expression of SR Ca2+-release channel (ryanodine receptor, RYR), Ca2+-pump ATPase (SERCA2), phospholamban (PLB) and calsequestrin (CQS) were determined in the left ventricle (LV). The infarcted animals showed cardiac hypertrophy, lung congestion, depression in LV +dP/dt and –dP/dt, as well as increase in LV end diastolic pressure. Both protein content and mRNA levels for RYR, SERCA2 and PLB were decreased without any changes in CQS in the failing heart. These alterations in LV function as well as SR protein and gene expression in CHF were partially prevented by treatment with enalapril or losartan. The results suggest that partial improvement in LV function by enalapril and losartan treatments may be due to partial prevention of changes in SR protein and gene expression in CHF and that these effects may be due to blockade of the RAS.  相似文献   

10.
Tunas have an extraordinary physiology including elevated metabolic rates and high cardiac performance. In some species, retention of metabolic heat warms the slow oxidative swimming muscles and visceral tissues. In all tunas, the heart functions at ambient temperature. Enhanced rates of calcium transport in tuna myocytes are associated with increased expression of proteins involved in the contraction-relaxation cycle. The cardiac SR Ca2+-ATPase (SERCA2) plays a major role during cardiac excitation-contraction (E-C) coupling. Measurements of oxalate-supported Ca2+-uptake in atrial SR vesicles isolated from four species of tunas indicate that bluefin have at least two fold higher Ca2+-uptake than all other tunas examined between 5 and 30 degrees C. The highest atrial Ca2+-uptake was measured in bluefin tuna at 30 degrees C (23.32+/-1.58 nmol Ca2+/mg/min). Differences among tunas in the temperature dependency of Ca2+-uptake were similar for ATP hydrolysis. Western blot analysis revealed a significant increase in SERCA2 content associated with higher Ca2+ uptake rates in the atrial tissues of bluefin tuna and similar RyR expression across species. We propose that the expression of EC coupling proteins in cardiac myocytes, and the higher rates of SERCA2 activity are an important evolutionary step for the maintenance of higher heart rates and endothermy in bluefin tuna.  相似文献   

11.
Early cardiovascular changes evoked by pressure overload (PO) may reveal adaptive strategies that allow immediate survival to the increased hemodynamic load. In this study, systolic and diastolic Ca(2+) cycling was analyzed in left ventricular rat myocytes before (day 2, PO-2d group) and after (day 7, PO-7d group) development of hypertrophy subsequent to aortic constriction, as well as in myocytes from time-matched sham-operated rats (sham group). Ca(2+) transient amplitude was significantly augmented in the PO-2d group. In the PO-7d group, intracellular Ca(2+) concentration ([Ca(2+)](i)) was reduced during diastole, and mechanical twitch relaxation (but not [Ca(2+)](i) decline) was slowed. In PO groups, fractional sarcoplasmic reticulum (SR) Ca(2+) release at a twitch, SR Ca(2+) content, SR Ca(2+) loss during diastole, and SR-dependent integrated Ca(2+) flux during twitch relaxation were significantly greater than in sham-operated groups, whereas the relaxation-associated Ca(2+) flux carried by the Na(+)/Ca(2+) exchanger was not significantly changed. In the PO-7d group, mRNA levels of cardiac isoforms of SR Ca(2+)-ATPase (SERCA2a), phospholamban, calsequestrin, ryanodine receptor, and NCX were not significantly altered, but the SERCA2a-to-phospholamban ratio was increased 2.5-fold. Moreover, greater sensitivity to the inotropic effects of the beta-adrenoceptor agonist isoproterenol was observed in the PO-7d group. The results indicate enhanced Ca(2+) cycling between SR and cytosol early after PO imposition, even before hypertrophy development. Increase in SR Ca(2+) uptake may contribute to enhancement of excitation-contraction coupling (augmented SR Ca(2+) content and release) and protection against arrhythmogenesis due to buildup of [Ca(2+)](i) during diastole.  相似文献   

12.
13.
The aim of this study was to explore the possible participation of cardiac renin-angiotensin system (RAS) in the ischemia-reperfusion induced changes in heart function as well as Ca2+-handling activities and gene expression of cardiac sarcoplasmic reticulum (SR) proteins. The isolated rat hearts, treated for 10 min without and with 30 M captopril or 100 M losartan, were subjected to 30 min ischemia followed by reperfusion for 60 min and processed for the measurement of SR function and gene expression. Attenuated recovery of the left ventricular developed pressure (LVDP) upon reperfusion of the ischemic heart was accompanied by a marked reduction in SR Ca2+-pump ATPase, Ca2+-uptake and Ca2+-release activities. Northern blot analysis revealed that mRNA levels for SR Ca2+-handling proteins such as Ca2+-pump ATPase (SERCA2a), ryanodine receptor, calsequestrin and phospholamban were decreased in the ischemia-reperfused heart as compared with the non-ischemic control. Treatment with captopril improved the recovery of LVDP as well as SR Ca2+-pump ATPase and Ca2+-uptake activities in the postischemic hearts but had no effect on changes in Ca2+-release activity due to ischemic-reperfusion. Losartan neither affected the changes in contractile function nor modified alterations in SR Ca2+-handling activities. The ischemia-reperfusion induced decrease in mRNA levels for SR Ca2+-handling proteins were not affected by treatment with captopril or losartan. The results suggest that the improvement of cardiac function in the ischemic-reperfused heart by captopril is associated with the preservation of SR Ca2+-pump activities; however, it is unlikely that this action of captopril is mediated through the modification of cardiac RAS. Furthermore, cardiac RAS does not appear to contribute towards the ischemia-reperfusion induced changes in gene expression for SR Ca2+-handling proteins.  相似文献   

14.
The effects of ischemic preconditioning (IP) on changes in cardiac performance and sarcoplasmic reticulum (SR) function due to Ca(2+) paradox were investigated. Isolated perfused hearts were subjected to IP (three cycles of 3-min ischemia and 3-min reperfusion) followed by Ca(2+)-free perfusion and reperfusion (Ca(2+) paradox). Perfusion of hearts with Ca(2+)-free medium for 5 min followed by reperfusion with Ca(2+)-containing medium for 30 min resulted in a dramatic decrease in the left ventricular (LV) developed pressure and a marked increase in LV end-diastolic pressure. Alterations in cardiac contractile activity due to Ca(2+) paradox were associated with depressed SR Ca(2+)-uptake, Ca(2+)-pump ATPase, and Ca(2+)-release activities as well as decreased SR protein contents for Ca(2+)-pump and Ca(2+) channels. All these changes due to Ca(2+) paradox were significantly prevented in hearts subjected to IP. The protective effects of IP on Ca(2+) paradox changes in cardiac contractile activity as well as SR Ca(2+)-pump and Ca(2+)-release activities were lost when the hearts were treated with 8-(p-sulfophenyl)-theophylline, an adenosine receptor antagonist; KN-93, a specific Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) inhibitor; or chelerythrine chloride, a protein kinase C (PKC) inhibitor. These results indicate that IP rendered cardioprotection by preventing a depression in SR function in Ca(2+) paradox hearts. Furthermore, these beneficial effects of IP may partly be mediated by adenosine receptors, PKC, and CaMK II.  相似文献   

15.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg–1 i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart. (Mol Cell Biochem 261: 245–249, 2004)  相似文献   

16.
Obesity has been shown to impair myocardial performance. Nevertheless, the mechanisms underlying the participation of calcium (Ca(2+) ) handling on cardiac dysfunction in obesity models remain unknown. L-type Ca(2+) channels and sarcoplasmic reticulum (SR) Ca(2+) -ATPase (SERCA2a), may contribute to the cardiac dysfunction induced by obesity. The purpose of this study was to investigate whether myocardial dysfunction in obese rats is related to decreased activity and/or expression of L-type Ca(2+) channels and SERCA2a. Male 30-day-old Wistar rats were fed standard (C) and alternately four palatable high-fat diets (Ob) for 15 weeks. Obesity was determined by adiposity index and comorbidities were evaluated. Myocardial function was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic and lusitropic maneuvers. L-type Ca(2+) channels and SERCA2a activity were determined using specific blockers, while changes in the amount of channels were evaluated by Western blot analysis. Phospholamban (PLB) protein expression and the SERCA2a/PLB ratio were also determined. Compared with C rats, the Ob rats had increased body fat, adiposity index and several comorbidities. The Ob muscles developed similar baseline data, but myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca(2+) was compromised. The diltiazem promoted higher inhibition on developed tension in obese rats. In addition, there were no changes in the L-type Ca(2+) channel protein content and SERCA2a behavior (activity and expression). In conclusion, the myocardial dysfunction caused by obesity is related to L-type Ca(2+) channel activity impairment without significant changes in SERCA2a expression and function as well as L-type Ca(2+) protein levels.  相似文献   

17.
Depressed cardiac Ca cycling by the sarcoplasmic reticulum (SR) has been associated with attenuated contractility, which can progress to heart failure. The histidine-rich Ca-binding protein (HRC) is an SR component that binds to triadin and may affect Ca release through the ryanodine receptor. HRC overexpression in transgenic mouse hearts was associated with decreased rates of SR Ca uptake and delayed relaxation, which progressed to hypertrophy with aging. The present study shows that HRC may mediate part of its regulatory effects by binding directly to sarco(endo)plasmic reticulum Ca-ATPase type 2 (SERCA2) in cardiac muscle, which is confirmed by coimmunostaining observed under confocal microscopy. This interaction involves the histidine- and glutamic acid-rich domain of HRC (320-460 aa) and the part of the NH(2)-terminal cation transporter domain of SERCA2 (74-90 aa) that projects into the SR lumen. The SERCA2-binding domain is upstream from the triadin-binding region in human HRC (609-699 aa). Specific binding between HRC and SERCA was verified by coimmunoprecipitation and pull-down assays using human and mouse cardiac homogenates and by blot overlays using glutathione S-transferase and maltose-binding protein recombinant proteins. Importantly, increases in Ca concentration were associated with a significant reduction of HRC binding to SERCA2, whereas they had opposite effects on the HRC-triadin interaction in cardiac homogenates. Collectively, our data suggest that HRC may play a key role in the regulation of SR Ca cycling through its direct interactions with SERCA2 and triadin, mediating a fine cross talk between SR Ca uptake and release in the heart.  相似文献   

18.
Liu W  Yasui K  Opthof T  Ishiki R  Lee JK  Kamiya K  Yokota M  Kodama I 《Life sciences》2002,71(11):1279-1292
Transplant of immature cardiomyocytes is recently attracting a great deal of interest as a new experimental strategy for the treatment of failing hearts. Full understanding of normal cardiomyogenesis is essential to make this regenerative therapy feasible. We analyzed the molecular and functional changes of Ca(2+) handling proteins during development of the mouse heart from early embryo at 9.5 days postcoitum (dpc) through adulthood. From the early to the late (18 dpc) embryonic stage, mRNAs estimated by the real time PCR for ryanodine receptor (type 2, RyR2), sarcoplasmic reticulum (SR) Ca(2+) pump (type 2, SERCA2) and phospholamban (PLB) increased by 3-15 fold in the values normalized to GAPDH mRNA, although Na(+)/Ca(2+) exchanger (type 1, NCX1) mRNA was unchanged. After birth, there was a further increase in the mRNAs for RyR2, SERCA2 and PLB by 18-33 fold, but a 50% decrease in NCX1 mRNA. The protein levels of RyR2, SERCA2, PLB and NCX1, which were normalized to total protein, showed qualitatively parallel developmental changes. L-type Ca(2+) channel currents (I(Ca-L)) were increased during the development (1.3-fold at 18 dpc, 2.2-fold at adult stage, vs. 9.5 dpc). At 9.5 dpc, the Ca(2+) transient was, unlike adulthood, unaffected by the SR blockers, ryanodine (5 microM) and thapsigargin (2 microM), and also by a blocker of the Ca(2+) entry via Na(+)/Ca(2+) exchanger, KB-R 7943 (1 microM). The Ca(2+) transient was abolished after application of nisoldipine (5 microM). These results indicate that activator Ca(2+) for contraction in the early embryonic stage depends almost entirely on I(Ca-L).  相似文献   

19.
Cardiomyocyte relaxation and contraction are tightly controlled by the activity of the cardiac sarco(endo)plasmic reticulum (SR) Ca2+ transport ATPase (SERCA2a). The SR Ca2+ -uptake activity not only determines the speed of Ca(2+) removal during relaxation, but also the SR Ca2+ content and therefore the amount of Ca2+ released for cardiomyocyte contraction. The Ca2+ affinity is the major determinant of the pump's activity in the physiological Ca2+ concentration range. In the heart, the affinity of the pump for Ca2+ needs to be controlled between narrow borders, since an imbalanced affinity may evoke hypertrophic cardiomyopathy. Several small proteins (phospholamban, sarcolipin) adjust the Ca2+ affinity of the pump to the physiological needs of the cardiomyocyte. It is generally accepted that a chronically reduced Ca2+ affinity of the pump contributes to depressed SR Ca2+ handling in heart failure. Moreover, a persistently lower Ca2+ affinity is sufficient to impair cardiomyocyte SR Ca2+ handling and contractility inducing dilated cardiomyopathy in mice and humans. Conversely, the expression of SERCA2a, a pump with a lower Ca2+ affinity than the housekeeping isoform SERCA2b, is crucial to maintain normal cardiac function and growth. Novel findings demonstrated that a chronically increased Ca2+ affinity also may trigger cardiac hypertrophy in mice and humans. In addition, recent studies suggest that some models of heart failure are marked by a higher affinity of the pump for Ca2+, and hence by improved cardiomyocyte relaxation and contraction. Depressed cardiomyocyte SR Ca2+ uptake activity may therefore not be a universal hallmark of heart failure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号