首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have characterized the general properties of the heat shock response of the Gram-positive hardy bacteriumEnterococcus faecalis. The heat resistance (60°C or 62.5°C, 30 min) of log phase cells ofE. faecalis grown at 37°C was enhanced by exposing cells to a prior heat shock at 45°C or 50°C for 30 min. These conditioning temperatures also induced ethanol (22%, v/v) tolerance. The onset of thermotolerance was accompanied by the synthesis of a number of heat shock proteins. The most prominent bands had molecular weights in the range of 48 to 94kDa. By Western blot analysis two of them were found to be immunologically related to the well known DnaK (72 kDa) and GroEL (63 kDa) heat shock proteins ofEscherichia coli. Four other proteins showing little or no variations after exposure to heat are related to DnaJ, GrpE and Lon (La)E. coli proteins and to theBacillus subtilis 43 factor. Ethanol (2% or 4%, v/v) treatments elicited a similar response although there was a weaker induction of heat shock proteins than with heat shock.  相似文献   

2.
Our previous studies have shown thatEscherichia coli JE1011 possesses an errorfree DNA repair system that is inducible by heat shock or thiamine deprivation. However, it appears to be lacking inE. coli B, which islon . We now show that a similar, thermally inducible, error-free system is present inE. coli AB1157, although it requires more severe heat shock for its induction. Thelon mutant of this strain is similar toE. coli B and does not become more UV-resistant after heat shock, so this gene appears to play an essential role in the process. All three strains become more resistant to heat inactivation at 55°C following a 30°C48°C heat shock; this confirms that the induced UV and thermal resistances must arise by different mechanisms.  相似文献   

3.
The heat shock response was investigated in the thermophilic acid bacterium Streptococcus thermophilus. The heat resistance (58°C, 30 min) of log-phase cells grown at 42°C was enhanced by pretreatment at 52°C for 15 or 30 min. Concurrently to this acquired thermotolerance, two-dimensional gel electrophoresis indicates that the cells induced the synthesis of at least 22 heat shock proteins after temperature upshift. Furthermore, following SDS-PAGE, Western blotting, and immunological analysis, six proteins were found to be antigenically related to the Escherichia coli heat shock proteins DnaK, DnaJ, GroEL, GrpE, and La and to the Bacillus subtilis 43 factor Among these six proteins, two related to DnaK and GroEL, are clearly overexpressed during this stress. It is concluded that S. thermophilus possesses a heat shock response similar to that known to occur in mesophilic microorganisms.  相似文献   

4.
Summary We have found that several excision deficient derivatives of Escherichia coli K12 survive better after UV irradiation if incubated at 42°C than if incubated at 30°C. The highest survival was observed when incubation at 42°C followed UV irradiation and was maintained for at least 16 h. Our results indicate that this temperature dependent resistance (TDR) requires a functional recA gene, but not uvr A, uvrB, recF, or recB genes, or the recA441 (tif-1) mutation which allows thermoinduction of the recA-lexA regulon. Our data are consistent with the idea that the increase in survival observed at 42°C reflects enhanced daughterstrand gap repair by DNA strand exchange. Although the conditions used to elicit TDR can induce heat shock proteins and thermotolerance in E. coli, the relationship between the two responses remains to be elucidated.  相似文献   

5.

Aim

The effect of spent medium, obtained after different time-temperature pre-histories, on the heat inactivation of Escherichia coli K12 MG1655 is studied.

Methods and results

Stationary E. coli cells were heated in BHI broth (initial pH 7.5) at different time-temperature scenarios, i.e., (1) 30 °C to 55 °C at 0.14 °C/min, (2) 30 °C to 42 °C at 0.14 °C/min and (3) 30 °C to 42 °C at 0.8 °C/min. After the heat treatment, spent medium was filter-sterilized, non-stressed cells were added and inactivation experiments took place at 54 °C and 58 °C. In all scenarios, increased resistance was observed. The main characteristics of the spent medium - compared to the unmodified BHI broth - are (1) the presence of proteins (proven via SDS-PAGE) and (2) a lower pH of approximately 6. Possibly, the increased resistance is due to these proteins and/or the lower pH. Further experiments revealed that each factor separately may lead to an increased heat resistance.

Conclusions

It can be concluded that this increased heat resistance resulted from both the presence of the heat shock proteins in the spent medium and the lowered pH. Experiments, which separate both effects, showed that mainly the lower pH resulted in the increased thermotolerance.

Significance and impact of study

This study may lead to a better understanding and control of the heat stress adaptation phenomenon as displayed by E. coli at lethal temperatures. Therefore, it contributes to an improved assessment of the effect of temperature during thermal processes in the food industry.  相似文献   

6.
Summary The expression of recombinant single-chain urokinase-like plasminogen activator (rscuPA) in Escherichia coli was optimized by fusing the puk gene to different promoters and ribosome binding sequences. Comparison of the tac, trp and P L promoters showed that expression was maximal under tac control. Variation in the ribosome binding sequence and its distance to the AUG start codon yielded a further slight improvement of expression. The largest increase in rscuPA expression was achieved by variations in the host strain and growth conditions. In E. coli DG75 grown at 37°C maximal expression was achieved 30 min after induction and decreased gradually until 240 min after induction. Growth at 30°C yielded maximal expression 60 min after induction and resulted in reduced activity at longer times. Western blot analysis of the products showed that degradation of rscuPA was much larger at 37°C than at 30°C. Using E. coli CAG630 carrying the htpR mutation, which avoids heat shock response, for expression of rscuPA eliminated the instability of the product at both temperatures. Expression in this strain was even more efficient than in E. coli JM101 carrying the lon mutation. It is concluded that induction of the general heat-shock response in E. coli must be avoided to obtain stabilization of rscuPA. This drastically improves the overall yield of rscuPA from recombinant E. coli strains.  相似文献   

7.
Summary The synthesis of heat shock proteins (hsp) has been examined during the early embryogenesis of Drosophila melanogaster. Normal protein synthesis stops after heat shock at all developmental stages, while hsp synthesis is induced only after treatment at blastoderm and later stages. The small hsps continue to be synthesised after heat shock for a longer period than the larger ones. Heat shocks at 35°C, 37°C and 40°C were compared for their effect on hsp synthesis and the effect of heat shock on the normal course of development was analysed.  相似文献   

8.
Smirnova  G. V.  Zakirova  O. N.  Oktyabr'skii  O. N. 《Microbiology》2001,70(5):512-518
Shifting the temperature from 30 to 45°C in an aerobic Escherichia coliculture inhibited the expression of the antioxidant genes katG, katE, sodA, and gor.The expression was evaluated by measuring -galactosidase activity in E. colistrains that contained fusions of the antioxidant gene promoters with the lacZoperon. Heat shock inhibited catalase and glutathione reductase, lowered the intracellular level of glutathione, and increased its extracellular level. It also suppressed the growth of mutants deficient in the katG-encoded catalase HPI, whereas the sensitivity of the wild-type andsodA sodBmutant cells to heat shock was almost the same. In the E. coliculture adapted to growth at 42°C, the content of both intracellular and extracellular glutathione was two times higher than in the culture grown at 30°C. The temperature-adapted cells grown aerobically at 42°C showed an increased ability to express the fused katG–lacZgenes.  相似文献   

9.
The heterologous production of a thermoactive alcohol dehydrogenase (AdhC) from Pyrococcus furiosus in Escherichia coli was investigated. E. coli was grown in a fed-batch bioreactor in minimal medium to high cell densities (cell dry weight 76 g/l, OD600 of 150). Different cultivation strategies were applied to optimize the production of active AdhC, such as lowering the cultivation temperature from 37 to 28°C, heat shock of the culture from 37 to 42°C and from 37 to 45°C, and variation of time of induction (induction at an OD600 of 40, 80 and 120). In addition to the production of active intracellular protein, inclusion bodies were always observed. The maximal activity of 30 U/l (corresponding to 6 mg/l active protein) was obtained after a heat shock from 37 to 42°C, and IPTG induction of the adhC expression at an OD600 of 120. Although no general rules can be provided, some of the here presented variations may be applicable for the optimization of the heterologous production of proteins in general, and of thermozymes in particular.  相似文献   

10.
The response to heat stress was examined inThermoanaerobacterium thermosulfurigenes EM1. Upon a temperature shift-up from 50° to 62°C, four heat shock proteins (hsps) were synthesized at an elevated level. Two proteins were found to be immunologically related to theEscherichia coli GroEL protein and theMycobacterium tuberculosis hsp71 (DnaK similar protein), and the correspondinggroE anddnaK homologous sequences were detected in the chromosome ofT. thermosulfurigenes EM1. The heat shock response in this thermophile was transient, with a maximum synthesis of hsps between 10 and 15 min after the shock. The enhanced synthesis of DnaK and GroEL was consistent with increased mRNA levels of the genes, which reached a maximum 15 min after heat treatment.  相似文献   

11.
The heat shock response inLocusta migratoria   总被引:1,自引:0,他引:1  
Summary Locusta migratoria adults reared at 27–30°C die after 2 h at 50°C, but they survive this temperature stress if first exposed to 45°C for 0.5 to 4.5 h. Fat bodies from adult females produce a set of at least six specific polypeptides with molecular weights of 81, 73, 68, 42, 28, and 24×103 in reponse to heat shock (39–47°C for 1.5 h). These molecular weights closely match those of the heat shock proteins (hsps) observed inDrosophila, with the possible exception of the 42 kd protein of locusts. The optimal temperature for induction of hsps in locusts is 45°C, which is one of the highest heat shock temperatures reported in metazoans. The correspondence between the optimal temperature for hsp induction and the temperature at which enhanced heat tolerance is acquired (both 45 °C) suggests that the hsps may be associated with thermal protection in these insects.There appears to be no substantial translational control in the locust heat shock response, since other proteins are produced, albeit with some reduction, under heat shock conditions. Vitellogenin synthesis in fat bodies at 45°C is 55% of that observed at 30°C. The high optimal heat shock induction temperature and the continued synthesis of non-heat shock proteins may be adaptive to the locust's natural environment.  相似文献   

12.
Summary Escherichia coli cells carrying the dnaK756 mutation, were inactivated at 52°C faster than control cells. This suggests that the intact dnaK gene product plays a role in protecting the cell from lethal damage at 52°C. The effect of the dnaK mutation on induced thermotolerance was examined. Prior heat shock at 42°C greatly lowered the subsequent inactivation rate in both mutant and control cells. This result suggests that, although produced in large amounts in response to thermal stress, mutation in the DnaK protein has little or no effect on induced thermotolerance.  相似文献   

13.
Shewanella sp. Ac10 is a psychrotrophic bacterium isolated from the Antarctica that actively grows at such low temperatures as 0°C. Immunoblot analyses showed that a heat-shock protein DnaK is inducibly formed by the bacterium at 24°C, which is much lower than the temperatures causing heat shock in mesophiles such as Escherichia coli. We found that the Shewanella DnaK (SheDnaK) shows much higher ATPase activity at low temperatures than the DnaK of E. coli (EcoDnaK): a characteristic of a cold-active enzyme. The recombinant SheDnaK gene supported neither the growth of a dnaK-null mutant of E. coli at 43°C nor phage propagation at an even lower temperature, 30°C. However, the recombinant SheDnaK gene enabled the E. coli mutant to grow at 15°C. This is the first report of a DnaK supporting the growth of a dnaK-null mutant at low temperatures.  相似文献   

14.
The survival kinetics of two clinical isolates of Salmonella senftenberg were studied after heat and acid stress. The strains survived better at 53 and 55 °C after heat shock of 30 min at 50 °C or overnight heat adaptation at 45 °C. An increase in the decimal reduction time, D, of heat-shocked [10.2 min (53 °C) and 9.37 min (55 °C)] and heat-adapted [8.12 min (53 °C) and 7.8 min (55 °C)] cells was observed compared with the non-stressed cells [6.87 min (53 °C), 6.56 min 55 °C)]. A significant difference was also observed in the survival of acid-adapted to acid non-adapted S. senftenberg bacteria.  相似文献   

15.
Summary The following is a study of resistance of worker honey bees (Apis mellifica L. var.ligustica) to high temperatures and of the effect of nutrition upon it.Survival of honey bees of spring generation was studied at 45, 50, 55 and 60°C during 15, 30, 45 and 60 minutes exposures. The survival rate was established at the end of their exposure, and 24 hours later. Lethal effects of heat were evident immediately after a 30 minute exposure to 50° C. These effects could be noticed in the survivers 24 hours following exposure.Effect of nutrition on heat resistance at 32° C and at 50° C was studied on one group of bees supplied with a 30 % honey solution; on another- with water only, and on a third group which served as a control (no food). Their survival at 32° C after 12 hours exposure was 100%, 81% and 48%, respectively. However, an exposure duration of 45 minutes at 50°C resulted in a survival of 22% of control bees as compared to a total survival of those fed on honey solution.  相似文献   

16.
Two-dimensional gel electrophoretic analysis of the heat shock response in the psychrotrophic yeastTrichosporon pullulans revealed the induction of 11 heat shock proteins (hsps) after a 5° to 21°C heat shock, 12 hsps after a 5° to 26°C heat shock, and 12 hsps after a 5° to 29°C heat shock. Heat shock from 5° to 26° or 29°C resulted in a statistically significant increase in thermotolerance to a lethal heat challenge at 45°C for 5 min. When the protein synthesis inhibitor, cycloheximide, was added prior to the heat shock, no statistically significant thermotolerance was acquired. To confirm the correlation between the synthesis of hsps and the acquisition of thermotolerance, protein extracts of cells that had been heat shocked in the presence or absence of cycloheximide were electrophoretically analyzed. Addition of the same concentration of cycloheximide that prevented the acquisition of thermotolerance also inhibited the synthesis of any hsps.  相似文献   

17.
The heat shock response of three cyanobacterial strains,Anabaena sp. Strain PCC (paris Culture Collection) 7120,Plectonema boryanum Strain PCC 6306, andSynechococcus sp. Strain PCC 7942, was characterized by polyacrylamide gel electrophoresis.Anabaena produced 33 heat shock proteins,P. boryanum 35 proteins, andSynechoccus 19 proteins. The rapid response to heat shock was consistent for all three strains, although the number of time-dependent proteins varied. All strains developed thermotolerance when first pretreated with a sublethal heat shock and then challenged with a previously lethal temperature. A 30-min 30°C incubation was required between the heat shock and challenge forSynechococcus, but not forAnabaena andP. boryanum. Synechococcus cells required a higher challenge temperature (51° vs. 49°C) than the other two strains to destroy control cells that were not pretreated with a heat shock.  相似文献   

18.
When Lactococcus lactis strains were exposed directly to the lethal temperature of 50 C for 30 ;min, 0.1–31% of the cells survived. However, when pre-exposed to 40 °C, prior to exposure at 50 °C, 4–61% of the cells survived. A plasmid carrying a unique heat shock gene from the thermophile Streptococcus thermophilus was cloned into L. ;lactis. When the transformed cells were cultivated at 30 °C the introduction of the plasmid had no obvious effect on the growth of L. ;lactis. However, when the temperature was abruptly shifted from 30 °C to 42 °C at mid-growth phase the growth decreased by 50%.  相似文献   

19.
The psychrotrophic bacterium Aeromonas hydrophila 7966 was subjected to cold shocks from 30°C to 20°C, 15°C, 10°C, or 5°C, or were incubated at low temperature to determine its adaptative response. The cell protein patterns analyzed by two-dimensional electrophoresis revealed that only a few proteins were underexpressed, whereas numerous new proteins appeared with the decrease of temperature, and some others were overexpressed. Among them, a few constituted cold shock proteins because they were transiently induced, whereas others belong to the acclimatation family proteins. Two cold shock proteins of 11 kDa were synthesized at low level because they were visualized only after radiolabeling or silver staining. Moreover, under our experimental conditions, no major cold shock protein of a molecular mass similar to that of E. coli (7.4 kDa) could be identified.  相似文献   

20.
Heat shock inLactococcus lactis subsp.lactis may induce as many as 16 proteins after a temperature shift from 30° to 40°C. Five induced proteins were found to be immunologically related to theEscherichia coli GroEL, DnaK, DnaJ, and GrpE proteins, and to theBacillus subtilis 43 factor. From these initial studies we conclude that, inL. lactis subsp.lactis, a heat shock response similar to that known to occur in other prokaryotes might exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号