首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P450 monooxygenases of the CYP102A subfamily are single-component natural fusion proteins consisting of a heme domain and a diflavin reductase. The characterised CYP102A enzymes are fatty acid hydroxylases with turnover rates of several thousands per minute. In search of new P450s with similar activities, but with a broader substrate spectrum, we cloned, expressed and characterised CYP102A7 from Bacillus licheniformis. As expected, CYP102A7 was active towards medium-chain fatty acids but showed a strong preference for saturated over unsaturated fatty acids, which could not be observed for either of the CYP102A members so far. Besides fatty acids, CYP102A7 was able to catalyse the oxidation of cyclic and acyclic terpenes with high activity and coupling efficiency. For example, (R)-(+)-limonene was converted with activity of 220 nmol nmol P450(-1) min(-1) and 80% coupling. Unusual for enzymes of the CYP102A subfamily was the deethylation activity of CYP102A7 towards 7-ethoxycoumarin. Furthermore, this monooxygenase, though having a moderate thermal stability, exhibited 50% of its initial activity in the presence of 26% DMSO. Comparison of the homology models of CYP102A7 and other members of the CYP102A subfamily revealed distinct differences in the shape of the substrate access channel and the active site, which might explain differences in catalytic properties of these homologous enzymes.  相似文献   

2.
3.
A biotransformation system was designed to co-express CYP107P3 (CSP4), cytochrome P450, from Streptomyces peuceticus, along with CamA (putidaredoxin reductase) and CamB (putidaredoxin) from Pseudomonas putida, the necessary reducing equivalents, in a class I type electron-transfer system in E. coli BL21 (DE3). This was carried out using two plasmids with different selection markers and compatible origins of replication. The study results showed that this biotransformation system was able to mediate the O-dealkylation of 7-ethoxycumarin.  相似文献   

4.
The final reactions of rosmarinic acid biosynthesis, the introduction of the aromatic 3- and 3′-hydroxyl groups, are catalysed by cytochrome P450-dependent hydroxylases. The cDNAs encoding CYP98A14 as well as a NADPH:cytochrome P450 reductase (CPR) were isolated from Coleus blumei and actively expressed in Saccharomyces cerevisiae. The CYP98A14-cDNA showed an open reading frame of 1521 nucleotides with high similarities to 4-coumaroylshikimate/quinate 3-hydroxylases. Yeast microsomes harbouring the CYP98A14 protein catalysed the 3-hydroxylation of 4-coumaroyl-3′,4′-dihydroxyphenyllactate and the 3′-hydroxylation of caffeoyl-4′-hydroxyphenyllactate, in both cases forming rosmarinic acid. Apparent K m-values for 4-coumaroyl-3′,4′-dihydroxyphenyllactate and caffeoyl-4′-hydroxyphenyllactate were determined to be at 5 μM and 40 μM, respectively. CYP98A14 differs from CYP98s from other plants, since 4-coumaroylshikimate or -quinate were not accepted as substrates. Coexpression of the Coleus blumei CPR and CYP98A14 in the same yeast cells increased the hydroxylation activity up to sevenfold. CYP98A14 from Coleus blumei is a novel bifunctional cytochrome P450 specialised for rosmarinic acid biosynthesis.  相似文献   

5.
Tributyl phosphate (TBP) is a toxic organophosphorous compound widely used in nuclear fuel processing and chemical industries. Rhodopseudomonas palustris, one of the most metabolically versatile photosynthetic bacteria, is shown here to degrade TBP efficiently under photosynthetic conditions. This study shows that this O2- and NADPH/FMNH2-dependent process was also catalyzed when TBP was incubated with membrane-associated proteins extracted from this strain. The effects of several regulators of cytochrome P450 activity on the TBP consumption suggest a key role for a cytochrome P450 in this process. Disruption of the rpa0241 gene encoding a putative cytochrome P450 led to a 60% decrease of the TBP catabolism, whereas reintroducing the gene in the mutant restored the wild-type phenotype. The rpa0241 gene was expressed and purified in Escherichia coli. Characterization by UV-visible spectroscopy of the purified recombinant membrane-bound protein (CYP201A2) encoded by the rpa0241 gene revealed typical spectral characteristics of cytochrome P450 with a large spin state change of the heme iron associated with binding of TBP (K d ≈ 65 μM). It is proposed that CYP201A2 catalyzes the initial step of the biodegradation process of TBP.  相似文献   

6.
Eschscholzia californica produces various types of isoquinoline alkaloids. The structural diversity of these chemicals is often due to cytochrome P450 (P450) activities. Members of the CYP719A subfamily, which are found only in isoquinoline alkaloid-producing plant species, catalyze methylenedioxy bridge-forming reactions. In this study, we isolated four kinds of CYP719A genes from E. californica to characterize their functions. These four cDNAs encoded amino acid sequences that were highly homologous to Coptis japonica CYP719A1 and E. californica CYP719A2 and CYP719A3, which suggested that these gene products may be involved in isoquinoline alkaloid biosynthesis in E. californica, especially in methylenedioxy bridge-forming reactions. Expression analysis of these genes showed that two genes (CYP719A9 and CYP719A11) were preferentially expressed in plant leaf, where pavine-type alkaloids accumulate, whereas the other two showed higher expression in root than in other tissues. They were suggested to have distinct physiological functions in isoquinoline alkaloid biosynthesis. Enzyme assay analysis using recombinant proteins expressed in yeast showed that CYP719A5 had cheilanthifoline synthase activity, which was expected based on the similarity of its primary structure to that of Argemone mexicana cheilanthifoline synthase (deposited at DDBJ/GenBanktrade mark/EMBL). In addition, enzyme assay analysis of recombinant CYP719A9 suggested that it has methylenedioxy bridge-forming activity toward (R,S)-reticuline. CYP719A9 might be involved in the biosynthesis of pavine- and/or simple benzylisoquinoline-type alkaloids, which have a methylenedioxy bridge in an isoquinoline ring, in E. californica leaf.  相似文献   

7.
8.
Degenerate PCR primers were used to amplify cytochrome P450 gene fragments from the high-GC gram-negative bacteria Amycolatopsis orientalis, which catalyzes the hydroxylation of epothilone B to produce epothilone F. The amplified fragments were used as hybridization probes to identify and clone two intact cytochrome P450 genes. The expression of one of the cloned genes in a Streptomyces lividans transformant resulted in the biotransformation of epothilone B to epothilone F. The conversion of epothilone B to epothilone F by the S. lividans transformant was confirmed by mass spectrometry and nuclear magnetic resonance spectroscopy. An erratum to this article can be found at  相似文献   

9.
10.
11.
Ionselective microelectrode method was used to study changes of pH in transmitting tissue of style in Petunia hybrida (Hort.). Effect of pollination and pollen tube growth were examined. Subsequently solutions of ions and various stimulators or blockers of ion channels were applied on pollinated styles to examine the possible role of ion channels in pH stabilisation. It was confirmed in the present study that: (1) there is a pH gradient in the transmitting tissue of a petunia unpollinated style with the stigma region being more acidic; (2) pollination causes further acidification of transmitting tissue: (3) the gradient of pH first vanishes at 24 h after pollination then is reversed up to 72 h after pollination; (4) active transport of ions plays an important role in pH regulation in transmitting tissue. The presented results confirm the role of pH changes and Ca2+ as a mediator in controlling proton influx into the apoplast of the transmitting tissue during pollen tube growth.  相似文献   

12.
Cytochrome P450foxy (P450foxy) is a fatty acid (FA) monooxygenase that is characterized by self-sufficient catalysis and high turnover numbers due to the fused structure of cytochrome P450 and its reductase. Here we found that resting recombinant Escherichia coli cells producing P450foxy converted saturated FA with a chain length of 7-16 carbon atoms to their omega-1 to omega-3 hydroxy derivatives. Most products were recovered from the culture supernatant. Decanoic acid was most efficiently converted to omega-1 to omega-3 hydroxy decanoic acids in the order of omega-1>omega-2>omega-3, with a total product yield of 47%. We also found that P450foxy was more active against physiological fatty acyl esters such as monopalmitoyl glycerol, monopalmitoyl phospholipid, and palmitoyl CoA than free palmitic acid. The bacteria producing P450foxy were applicable as biocatalysts in the production of omega-1 hydroxy palmitic acid from lard, vegetable, and soy sauce oil wastes from the food industry.  相似文献   

13.
14.
Ruan L  He W  He J  Sun M  Yu Z 《Antonie van Leeuwenhoek》2005,87(4):283-288
Previous work from our laboratory has shown that most of Bacillus thuringiensis strains possess the ability to produce melanin in the presence of l-tyrosine at elevated temperatures (42 °C). Furthermore, it was shown that the melanin produced by B. thuringiensis was synthesized by the action of tyrosinase, which catalyzed the conversion of l-tyrosine, via l-DOPA, to melanin. In this study, the tyrosinase-encoding gene (mel) from B. thuringiensis 4D11 was cloned using PCR techniques and expressed in Escherichia coli DH5 . A DNA fragment with 1179 bp which contained the intact mel gene in the recombinant plasmid pGEM1179 imparted the ability to synthesize melanin to the E. coli recipient strain. The nucleotide sequence of this DNA fragment revealed an open reading frame of 744 bp, encoding a protein of 248 amino acids. The novel mel gene from B.thuringiensis expressed in E. coli DH5 conferred UV protection on the recipient strain.  相似文献   

15.
16.
Li L  Cheng H  Gai J  Yu D 《Planta》2007,226(1):109-123
In plants, cytochrome P450 is a group of monooxygenases existing as a gene superfamily and plays important roles in metabolizing physiologically important compounds. However, to date only a limited number of P450s have been identified and characterized in legumes. In this study, data mining methods were used, and 151 putative P450 genes in the model legume Medicago truncatula were identified, including 135 novel sequences. These genes were classified into 9 clans and 44 families by sequence similarity, and among those 4 new clans and 21 new families not reported previously in legumes. By comparison of these genes with P450 genes in Arabidopsis and rice, it was found that most of the known P450 families in dicot species exist in M. truncatula. The representative protein sequences of putative P450s were aligned, and the secondary elements were assigned based on the known structure P450BM3. Putative substrate recognition sites (SRSs) and substrate binding sites were also identified in these sequences. In addition, the ESTs-derived expression profiles (digital Northern) of the putative P450 genes were analyzed, which was confirmed by semi-quantitative RT-PCR analyses of several selected P450 genes. These results will provide a base for catalogue information on P450 genes in M. truncatula and for further functional analysis of P450 superfamily genes in legumes.  相似文献   

17.
Liu Z  Sun Z 《Biotechnology letters》2004,26(24):1861-1865
A d -lactonohydrolase gene of about 1.1 kb was cloned from Fusarium moniliforme. The ORF sequence predicted a protein of 382 amino acids with a molecular mass of about 40 kDa. An expression plasmid carrying the gene under the control of the triose phosphate isomerase gene promotor was introduced into Saccharomyces cerevisiae, and the d -lactonohydrolase gene was successfully expressed in the recombinant strains.Revisions requested 10 September 2004; Revisions received 15 October 2004The nucleotide sequence data reported in this paper has been assigned accession number AY728018 in the GeneBank database.  相似文献   

18.
A full-length cDNA encoding ribosome-inactivating/antiviral protein (RIP/AVP)from the leaves of Bougainvillea x buttiana was isolated.The cDNA consisted of 1364 nucleotides with an open reading frame (ORF)of 960 nucleotides encoding a 35.49 kDa protein of 319 amino acids.The deduced amino acid sequence has a putative active domain conserved in RIPs/AVPs and shows a varying phylogenetic relationship to the RIPs from other plant species.The deduced protein has been designated BBAP1 (Bougainvillea x buttiana antiviral protein1).The ORF was cloned into an expression vector and expressed in E.coli as a fusion protein of approximately 78 kDa.The cleaved and purified recombinant BBAP1 exhibited ribosome-inhibiting rRNA N-glycosidase activity,and imparted a high level of resistance against the tobacco mosaic virus (TMV).  相似文献   

19.
Structures and levels of anthocyanin-related compounds were analyzed during the development of marginal picotee petals in white-center and white-marginal cultivars of Petunia hybrida. In the white site of a white-center cultivar, higher concentrations of quercetin derivatives possessing 7-O-glucoside and/or 3′-O-glucoside occurred than in the colored site, suggesting that these two quercetin glycosylation steps are site-specifically regulated. The boundary areas of petal coloration were composed of cells showing various color densities, whose uniformity among adjacent cells varied between these cultivars. These results indicate diversity in spatiotemporal regulation of anthocyanin biosynthesis and flavonol glycosylations between Petunia cultivars during marginal picotee formation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Wang Y  Xiao Y  Zhang Y  Chai C  Wei G  Wei X  Xu H  Wang M  Ouwerkerk PB  Zhu Z 《Planta》2008,228(4):525-535
Monosaccharides transporters play important roles in assimilate supply for sink tissue development. In this study, a new monosaccharide transporter gene OsMST6 was identified from rice (Oryza sativa L.). The predicted OsMST6 protein shows typical features of sugar transporters and shares 79.6% identity with the rice monosaccharide transporter OsMST3. Heterologous expression in yeast (Saccharomyces cerevisiae) demonstrated that OsMST6 is a broad-spectrum monosaccharide transporter, with a K (m) of 266.1 muMu for glucose. OsMST6-green fluorescent protein fusion protein is localized to the plasma membrane in plant. Semi-quantitative RT-PCR analysis exhibited that OsMST6 is expressed in all tested organs/tissues. In developing seeds, OsMST6 expression level is high at the early and middle grain filling stages and gradually declines later. Further analysis detected its expression in both maternal and filial tissues. RNA in situ hybridization analysis indicated that OsMST6 is predominantly expressed in the vascular parenchyma of the chalazal vein, cross-cells, nucellar tissue and endosperm of young seeds, in mesophyll cells of source leaf blades, and in pollens and the connective vein of anthers. In addition, OsMST6 expression is up-regulated by salt stress and sugars. The physiological role of OsMST6 for seed development and its roles in other sink and source tissues are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号