首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postsynaptic cells generate positive and negative signals that retrogradely modulate presynaptic function. At developing neuromuscular synapses, prolonged stimulation of muscle cells induces sustained synaptic depression. We provide evidence that pro–brain-derived neurotrophic factor (BDNF) is a negative retrograde signal that can be converted into a positive signal by metalloproteases at the synaptic junctions. Application of pro-BDNF induces a dramatic decrease in synaptic efficacy followed by a retraction of presynaptic terminals, and these effects are mediated by presynaptic pan-neurotrophin receptor p75 (p75NTR), the pro-BDNF receptor. A brief stimulation of myocytes expressing cleavable or uncleavable pro-BDNF elicits synaptic potentiation or depression, respectively. Extracellular application of metalloprotease inhibitors, which inhibits the cleavage of endogenous pro-BDNF, facilitates the muscle stimulation–induced synaptic depression. Inhibition of presynaptic p75NTR or postsynaptic BDNF expression also blocks the activity-dependent synaptic depression and retraction. These results support a model in which postsynaptic secretion of a single molecule, pro-BDNF, may stabilize or eliminate presynaptic terminals depending on its proteolytic conversion at the synapses.  相似文献   

2.
Gray K  Ellis V 《FEBS letters》2008,582(6):907-910
Brain-derived neurotrophic factor (BDNF) is secreted as either a mature furin-processed form or an unprocessed pro-form. Here, we characterise the extracellular processing of pro-BDNF by the serine protease plasmin. Using recombinant BDNF, maintained in the pro-form by site-directed mutagenesis or inhibition of furin, we demonstrate that plasmin (but not related proteases) is a specific and efficient activator of pro-BDNF. The proteolytic cleavage site is identified as Arg125-Val, within the consensus furin-cleavage motif (RVRR), generating an active form that stimulated neurite outgrowth on TrkB-transfected PC12 cells. Furthermore, we demonstrate that this processing can also occur in the pericellular environment by the action of cell-associated plasminogen activators.  相似文献   

3.
The γ-aminobutyric acid (GABA) transporters (GATs) are located in the plasma membrane of neurons and astrocytes and are responsible for termination of GABAergic transmission. It has previously been shown that brain derived neurotrophic factor (BDNF) modulates GAT-1-mediated GABA transport in nerve terminals and neuronal cultures. We now report that BDNF enhances GAT-1-mediated GABA transport in cultured astrocytes, an effect mostly due to an increase in the V(max) kinetic constant. This action involves the truncated form of the TrkB receptor (TrkB-t) coupled to a non-classic PLC-γ/PKC-δ and ERK/MAPK pathway and requires active adenosine A(2A) receptors. Transport through GAT-3 is not affected by BDNF. To elucidate if BDNF affects trafficking of GAT-1 in astrocytes, we generated and infected astrocytes with a functional mutant of the rat GAT-1 (rGAT-1) in which the hemagglutinin (HA) epitope was incorporated into the second extracellular loop. An increase in plasma membrane of HA-rGAT-1 as well as of rGAT-1 was observed when both HA-GAT-1-transduced astrocytes and rGAT-1-overexpressing astrocytes were treated with BDNF. The effect of BDNF results from inhibition of dynamin/clathrin-dependent constitutive internalization of GAT-1 rather than from facilitation of the monensin-sensitive recycling of GAT-1 molecules back to the plasma membrane. We therefore conclude that BDNF enhances the time span of GAT-1 molecules at the plasma membrane of astrocytes. BDNF may thus play an active role in the clearance of GABA from synaptic and extrasynaptic sites and in this way influence neuronal excitability.  相似文献   

4.
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in brain development and synaptic plasticity. It is synthesized as a precursor (pro-BDNF), sorted into the secretory pathway, transported along dendrites and axons, and released in an activity-dependent manner. Mutant Huntingtin with expanded polyglutamine (polyQ) and the V66M polymorphism of BDNF reduce the dendritic distribution and axonal transport of BDNF. However, the mechanism underlying this defective transport remains unclear. Here, we report that Huntingtin-associated protein-1 (HAP1) interacts with the prodomain of BDNF and that the interaction was reduced in the presence of polyQ-expanded Huntingtin and BDNF V66M. Consistently, there was reduced coimmunoprecipitation of pro-BDNF with HAP1 in the brain homogenate of Huntington disease. Pro-BDNF distribution in the neuronal processes and its accumulation in the proximal and distal segments of crushed sciatic nerve and the activity-dependent release of pro-BDNF were abolished in HAP1−/− mice. These results suggest that HAP1 may participate in axonal transport and activity-dependent release of pro-BDNF by interacting with the BDNF prodomain. Accordingly, the decreased interaction between HAP1 and pro-BDNF in Huntington disease may reduce the release and transport of BDNF.  相似文献   

5.
We examined the biosynthesis and post-translational processing of the brain-derived neurotrophic factor precursor (pro-BDNF) in cells infected with a pro-BDNF-encoding vaccinia virus. Metabolic labeling, immunoprecipitation, and SDS-polyacrylamide gel electrophoresis reveal that pro-BDNF is generated as a 32-kDa precursor that is N-glycosylated and glycosulfated on a site, within the pro-domain. Some pro-BDNF is released extracellularly and is biologically active as demonstrated by its ability to mediate TrkB phosphorylation. The precursor undergoes N-terminal cleavage within the trans-Golgi network and/or immature secretory vesicles to generate mature BDNF (14 kDa). Small amounts of a 28-kDa protein that is immunoprecipitated with BDNF antibodies is also evident. This protein is generated in the endoplasmic reticulum through N-terminal cleavage of pro-BDNF at the Arg-Gly-Leu-Thr(57)- downward arrow-Ser-Leu site. Cleavage is abolished when Arg(54) is changed to Ala (R54A) by in vitro mutagenesis. Blocking generation of 28-kDa BDNF has no effect on the level of mature BDNF and blocking generation of mature BDNF with alpha(1)-PDX, an inhibitor of furin-like enzymes, does not lead to accumulation of the 28-kDa form. These data suggest that 28-kDa pro-BDNF is not an obligatory intermediate in the formation of the 14-kDa form in the constitutive secretory pathway.  相似文献   

6.
In acute hippocampal slices, we found that the presence of extracellular brain-derived neurotrophic factor (BDNF) is essential for the induction of spike-timing-dependent long-term potentiation (tLTP). To determine whether BDNF could be secreted from postsynaptic dendrites in a spike-timing-dependent manner, we used a reduced system of dissociated hippocampal neurons in culture. Repetitive pairing of iontophoretically applied glutamate pulses at the dendrite with neuronal spikes could induce persistent alterations of glutamate-induced responses at the same dendritic site in a manner that mimics spike-timing-dependent plasticity (STDP)—the glutamate-induced responses were potentiated and depressed when the glutamate pulses were applied 20 ms before and after neuronal spiking, respectively. By monitoring changes in the green fluorescent protein (GFP) fluorescence at the dendrite of hippocampal neurons expressing GFP-tagged BDNF, we found that pairing of iontophoretic glutamate pulses with neuronal spiking resulted in BDNF secretion from the dendrite at the iontophoretic site only when the glutamate pulses were applied within a time window of approximately 40 ms prior to neuronal spiking, consistent with the timing requirement of synaptic potentiation via STDP. Thus, BDNF is required for tLTP and BDNF secretion could be triggered in a spike-timing-dependent manner from the postsynaptic dendrite.  相似文献   

7.
The precursors for neurotrophins are proteolytically cleaved to form biologically active mature molecules which activate their receptors p75NTR and trks. A recent study showed that the precursor for nerve growth factor (NGF) can bind to p75NTR with a high affinity and induces apoptosis of neurons in vitro. Mutation in Val66Met of brain-derived neurotrophic factor (BDNF) results in reduction in hippocampal function in learning and in the dysfunction of intracellular BDNF sorting and secretion. To examine the functions of pro-neurotrophins in vivo, it is essential to know where they are expressed in the nervous system. In the present study, we have raised and characterized rabbit polyclonal antibodies against a peptide coding for the precursor region of the BDNF gene. The antibody specifically recognizes the precursor for BDNF by western blot. With the affinity purified precursor antibody, we have mapped the distribution and localization of the precursor for BDNF. The results showed that, like mature BDNF, pro-BDNF is localized to nerve terminals in the superficial layers of dorsal horn, trigeminal nuclei, nuclei tractus solitarius, amygdaloid complex, hippocampus, hypothalamus and some peripheral tissues. These results suggest that pro-BDNF, like mature BDNF, is anterogradely transported to nerve terminals and may have important functions in synaptic transmission in the spinal cord and brain.  相似文献   

8.
Brain-derived neurotrophic factor (BDNF), a major neuronal growth factor, is also known to exert an antiapoptotic effect in myeloma cells. Whereas BDNF secretion was described in B lymphocytes, the ability of B cells to produce sortilin, its transport protein, was not previously reported. We studied BDNF production and the expression of its receptors, tyrosine protein kinase receptor B and p75 neurotrophin receptor in the human pre-B, mature, and plasmacytic malignant B cell lines under normal and stress culture conditions (serum deprivation, Fas activation, or their combination). BDNF secretion was enhanced by serum deprivation and exerted an antiapoptotic effect, as demonstrated by neutralization experiments with antagonistic Ab. The precursor form, pro-BDNF, also secreted by B cells, decreases under stress conditions in contrast to BDNF production. Stress conditions induced the membranous expression of p75 neurotrophin receptor and tyrosine protein kinase receptor B, maximal in mature B cells, contrasting with the sequestration of both receptors in normal culture. By blocking Ab and small interfering RNA, we evidenced that BDNF production and its survival function are depending on sortilin, a protein regulating neurotrophin transport in neurons, which was not previously described in B cells. Therefore, in mature B cell lines, an autocrine BDNF production is up-regulated by stress culture conditions and exerts a modulation of apoptosis through the sortilin pathway. This could be of importance to elucidate certain drug resistances of malignant B cells. In addition, primary B lymphocytes contained sortilin and produced BDNF after mitogenic activation, which suggests that sortilin and BDNF might be implicated in the survival and activation of normal B cells also.  相似文献   

9.
In certain brain regions, extracellular zinc concentrations can rise precipitously as intense neuronal activity releases large amounts of zinc from the nerve terminals. Although zinc release has been suggested to play a pathological role, its precise physiological effect is poorly understood. Here, we report that exposure to micromolar quantities of zinc for only a few minutes robustly and specifically activated tropomyosin-related kinase (Trk) receptors, most likely TrkB, in cultured cortical neurons. We further found that Trk activation by zinc is extracellularly mediated by activation of metalloproteinases, which release pro-BDNF from cells and convert pro-BDNF to mature BDNF. These results suggest that activity-dependent release of extracellular zinc leads to metalloproteinase activation, which plays a critically important role in Trk receptor activation at zinc-containing synapses.  相似文献   

10.
Tetanus and botulinum toxins bind and are internalized at the neuromuscular junction. Botulinum neurotoxins (BoNTs) enter the cytosol at the motor nerve terminal; tetanus neurotoxin (TeNT) proceeds retroaxonally inside the motor axon to reach the spinal cord inhibitory interneurons. Although the major target of BoNTs is the peripheral cholinergic terminals, CNS neurons are susceptible to intoxication as well. We investigated the route of entry and the proteolytic activity of BoNT/B and BoNT/F in cultured hippocampal neurons and astrocytes. We show that, differently from TeNT, which enters hippocampal neurons via the process of synaptic vesicle (SV) recycling, BoNTs are internalized and cleave the substrate synaptobrevin/VAMP2 via a process independent of synaptic activity. Labeling of living neurons with Texas Red-conjugated BoNTs and fluoresceinated dextran revealed that these toxins enter hippocampal neurons via endocytic processes not mediated by SV recycling. Botulinum toxins also exploit endocytosis to enter cultured astrocytes, where they partially cleave cellubrevin, a ubiquitous synaptobrevin/VAMP isoform. These results indicate that, in spite of their closely related protein structure, TeNT and BoNTs use different routes to penetrate hippocampal neurons. These findings bear important implications for the identification of the protein receptors of clostridial toxins.  相似文献   

11.
Hedgehog (Hh) is a secreted morphogen involved in both short- and long-range signaling necessary for tissue patterning during development. It is unclear how this dually lipidated protein is transported over a long range in the aqueous milieu of interstitial spaces. We previously showed that the long-range signaling of Hh requires its oligomerization. Here we show that Hh is secreted in the form of exovesicles. These are derived by the endocytic delivery of cell surface Hh to multivesicular bodies (MVBs) via an endosomal sorting complex required for transport (ECSRT)–dependent process. Perturbations of ESCRT proteins have a selective effect on long-range Hh signaling in Drosophila wing imaginal discs. Of importance, oligomerization-defective Hh is inefficiently incorporated into exovesicles due to its poor endocytic delivery to MVBs. These results provide evidence that nanoscale organization of Hh regulates the secretion of Hh on ESCRT-derived exovesicles, which in turn act as a vehicle for long-range signaling.  相似文献   

12.
Synaptic vesicle biogenesis involves the recycling of synaptic vesicle components by clathrin-mediated endocytosis from the presynaptic membrane. stoned B, a protein encoded by the stoned locus in Drosophila melanogaster has been shown to regulate vesicle recycling by interacting with synaptotagmin. We report here the identification and characterization of a human homolog of stoned B (hStnB). Human stoned B is a brain-specific protein which co-enriches with other endocytic proteins such as AP-2 in a crude synaptic vesicle fraction and at nerve terminals. A domain with homology to the medium chain of adaptor complexes binds directly to both AP-2 and synaptotagmin and competes with AP-2 for the same binding site within synaptotagmin. Finally we show that the µ2 homology domain of hStnB stimulates the uncoating of both clathrin and AP-2 adaptors from clathrin-coated vesicles. We hypothesize that hStnB regulates synaptic vesicle recycling by facilitating vesicle uncoating.  相似文献   

13.
Roos J  Kelly RB 《Current biology : CB》1999,9(23):1411-1414
In most models of endocytosis, the endocytic machinery is recruited from the cytoplasm by cytoplasmic tails of the plasma membrane proteins that are to be internalized. This does not appear to be true at synapses where the endocytic machinery required for synaptic vesicle recycling is localized to membrane-associated 'hot spots' [1] [2]. In Drosophila neuromuscular junctions, the multi-domain protein Dap160 is also localized to hot spots [3] and has some characteristics expected of an anchoring protein. Anchoring the endocytic machinery to the plasma membrane might help contribute to the remarkable speed of synaptic vesicle recycling [4]. Here, we report that the endocytic machinery surrounds sites that are believed to be sites of exocytosis. We propose that the radial distribution of the synaptic vesicle recycling machinery already present on the plasma membrane in unstimulated nerve terminals is a fundamental unit of pre-synaptic organization and allows the nerve terminal to extract maximum recycling efficiency out of conventional endocytic machinery.  相似文献   

14.
Endocytosed proteins can be delivered to lysosomes for degradation or recycled to either the trans-Golgi network or the plasma membrane. It remains poorly understood how the recycling versus degradation of cargoes is determined. Here, we show that multiple extracellular stimuli, including starvation, LPS, IL-6, and EGF treatment, can strongly inhibit endocytic recycling of multiple cargoes through the activation of MAPK11/14. The stress-induced kinases in turn directly phosphorylate SNX27, a key regulator of endocytic recycling, at serine 51 (Ser51). Phosphorylation of SNX27 at Ser51 alters the conformation of its cargo-binding pocket and decreases the interaction between SNX27 and cargo proteins, thereby inhibiting endocytic recycling. Our study indicates that endocytic recycling is highly dynamic and can crosstalk with cellular stress–signaling pathways. Suppression of endocytic recycling and enhancement of receptor lysosomal degradation serve as new mechanisms for cells to cope with stress and save energy.  相似文献   

15.
Astrocytes play an active role in the modulation of synaptic transmission by releasing cell-cell signaling molecules in response to various stimuli that evoke a Ca(2+) increase. We expand on recent studies of astrocyte intracellular and secreted proteins by examining the astrocyte peptidome in mouse astrocytic cell lines and rat primary cultured astrocytes, as well as those peptides secreted from mouse astrocytic cell lines in response to Ca(2+)-dependent stimulations. We identified 57 peptides derived from 24 proteins with LC-MS/MS and CE-MS/MS in the astrocytes. Among the secreted peptides, four peptides derived from elongation factor 1, macrophage migration inhibitory factor, peroxiredoxin-5, and galectin-1 were putatively identified by mass-matching to peptides confirmed to be found in astrocytes. Other peptides in the secretion study were mass-matched to those found in prior peptidomics analyses on mouse brain tissue. Complex peptide profiles were observed after stimulation, suggesting that astrocytes are actively involved in peptide secretion. Twenty-six peptides were observed in multiple stimulation experiments but not in controls and thus appear to be released in a Ca(2+)-dependent manner. These results can be used in future investigations to better understand stimulus-dependent mechanisms of astrocyte peptide secretion.  相似文献   

16.
We investigated the mechanism of synaptic suppression by P2Y receptors in mixed hippocampal cultures wherein networked neurons exhibit synchronized Ca2+ oscillations (SCO) due to spontaneous glutamatergic synaptic transmission. Pharmacological studies suggested that SCO suppression was mediated by P2Y2/P2Y4 receptors. Immunostaining studies and characterization of ATP/UTP-stimulated Ca2+ responses in solitary neurons and astrocytes revealed that the SCO attenuation was effectuated by astrocytes. We demonstrate that nitric oxide released from activated astrocytes causes synaptic suppression by inhibiting neurotransmitter release. Physiological concentrations of ATP and UTP evoked NO production in astrocytes. SCO suppression was considerably diminished by removal of extracellular NO by membrane-impermeable scavenger c-PTIO or by pretreatment of cells with nitric oxide synthase inhibitor L-NAME. The nitric oxide donor DETA/NO effectively suppressed the SCO. ATP/UTP inhibited KCl-induced exocytosis at presynaptic terminals in an NO-dependent manner. In the absence of exogenously added ATP/UTP, both the NO scavenger and NOS inhibitor enhanced the frequency of SCO, implying that astrocytes release NO during spontaneous synaptic activity and exert a suppressive effect. We report for the first time that under physiological conditions astrocytes use NO as a messenger molecule to modulate the synaptic strength in the networked neurons.  相似文献   

17.
The speed of synaptic vesicle recycling determines the efficacy of neurotransmission during repetitive stimulation. Synaptotagmins are synaptic C(2)-domain proteins that are involved in exocytosis, but have also been linked to endocytosis. We now demonstrate that upon expression in transfected neurons, a short splice variant of synaptotagmin 7 that lacks C(2)-domains accelerates endocytic recycling of synaptic vesicles, whereas a longer splice variant that contains C(2)-domains decelerates recycling. These results suggest that alternative splicing of synaptotagmin 7 acts as a molecular switch, which targets vesicles to fast and slow recycling pathways.  相似文献   

18.
The regulated release of neurotransmitters at synapses is mediated by the fusion of neurotransmitter-filled synaptic vesicles with the plasma membrane. Continuous synaptic activity relies on the constant recycling of synaptic vesicle proteins into newly formed synaptic vesicles. At least two different mechanisms are presumed to mediate synaptic vesicle biogenesis at the synapse as follows: direct retrieval of synaptic vesicle proteins and lipids from the plasma membrane, and indirect passage of synaptic vesicle proteins through an endosomal intermediate. We have identified a vesicle population with the characteristics of a primary endocytic vesicle responsible for the recycling of synaptic vesicle proteins through the indirect pathway. We find that synaptic vesicle proteins colocalize in this vesicle with a variety of proteins known to recycle from the plasma membrane through the endocytic pathway, including three different glucose transporters, GLUT1, GLUT3, and GLUT4, and the transferrin receptor. These vesicles differ from "classical" synaptic vesicles in their size and their generic protein content, indicating that they do not discriminate between synaptic vesicle-specific proteins and other recycling proteins. We propose that these vesicles deliver synaptic vesicle proteins that have escaped internalization by the direct pathway to endosomes, where they are sorted from other recycling proteins and packaged into synaptic vesicles.  相似文献   

19.
In our research on mouse diaphragm muscles the dynamic of neurotransmitter secretion and synaptic vesicles recycling (exo-endocytosis cycle) at the long-term rhythmic stimulation (20Hz) are explored using an intracellular microelectrode registration and a fluorescent microscopy. It have been shown, thate change of end plant potentials (EPP) amplitude at the rhythmic training occurs in three phases: initial transient decrease, long amplitude stabilization (1-2 min)--the plateau and secondary slow decrease. After 3 minute stimulations the EPP amplitude recovery observed during several seconds. Loading the synaptic vesicle by fluorescent endocytic dye FM 1-43 had shown that the rhythmic stimulation results to gradual (during 5-6 mines) fluorescence decrease in NT, indicating the synaptic vesicle exocytosis. The quantum analysis of the electrophysiological data and their comparison to the fluorescent researches date has allowed to assume, that mouse motor nerve terminals are characterized by high rate of endocytosis and fast synaptic vesicle reuse (average recycling time about 50 sec) that can provide effective maintenance of synaptic transmission at long high-frequency activity. Sizes of ready releasable and recycling synaptic vesicle pools are quantitatively determined. It is assumed, that vesicle recycling occurs on a short fast way to inclusion in recycling pool. So, in the stimulation protocol that were used the synaptic vesicles from reserve pool remain unused. Thus in our conditions recycling pool vesicles cycle repeatedly without reserve pool release.  相似文献   

20.
Intercellular communication can be mediated by extracellular small regulatory RNAs (sRNAs). Circulating sRNAs are being intensively studied for their promising use as minimally invasive disease biomarkers. To date, most attention is centered on exosomes and microRNAs as the vectors and the secreted species, respectively. However, this field would benefit from an increased understanding of the plethora of sRNAs secreted by different cell types in different extracellular fractions. It is still not clear if specific sRNAs are selected for secretion, or if sRNA secretion is mostly passive. We sequenced the intracellular sRNA content (19–60 nt) of breast epithelial cell lines (MCF-7 and MCF-10A) and compared it with extracellular fractions enriched in microvesicles, exosomes and ribonucleoprotein complexes. Our results are consistent with a non-selective secretion model for most microRNAs, although a few showed secretion patterns consistent with preferential secretion. On the contrary, 5′ tRNA halves and 5′ RNA Y4-derived fragments of 31–33 were greatly and significantly enriched in the extracellular space (even in non-mammary cell lines), where tRNA halves were detected as part of ∼45 kDa ribonucleoprotein complexes. Overall, we show that different sRNA families have characteristic secretion patterns and open the question of the role of these sRNAs in the extracellular space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号