首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The influence of theophylline and theobromine on cellular respiration and on membrane transport of calcium has been studied in isolated rat liver mitochondria, using oxygen and Ca2+ selective electrodes. A linear decrease in respiratory coefficients, in the total amount and rate of "extra" oxygen consumption induced by ADP is observed with drug concentration. Theobromine does not show any appreciable effect on these respiratory parameters, but this result is similar to that observed with theophylline for the same concentration range. Calcium uptake coupled to respiration is inhibited by both drugs depending on their concentrations. Theobromine is more effective than theophylline. Calcium saturation of the mitochondria takes place in all cases after 36 +/- 2 s but only a 20% of the maximum calcium uptake observed in the absence of the drugs is determined in the presence of 15 mM theophylline or only 1.8 mM theobromine. Comparative studies show direct correlation between the pharmacological activities as stimulants of caffeine, theophylline and theobromine and their behaviour as inhibitors of calcium uptake coupled to respiration by mitochondria.  相似文献   

2.
As an extension of results obtained from radiation studies on caffeine both in other laboratories and more recently in this laboratory using the bacterial spore as the test system, six compounds with chemical structures closely resembling that of caffeine were tested as radiation modifiers. Of these compounds, purine, adenine and hypoxanthine resembled caffeine in sensitizing spores to radiation, while theobromine, xanthine and theophylline did not. These responses are discussed in relation to the electron sequestration hypothesis of cellular sensitization to high-energy radiation.  相似文献   

3.
We studied the effects of 2 methylxanthines (caffeine and theophylline) at different concentrations on goat sperm motility and live spermatozoa and on the percentage of acrosomal damage and fertility. Altogether, 144 semen samples collected from 12 bucks (3 each from Black Bengal and Beetal, and 6 from cross-breds) were diluted in TRIS extender, divided into 5 equal fractions; then caffeine and theophylline were added at 2 concentrations (2 and 5 mM) in different fractions. These samples were frozen in liquid nitrogen vapor, thawed at 37 degrees C for 15 sec, and evaluated for motility and other semen attributes. Addition of caffeine and theophylline had a stimulatory effect on goat spermatozoa. It was further observed that the effect of these agents was concentration-dependent, with 2 mM caffeine and 5 mM theophylline yielding the best results in respect to the percentage of motility in all 3 breeds of goats tested. Among the two methylxanthines used, caffeine was found to be the more effective in Improving motility than theophylline. There was no significant effect on the percentages of live spermatozoa and acrosomal damage due to the addition of these 2 methylxanthines to the extender. Fertility rates with Tris + 2 mM caffeine (60.20 %) and with Tris + 5 mM theophylline (58.88 %) extended semen were apparently higher than those with the Tris-diluted semen (50.0 %), although these differences were not significant.  相似文献   

4.
In contrast to dibuturyl cyclic AMP, the methylxanthine phosphodiesterase inhibitors theophylline and caffeine were found to inhibit the conversion of 25 hydroxyvitamin D3 to 1,25 dihydroxyvitamin D3 in isolated renal tubules from vitamin D deficient chicks. This inhibition occurred at concentrations of methylxanthines which were shown to increase renal tubule cyclic AMP levels. No effect of theophylline or caffeine on 25 hydroxyvitamin D3 metabolism in isolated chick renal mitochondria was detected. Because of a demonstrated inhibitory action of calcium (10 and 20 μmol/l) on renal mitochondrial conversion of 25 hydroxyvitamin D3 to 1,25 dihydroxyvitamin D3, the effect of theophylline and dibutyryl cyclic AMP on cellular calcium-45 efflux and total renal tubule calcium content was estimated. Theophylline 10 mmol/l was found to inhibit renal tubular calcium efflux and to increase total cellular calcium content, while dibutyryl cyclic AMP 1 mmol/l had the reverse effect on both parameters. Divergent actions of the methylxanthines and dibutyryl cyclic AMP on the formation of 1,25 dihydroxyvitamin D3 and renal tubule calcium efflux and content support the hypothesis that intracellular calcium is an important regulator of renal vitamin D metabolism. The results indicate that observed actions of methylxanthines cannot always be ascribed to cyclic AMP accumulation.  相似文献   

5.
The chronic effects of dietary caffeine, theophylline, and theobromine on urinary calcium excretion were investigated in the adult male rat. The effect of acutely administered adenosine and adenosine analogues on methylxanthine-induced hypercalciuria was concurrently investigated. When rats were fed equimolar amounts of theobromine, caffeine, and theophylline, it was found that urinary calcium excretion increased; on day 7 values were increased over controls (p less than 0.05) by 54, 146, and 208%, respectively. On day 20, an injection of adenosine reduced calcium excretion in methylxanthine-treated rats to levels not different from control values. In another series of experiments, theophylline was fed to a group of rats to establish hypercalciuria. Three adenosine analogues N6-(L-2-phenylisopropyl)adenosine (R-PIA), N6-(D-2-phenylisopropyl)adenosine (S-PIA), and 5'-(N-ethylcarboxamido)adenosine (NECA) with different adenosine receptor specificities (A2,A1, and weakly A2, respectively) were administered to different groups of theophylline-fed and control rats, and their calcium excretions were measured. It was found that the order of efficacy of the analogues in reducing calcium excretion was NECA greater than R-PIA greater than S-PIA, which is consistent with the receptor being A2. A proportion of the methylxanthine-induced hypercalciuria may be due to adenosine antagonism.  相似文献   

6.
1.Chronic ingestion of caffeine causes a significant increase in levels of A1-adenosine, nicotinic and muscarinic receptors, serotonergic receptors, GABAA receptors and L-type calcium channels in cerebral cortical membranes from mice NIH Swiss strain mice.2.Chronic theophylline and paraxanthine had effects similar to those of caffeine except that levels of L-type channels were unchanged. Chronic theobromine, a weak adenosine antagonist, and 1-isobutyl-3-methylxanthine (IBMX), a potent adenosine antagonist and phosphodiesterase inhibitor, caused only an increase in levels of A1-adenosine receptors. A combination of chronic caffeine and IBMX had the same effects on receptors as caffeine alone. Chronic 3,7-dimethyl-1-propargylxanthine (DMPX), a somewhat selective A2A-antagonist, caused only an increase in levels of A1-adenosine receptors. Pentoxyfylline, an adenosine-uptake inhibitor inactive at adenosine receptors, had no effect on receptor levels or calcium channels.3.A comparison of plasma and brain levels of xanthines indicated that caffeine penetrated more readily and attained somewhat higher brain levels than theophylline or theobromine. Penetration and levels were even lower for IBMX, paraxanthine, DMPX, and pentoxyfylline.4.The results suggest that effective blockade of both A1 and A2A-adenosine receptors is necessary for the full spectrum of biochemical changes elicited by chronic ingestion of xanthines, such as caffeine, theophylline, and paraxanthine.  相似文献   

7.
—Rat brain 5′-nucleotidase (EC 3.1.3.5) is inhibited by methylxanthines such as theophylline. Inhibition of the 5′-nucleotidase by theophylline appears more efficient than the inhibition of cAMP phosphodiesterase by this drug. A similar inhibition is observed with caffeine, theobromine, 7′-methyl-xanthine and 1-methylxanthine.  相似文献   

8.
Caffeine and theophylline inhibited the activity of rat liver glutamate dehydrogenase (GDH), but not that of beef liver GDH, in forward and reverse directions of the enzyme reaction. In the forward direction, approximately 16 mM caffeine or 16 mM theophylline inhibited 50 per cent of the rat liver GDH activity (I50); while in the reverse direction, the I50 of caffeine and theophylline was 15 mM and 8 mM, respectively. The inhibition produced by caffeine was cooperative in both directions, while that of theophylline was negatively cooperative in the forward direction and non-cooperative in the reverse. However, ADP reduced the inhibitory effect of caffeine and theophylline to the extent of 40% and 80%, respectively. The Ki values obtained for caffeine and theophylline were different in the presence of various concentrations of substrates and coenzymes. Based upon these data, we presume that certain subtle changes occurring in the conformation of the rat liver GDH (probably at the ADP/NADH site) in comparison with those of the beef liver GDH may be responsible for its inhibition by caffeine and theophylline.  相似文献   

9.
The binding of naturally occurring methylxanthines such as theophylline, theobromine and caffeine to nucleic acids are reckoned to be pivotal as they are able to modulate the cellular activities. We explore the interaction of yeast RNA binding efficacy of the above xanthine derivatives by using UV absorption differential spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Both the analyses show discrimination in their binding affinity to RNA. The differential UV-spectrum at P/D 3.3 reveals the greater RNA binding activity for theophylline (85 +/- 5%), whereas moderate and comparatively less binding activity for theobromine (45 +/- 5%) and caffeine (30 +/- 5%) and the binding activity was found to depend on concentration of the drugs. In FTIR analysis we observed changes in the amino group (NH) of RNA complexed by drugs, where the NH band is found to become very broad, indicating hydrogen bonding (H-bonding) with theophylline (3343.4 cm(-1)), theobromine (3379.8 cm(-1)) and caffeine (3343 cm(-1)) as compared to the free RNA (3341.6 cm(-1)). Furthermore in RNA-theophylline complex, it is observed that the carbonyl (C=O) vibration frequency (nu(C=O)) of both drug (nu(C=O)=1718, 1666 cm(-1)) as well as RNA (nu(C=O)=1699, 1658 cm(-1)) disappeared and a new vibration band appeared around 1703 cm(-1), indicating that the C=O and NH groups of drug and RNA are effectively involved in H-bonding. Whereas in RNA-theobromine and RNA-caffeine complexes, we found very little changes in C=O frequency and only broadening of the NH band of RNA due to complexation is observed in these groups. The changes in the vibrations of G-C/A-U bands and other bending frequencies are discussed. Thus the discrimination in the binding affinity of methylxanthines with RNA molecule shows that strong RNA binding drugs like theophylline can selectively be delivered to RNA targets of microbial pathogens having the mechanism of RNA catalysis.  相似文献   

10.
The influence of methylxanthines and of a number of local anaesthetics and adrenaline-blocking agents on the metabolism of the isolated rat diaphragm has been investigated. Both caffeine and theophylline inhibited protein synthesis in the tissue and enhanced its endogenous respiration. The latter effect was counteracted by several local anaesthetics (butacaine, cinchocaine, amethocaine and marcaine) and by certain β-blocking agents (propranolol, oxprenolol and alprenolol), but these compounds by themselves enhanced respiration and inhibited protein synthesis by the tissue. By contrast with other agents toxic to muscle, neither the methylxanthines nor local anaesthetics produced much stimulation of lactate production.The change in mitochondrial morphology after caffeine treatment differed from that produced by the other agents although all three types of compound similarly enhanced the rate of respiration. Under the conditions studied many deleterious effects on the tissue were seen, observable particularly where caffeine was used in conjunction with some β-receptor blockers. Some of the changes, which were often similar to those reported as due to different respiratory states, could be reproduced by different concentrations of the ionophorous agent, valinomycin. The mechanism of the effects is discussed in the context of the influence of both groups of drugs on uptake of calcium and other ions by sarcoplasmic reticulum and mitochondria.  相似文献   

11.
《BBA》1985,808(2):316-322
The dependence of both respiration and total activity of ATP-consuming reactions on the cellular adenine nucleotide pattern was investigated in intact bovine spermatozoa. ATP consumption was manipulated by inhibition with vanadate and activation with caffeine, leading to a decrease or increase in the rate of respiration up to 70% or 20%, respectively. Oligomycin blocked the respiration to the same extent as did vanadate, suggesting that the total extramitochondrial ATP-consuming activity is vanadate-sensitive. The major part of ATP utilization must be linked to dynein ATPase, since inhibition of (Na+, K+) ATPase by ouabain showed only a small effect on respiration (−17%). Being a potent inhibitor of dynein ATPase, vanadate drastically reduced the amount of motile cells, whereas caffeine tended to increase the intensity of motion. The effects of vanadate or caffeine on respiration were paralleled by changes in cellular ATP, reflecting the response of mitochondrial respiration on the cellular ATP/ADP ratio. Respiration was found to depend on changes in the ATP/ADP ratio in the range from about 3 (+ caffeine) to 9 (+ vanadate). The range of response of ATP consumption to the ATP/ADP ratio was determined by varying the mitochondrial ATP production via the concentration of lactate which was used as substrate. The measured effects on both respiratory rate and ATP/ADP ratio suggested that ATP consumption was markedly dependent on ATP/ADP ratios below 5. It is concluded that lactate concentrations above 1 mM sufficiently supply bovine spermatozoa with substrate and the energy turnover is mainly limited by the activity of dynein ATPase rather than by the capacity of mitochondrial oxidative phosphorylation.  相似文献   

12.
Cocoa callus and suspension cultures were found to produce caffeine,theobromine, and theophylline which are typical of the purinealkaloids found in cocoa beans. Production of these purine alkaloidswas monitored in callus cultures for over 2 years and shownto stabilize at concentrations of about 10% those found in vivo.Caffeine and theobromine were produced concomitant with logphase growth of the cultures whilst theophylline productionreached a maximum during stationary phase, reflecting the possiblerole of the latter as a catabolite of caffeine. The effectsof choice of cytokinin, explant tissue, cocoa type, light conditionsand time in culture on purine alkaloid production by callushave been examined. Purine alkaloid production by cocoa suspensioncultures has also been examined and these cultures were shownto be less productive and more variable than callus cultures.The results demonstrate that cocoa tissue cultures can be usefulfor studying secondary metabolism in vitro. Key words: Theobroma cacao, caffeine, theobromine, tissue culture, secondary metabolism  相似文献   

13.
The binding of dimethylbenz(α)anthracene to DNA of murine cells in culture is inhibited by caffeine and to a lesser extent by theophylline. However, other chemical analogs of caffeine such as theobromine, xanthine, hypoxanthine, and uric acid do not affect this process. Thus, the antitumorigenic effect of caffeine may be related to its ability to inhibit the binding of active metabolites of carcinogens to cellular DNA.  相似文献   

14.
Methylxanthine treatment of rice seeds (Oryza sativa L. cv. Lemont) was used to determine the relative efficiencies of caffeine (1,3,7-trimethylxanthine), theobromine (3,7-dimethylxanthine), and theophylline (1,3-dimethylxanthine) as growth regulators in a plant not producing these compounds. Caffeine inhibited growth more effectively than the dimethylxanthines. Treatment with 2.5 mM caffeine inhibited shoot elongation by half after 6 days of growth, and inhibited root elongation by 90% compared to control plants germinated in water. Although caffeine treatment inhibited growth of roots more than shoots, caffeine accumulation was similar in both organs. Apparently, shoots have a more effective mechanism than roots for maintaining growth in the presence of caffeine.  相似文献   

15.
The incorporation of radioactivity from L-[14CH3]-methionine into caffeine by coffee fruits was enhanced by additions of theobromine and paraxanthine but was reduced by additions of theophylline and caffeine. Cell-free extracts prepared from seedlings, partially ripe and unripe coffee fruits showed that only the unripe green fruits contained significant methyltransferase and 7-methyl-N9-nucleoside hydrolase activity. The cell-free extracts catalysed the transfer of methyl groups fromS-adenosyl-L-[14CH3]-methionine to 7-methylxanthine, and 7-methylxanthosine, producing theobromine and to theobromine producing caffeine. The two enzymic methylations exhibited a sharp pH max at 8.5 and a similar pattern of effects with metal chelators, thiol reagents and Mg2+ ions, which were slightly stimulating though not essential to enzyme activity. Paraxanthine (1,7-dimethylxanthine) was sh own to be the most active among methylxanthines as methyl acceptors; however its formation from 1-methylxanthine and 7-methylxanthine was not detectable, and biosynthesis from paraxanthine in the intact plant would therefore appear not to occur. The apparent Km values are as follows: 7-methylxanthine 0.2 mM, theobromine 0.2 mM, paraxanthine 0.07 mM and S-adenosyl-L-methionine with each substrate 0.01 mM. The results suggest the pathway for caffeine biosynthesis in Coffea arabica is: 7-methylxanthosine → 7-methylxanthine → theobromine → caffeine.  相似文献   

16.
It was hypothesized that the caffeine derivative paraxanthine results in subcontracture increases in intracellular calcium concentration ([Ca(2+)](i)) in resting skeletal muscle. Single fibers obtained from mouse flexor digitorum brevis were loaded with a fluorescent Ca(2+) indicator, indo 1-acetoxymethyl ester. After a stable baseline was recorded, the fiber was superfused with physiological salt solution (Tyrode) containing 0.5, 1.0, 2.5, or 5 mM paraxanthine, resulting in [Ca(2+)](i) increases of 6.4 +/- 2.5, 9.7 +/- 3.6, 26.8 +/- 11.7, and 39.6 +/- 9.6 nM, respectively. The increases in [Ca(2+)](i) were transient and were also observed with exposure to 5 mM theophylline and theobromine. Six fibers were exposed to 5 mM paraxanthine followed by 5 mM paraxanthine in the presence of 10 mM procaine (sarcoplasmic reticulum Ca(2+) release channel blocker). There was no increase from baseline [Ca(2+)](i) when fibers were superfused with paraxanthine and procaine, suggesting that the sarcoplasmic reticulum is the primary Ca(2+) source in the paraxanthine-induced response. In separate experiments, intact flexor digitorum brevis (n = 13) loaded with indo 1-acetoxymethyl ester had a significant increase in [Ca(2+)](i) with exposure to 0.01 mM paraxanthine. It is concluded that physiological and low pharmacological concentrations of paraxanthine result in transient, subcontracture increases in [Ca(2+)](i) in resting skeletal muscle, the magnitude of which is related to paraxanthine concentration.  相似文献   

17.
The teratogenicity of caffeine, as well as two of its three dimethylated metabolites (theobromine and theophylline), has been established in animal studies. The third metabolite, paraxanthine, has not been reported as being tested for teratogenicity even though it is actually the major demethylated metabolite of caffeine metabolism in man. Pregnant C57BL/6J mice were treated i.p. with 175 or 300 mg/kg/day paraxanthine (1,7-dimethylxanthine) dissolved in deionized water at 4 p.m. on day 11 and 9 a.m. on day 12 of gestation. All dams were sacrificed on day 18, and fetuses were fixed for Wilson's razor blade sectioning or double-staining skeletal examination. A dose-related increase in total malformations, primarily cleft palate and limb malformations, was found. The pattern of malformations was similar to that reported for caffeine, theobromine, and theophylline, i.e., an asymmetric response with the left forelimb most often affected. A 21% resorption and a 46% malformation rate was observed at 300 mg/kg/day of paraxanthine, indicating that paraxanthine was slightly less toxic to the embryo than caffeine. Therefore, the parent compound, caffeine, as well as all three of its dimethylated metabolites--paraxanthine, theophylline, and theobromine--are teratogenic.  相似文献   

18.
In root-tip cells of Vicia faba the frequencies of chromatid aberrations induced by 3-h treatments with 0.05 microM camptothecin were strongly modified when the treatments were carried out in the presence of caffeine at concentrations above 1 mM. Depending on the concentration of caffeine, the clastogenic effect of camptothecin was either enhanced or reduced. At concentrations between 1 and 6 mM, caffeine increased the camptothecin-induced chromosome damage, the strongest enhancement being obtained at 5 mM. A reduction of the chromosome damage was apparent at caffeine concentrations above 10 mM, and in the presence of 20 mM caffeine the clastogenic effect of camptothecin was almost completely suppressed. When present during the camptothecin treatment, theophylline, 8-chlorocaffeine and 1,3,7,9-tetramethyluric acid influenced the induced chromosome damage in a similar way as caffeine, although with varying efficiency. If the concentrations required to produce the two types of modifying effect are used as a criterion, 8-chlorocaffeine was the most effective and 1,3,7,9-tetramethyluric acid the least, whereas caffeine and theophylline were about equally effective.  相似文献   

19.
The three xanthine derivatives, caffeine, theophylline and 3-isobutyl-1-methyl-xanthine (IBMX) produced dose-dependent increases in cyclic AMP concentrations in HeLa cells after long term treatment. Only IBMX produced increases over the first 60 minutes, with a peak of approximately 5-fold control values five to 10 minutes after the addition of the drug. About four hours after the addition of either 0.67 or 1.0 mM IBMX there was a second peak in the concentration of cyclic AMP which was at least as large and usually larger than the peak observed at five to ten minutes. Neither caffeine nor theophylline increased cyclic AMP concentrations above control values until one hour after addition of the compounds, and there was no indication of a peak in the concentration at four hours. Between 24 and 72 hours, all three compounds produced elevations in cyclic AMP levels that were steadily maintained. At any given concentration, the order of potency was IBMX greater than theophylline greater than caffeine. If the xanthine derivatives were removed from the medium after 24 hours of treatment, the cyclic AMP concentrations fell to control levels within one hour. Treatment with 5-iodo-2'-deoxyuridine (IdUrd) or hydrocortisone alone did not change the levels of cyclic AMP, nor did the presence of these inducers of alkaline phosphatase activity alter the effects of the xanthine derivations on cyclic AMP concentrations. The data showed a significant correlation between the magnitude of the increase in cycli AMP concentrations over the period from 24 to 72 hours and the degree of inhibition by the xanthine derivatives of the induction of alkaline phosphatase activity.  相似文献   

20.
Abstract

The binding of naturally occurring methylxanthines such as theophylline, theobromine and caffeine to nucleic acids are reckoned to be pivotal as they are able to modulate the cellular activities. We explore the interaction of yeast RNA binding efficacy of the above xanthine derivatives by using UV absorption differential spectroscopy and Fourier Transform Infrared (FTIR) spectroscopy. Both the analyses show discrimination in their binding affinity to RNA. The differential UV-spectrum at P/D 3.3 reveals the greater RNA binding activity for theophylline (85 ± 5%), whereas moderate and comparatively less binding activity for theobromine (45 ± 5%) and caffeine (30 ± 5%) and the binding activity was found to depend on concentration of the drugs. In FTIR analysis we observed changes in the amino group (NH) of RNA complexed by drugs, where the NH band is found to become very broad, indicating hydrogen bonding (H-bonding) with theophylline (3343.4 cm?1), theobromine (3379.8 cm? 1) and caffeine (3343 cm?1) as compared to the free RNA (3341.6 cm?1). Furthermore in RNA-theophylline complex, it is observed that the carbonyl (C=O) vibration frequency (υC=O) of both drug (υC=O=1718, 1666 cm?1) as well as RNA (υC=O=1699, 1658 cm?1) disappeared and a new vibration band appeared around 1703 cm?1, indicating that the C=O and NH groups of drug and RNA are effectively involved in H-bonding. Whereas in RNA-theo- bromine and RNA-caffeine complexes, we found very little changes in C=O frequency and only broadening of the NH band of RNA due to complexation is observed in these groups. The changes in the vibrations of G-C/A-U bands and other bending frequencies are discussed. Thus the discrimination in the binding affinity of methylxanthines with RNA molecule shows that strong RNA binding drugs like theophylline can selectively be delivered to RNA targets of microbial pathogens having the mechanism of RNA catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号