首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In isolated tobacco leaves l-valine-U-14C gave rise to labeled even-numbered isobranched fatty acids containing 16 to 26 carbon atoms and iso C29, iso C31, and iso C33 paraffins. l-Isoleucine-U-14C on the other hand produced labeled odd-numbered anteiso C17 to C27 fatty acids and anteiso C30 and C32 paraffins. Trichloroacetic acid inhibited the incorporation of isobutyrate into C20 and higher fatty acids and paraffins without affecting the synthesis of the C16 and C18 fatty acids. Thus the very long branched fatty acids are biosynthetically related to the paraffins. In Senecio odoris leaves acetate-1-14C was incorporated into the paraffins (mainly n-C31) only in the epidermis although acetate was readily incorporated into fatty acids in the mesophyll tissue. Similarly only the epidermal tissue incorporated acetate into fatty acids longer than C18 suggesting that the epidermis is the site of synthesis of both paraffins and the very long fatty acids. In broccoli leaves n-C12 acid labeled with 14C in the carboxyl carbon and 3H in the methylene carbons was incorporated into C29 paraffin without the loss of 14C relative to 3H. Since n-C18 acid is known to be incorporated into the paraffin without loss of carboxyl carbon these results suggest that the condensation of C12 acid with C18 acid is not responsible for n-C29 paraffin synthesis in this tissue. Thus all the experimental evidence thus far obtained strongly suggests that elongation of fatty acids followed by decarboxylation is the most likely pathway for paraffin biosynthesis in leaves.  相似文献   

2.
Myxobacteria are well-known for their complex life cycle, including the formation of spore-filled fruiting bodies. The model organism Myxococcus xanthus exhibits a highly complex composition of neutral and phospholipids, including triacylglycerols (TAGs), diacylglycerols (DAGs), phosphatidylethanolamines (PEs), phosphatidylglycerols (PGs), cardiolipins (CLs), and sphingolipids, including ceramides (Cers) and ceramide phosphoinositols (Cer-PIs). In addition, ether lipids have been shown to be involved in development and signaling. In this work, we describe the lipid profile of M. xanthus during its entire life cycle, including spore germination. PEs, representing one of the major components of the bacterial membrane, decreased by about 85% during development from vegetative rods to round myxospores, while TAGs first accumulated up to 2-fold before they declined 48 h after the induction of sporulation. Presumably, membrane lipids are incorporated into TAG-containing lipid bodies, serving as an intermediary energy source for myxospore formation. The ceramides Cer(d-19:0/iso-17:0) and Cer(d-19:0/16:0) accumulated 6-fold and 3-fold, respectively, after 24 h of development, identifying them to be novel putative biomarkers for M. xanthus sporulation. The most abundant ether lipid, 1-iso-15:0-alkyl-2,3-di-iso-15:0-acyl glycerol (TG1), exhibited a lipid profile different from that of all TAGs during sporulation, reinforcing its signaling character. The absence of all these lipid profile changes in mutants during development supports the importance of lipids in myxobacterial development. During germination of myxospores, only the de novo biosynthesis of new cell membrane fatty acids was observed. The unexpected accumulation of TAGs also during germination might indicate a function of TAGs as intermediary storage lipids during this part of the life cycle as well.  相似文献   

3.
The iturinic antibiotics, which contain long chain β-amino acids, are produced by Bacillus subtilis. Screening these strains for the presence of a possible precursor of the iturinic antibiotics, we isolated a lipopeptide containing β-hydroxy fatty acids. The structure of this compound was studied and it appears to be identical or structurally very similar to surfactin. The carbon chain of its β-hydroxy fatty acids was n C16, iso C16, iso C15 or anteiso C15. The percentages of each β-hydroxy fatty acids varied according to the strain producing iturinic antibiotics and were influenced by addition of branched-chain α-amino acids to the culture medium. These results demonstrate for the first time that iso C14 β-hydroxy fatty acid is a constituent present in such a surfactin like lipopeptide. Besides, the presence of radioactive β-hydroxy fatty acids in the phospholipids when the strains were grown in the presence of sodium [14C]acetate seems also characterize the different strains producing iturinic antibiotics.  相似文献   

4.
Addition to Bacillus acidocaldarius of acids which can act as primers for fatty acid synthesis promote the synthesis of corresponding fatty acids competitively. The effective acids are n?C5 to -?7 (not C4 or C8), iso- and anteiso-C, and ?C, (not C4), and a range of cyclic acids from cyclobutylacetic and cyclopentanecarboxylic to cycloheptylacetic. New non-natural ω-cyclobutyl-, ω-cyclopentyl-, and ω-cycloheptyl-fatty acids are obtainable. The range of acceptable primers and the range of fatty acids produced therefrom indicate, respectively, the substrate specificities of the transacylase which introduces acyl species into fatty acids synthesis and the one which removes them. The specificity of the primer transacylase may be similar to that in some rumen anaerobes.  相似文献   

5.
The fatty acid pattern in hydrocarbon- and ketone-utilizing bacteria after growth on various substrates was examined. The fatty acid composition of one hydrocarbon-utilizing organism (Mycobacterium sp. strain OFS) was investigated in detail after growth on n-alkanes, 1-alkenes, ketones, and n-alcohols. n-Alkanes shorter than C13 or longer than C17 were not incorporated into cellular fatty acids without some degradation. Strain OFS incorporated C14 to C17 1-alkenes into cellular fatty acids as the ω-monoenoic fatty acid. Methyl ketones were incorporated into strain OFS after removal of one- or two-carbon fragments from the carbonyl end of the molecule. An organism isolated by enrichment on methyl ketones was incapable of n-alkane utilization but could grow on, although not incorporate, ketones or long chain n-alcohols into cellular fatty acids.  相似文献   

6.
Phospholipid and acid composition of 5 strains of ‘true’ Nocardia and 4 strains of nocardoid bacteria have been studied. A great homogeneity was found in all the Nocardia species: phospholipids consist of cardiolipin, phosphatidyl ethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. Streptomyces (Nocardia) mediterranei did not contain phosphatidylinositol and Oerskovia (Nocardia) turbata had no phosphatidyl ethanolamine. The fatty acid composition of these phospholipids was determined and was found different in Nocardia and nocardoid species. Nocardia were rich in straight chain fatty acids and tuberculostearic acid while the phospholipids of nocardoid bacteria contained greater amounts of branched fatty acids. The fatty acids from acetone soluble lipids consisted of hydroxy and non-hydroxy compounds. Hydroxy acids were found in Nocardia which contained nocardic acids: high MW β-hydroxy α-branched acids and in S. mediterranei which contained β-hydroxy acids with 15–17 carbon atoms. Non-hydroxy acids were essentially palmitic and tuberculostearic acids in Nocardia species while S. mediterranei and O. turbata contained great amounts of iso acids from C14 to C17. Phospholipid and acid composition are discussed as criteria of taxonomic classification of Nocardia and related Actinomycetes.  相似文献   

7.
Bacillus thuringiensis kurstaki (HD-1) was grown on two different complex media to study its fatty acid composition during vegetative growth and sporulation. In contrast to literature results, iso-even branched-chain fatty acids were found to predominate after early vegetative growth and throughout sporulation.  相似文献   

8.
Isobutyrate-1-14C and l-isoleucine-U-14C fed through the petiole labeled the surface lipids of broccoli leaves, but the incorporation was much less than from straight chain precursors. Not more than one-third of the 14C incorporated into the surface lipids was found in the C29 paraffin and derivatives, whereas more than two-thirds of the 14C from straight chain precursors are usually found in these compounds. The small amount of 14C incorporated into the paraffin fraction was found in the n-C29 paraffin rather than branched paraffins showing that the 14C in the paraffin must have come from degradation products. Radio gas-liquid chromatography of the saturated fatty acids showed that, in addition to the n-C16 acid which was formed from both branched precursors, isoleucine-U-14C gave rise to branched C15, C17, and C19 fatty acids, and isobutyrate-1-14C gave rise to branched C16 and C18 acids. Thus the reason for the failure of broccoli leaf to incorporate branched precursors into branched paraffins is not the unavailability of branched fatty acids, but the absolute specificity of the system that synthesizes paraffins, probably the elongation-decar-boxylation enzyme complex. Consistent with this view, no labeled branched fatty acids longer than C19 could be found in the broccoli leaf. The branched fatty acids were also found in the surface lipids indicating that the epidermal layer of cells did have access to branched chains. Thus the paraffin synthesizing enzyme system is specific for straight chains in broccoli, but the fatty acid synthetase is not.  相似文献   

9.
Summary Several aspects of amino acid metabolism were studied in the fruiting myxobacterium Myxococcus xanthus. Alanine and aspartate aminotransferases were detected at significant levels in vegetative cells and myxospores. In contrast, glutamate dehydrogenase, alanine dehydrogenase and aspartase were not detectable in the same preparations, which is consistent with the fact that inorganic nitrogen is not required for growth. The data presented suggest that the aminotransferases demonstrated provide for the synthesis of nonessential amino acids and concomitantly, oxidizable substrates.Isocitrate lyase activity was found in glycerol induced myxospores, but not in vegetative cells grown on two per cent Casitone medium. The emergence of isocitrate lyase in myxospores would indicate a metabolic shift toward the biosynthesis of compounds not required during vegetative growth. However, the presence of isocitrate lyase activity in vegetative cells grown in defined medium suggests that the amino acids present in the growth medium contribute to the formation of pyruvate and acetate and that glyoxylate enzymes are subject to repression when cells are grown on Casitone medium. Also, that expression of glyoxylate enzymes is not specific to myxospore formation.Based on a thesis submitted by the senior author in partial fulfillment of the requirements for the M.S. degree in Microbiology, August, 1968.  相似文献   

10.
Branched-chain amino acids (primarily isoleucine) are important regulators of virulence and are converted to precursor molecules used to initiate fatty acid synthesis in Staphylococcus aureus. Defining how bacteria control their membrane phospholipid composition is key to understanding their adaptation to different environments. Here, we used mass tracing experiments to show that extracellular isoleucine is preferentially metabolized by the branched-chain ketoacid dehydrogenase complex, in contrast to valine, which is not efficiently converted to isobutyryl-CoA. This selectivity creates a ratio of anteiso:iso C5-CoAs that matches the anteiso:iso ratio in membrane phospholipids, indicating indiscriminate utilization of these precursors by the initiation condensing enzyme FabH. Lipidomics analysis showed that removal of isoleucine and leucine from the medium led to the replacement of phospholipid molecular species containing anteiso/iso 17- and 19-carbon fatty acids with 18- and 20-carbon straight-chain fatty acids. This compositional change is driven by an increase in the acetyl-CoA:C5-CoA ratio, enhancing the utilization of acetyl-CoA by FabH. The acyl carrier protein (ACP) pool normally consists of odd carbon acyl-ACP intermediates, but when branched-chain amino acids are absent from the environment, there was a large increase in even carbon acyl-ACP pathway intermediates. The high substrate selectivity of PlsC ensures that, in the presence or the absence of extracellular Ile/Leu, the 2-position is occupied by a branched-chain 15-carbon fatty acid. These metabolomic measurements show how the metabolism of isoleucine and leucine, rather than the selectivity of FabH, control the structure of membrane phospholipids.  相似文献   

11.
Branched chain fatty acids (BCFA) and linear chain/normal odd chain fatty acids (n-OCFA) are major fatty acids in human skin lipids, especially sebaceous gland (SG) wax esters. Skin lipids contain variable amounts of monounsaturated BCFA and n-OCFA, in some reports exceeding over 20% of total fatty acids. Fatty acid desaturase 2 (FADS2) codes for a multifunctional enzyme that catalyzes Δ4-, Δ6- and Δ8-desaturation towards ten unsaturated fatty acids but only one saturate, palmitic acid, converting it to 16:1n-10; FADS2 is not active towards 14:0 or 18:0. Here we test the hypothesis that FADS2 also operates on BCFA and n-OCFA. MCF-7 cancer cells stably expressing FADS1 or FADS2 along with empty vector control cells were incubated with anteiso-15:0, iso-16:0, iso-17:0, anteiso-17:0, iso-18:0, or n-17:0. BCFA were Δ6-desaturated by FADS2 as follows: iso-16:0 → iso-6Z-16:1, iso-17:0 → iso-6Z-17:1, anteiso-17:0 → anteiso-6Z-17:1 and iso-18:0 → iso-6Z-18:1. anteiso-15:0 was not desaturated in either FADS1 or FADS2 cells. n-17:0 was converted to both n-6Z-17:1 by FADS2 Δ6-desaturation and n-9Z-17:1 by SCD Δ9-desaturation. We thus establish novel FADS2-coded enzymatic activity towards BCFA and n-OCFA, expanding the number of known FADS2 saturated fatty acid substrates from one to six. Because of the importance of FADS2 in human skin, our results imply that dysfunction in activity of sebaceous FADS2 may play a role in skin abnormalities associated with skin lipids.  相似文献   

12.
The molecular and isotopic compositions of lipid biomarkers of cultured Aquificales genera have been used to study the community and trophic structure of the hyperthermophilic pink streamers and vent biofilm from Octopus Spring. Thermocrinis ruber, Thermocrinis sp. strain HI 11/12, Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus, and Aquifex aeolicus all contained glycerol-ether phospholipids as well as acyl glycerides. The n-C20:1 and cy-C21 fatty acids dominated all of the Aquificales, while the alkyl glycerol ethers were mainly C18:0. These Aquificales biomarkers were major constituents of the lipid extracts of two Octopus Spring samples, a biofilm associated with the siliceous vent walls, and the well-known pink streamer community (PSC). Both the biofilm and the PSC contained mono- and dialkyl glycerol ethers in which C18 and C20 alkyl groups were prevalent. Phospholipid fatty acids included both the Aquificales n-C20:1 and cy-C21, plus a series of iso-branched fatty acids (i-C15:0 to i-C21:0), indicating an additional bacterial component. Biomass and lipids from the PSC were depleted in 13C relative to source water CO2 by 10.9 and 17.2‰, respectively. The C20–21 fatty acids of the PSC were less depleted than the iso-branched fatty acids, 18.4 and 22.6‰, respectively. The biomass of T. ruber grown on CO2 was depleted in 13C by only 3.3‰ relative to C source. In contrast, biomass was depleted by 19.7‰ when formate was the C source. Independent of carbon source, T. ruber lipids were heavier than biomass (+1.3‰). The depletion in the C20–21 fatty acids from the PSC indicates that Thermocrinis biomass must be similarly depleted and too light to be explained by growth on CO2. Accordingly, Thermocrinis in the PSC is likely to have utilized formate, presumably generated in the spring source region.  相似文献   

13.
Under conditions of nutrient deprivation, Myxococcus xanthus undergoes a developmental process that results in the formation of a fruiting body containing environmentally resistant myxospores. We have shown that myxospores contain two copies of the genome, suggesting that cells must replicate the genome prior to or during development. To further investigate the role of DNA replication in development, a temperature-sensitive dnaB mutant, DnaBA116V, was isolated from M. xanthus. Unlike what happens in Escherichia coli dnaB mutants, where DNA replication immediately halts upon a shift to a nonpermissive temperature, growth and DNA replication of the M. xanthus mutant ceased after one cell doubling at a nonpermissive temperature, 37°C. We demonstrated that at the nonpermissive temperature the DnaBA116V mutant arrested as a population of 1n cells, implying that these cells could complete one round of the cell cycle but did not initiate new rounds of DNA replication. In developmental assays, the DnaBA116V mutant was unable to develop into fruiting bodies and produced fewer myxospores than the wild type at the nonpermissive temperature. However, the mutant was able to undergo development when it was shifted to a permissive temperature, suggesting that cells had the capacity to undergo DNA replication during development and to allow the formation of myxospores.  相似文献   

14.
The esg locus is required for the formation of muiti-cellular fruiting bodies and spores by the developmental bacterium Myxococcus xanthus Studies have suggested that esg mutants are defective in the production of an essential signal (E-signal) used in cell-cell communication and that E-signalling is required for the expression of many developmental genes. Recently we have determined that the esg locus encodes components of a branched-chain keto acid dehydrogenase. a multienzyme complex involved in branched-chain amino acid metabolism in many bacteria and higher organisms. During vegetative growth in M. xanthus. this enzyme complex appears to participate in the production of the branched-chain fatty acids found in this organism. M. xanthus fatty acids (including the branched-chain fatty acids) have been observed to have a variety of effects on developing cells. These effects include; (i) the lysis of M. xanthus cells (autocide activity), (ii) acceleration of the rate of sporulation and (iii) rescue of sporulation by certain development-defective mutants. These and other results suggest a model in which the branched-chain fatty acids. Synthesized during growth, are released from cellular phospholipid by a developmentally regulated phospholipase during fruiting-body formation. This model proposes that one or more of the branched-chain fatty acids that are released constitutes the E-signal which must be transmitted between cells to complete M. xanthus development.  相似文献   

15.
16.
Vegetative cells as well myxospores ofMyxococcus xanthus have shown anticomplementary activity and the capacity to be used as active agents in the skin preparation of the Shwartzman reaction and in its intravenous induction. These endotoxin-like properties were not extractable by the hot phenol-water methods. Our results suggest the presence of a lipid A analog in both vegetative cells and myxospores, and emphasize the difficulty of lipopolysaccharide detection; this is perhaps a consequence of a developing associated change in polysaccharide moiety of the myxobacterial lipopolysaccharides; this may be the basis of the special immunomodulation pattern shown byM. xanthus myxospores.  相似文献   

17.
Constituents of the venom (1) and Dufour's gland (25) have been characterized in an Australian representative of the highly evolved ant subfamily Formicinae. The venom reservoir of this ant, Camponotus intrepidus, contains formic acid, identified as the benzyl ester. The Dufour's gland contains a major hydrocarbon and a minor fatty acid fraction. Hydrocarbons include the normal alkanes, C10 to C17 (82 per cent); two series of monomethylalkanes, C12, C13, C14, C16, and C17, the 3-methyl derivatives comprise approximately 16 per cent, and the 5-methylalkanes 2 per cent of the total; there are trace proportions of the n-alkenes, C12, C13, and C15. The minor fatty acids, myristic, pentadecanoic, palmitic, and stearic are present in the ratio 2 : 2 : 12 : 11.  相似文献   

18.
The fatty acid composition of Thermus spp., including T. aquaticus ATCC 25104, T. thermophilus DSM 579, T. flavus DSM 674, and seven wild strains was examined. Organisms were tested at a minimum of either 35, 40, or 45°C and at an optimum of 60 or 70°C. Total fatty acid content per dry weight of cells varied between 1.2 and 3.7%, and the quantity of fatty acids was higher at the high temperature range in the majority of strains. At the optimum temperature, strains could be assigned to three chemotaxonomic groups with reference to the ratio of iso C15:0/iso C17:0. In six of the strains the ratio of iso C15:0/iso C17:0 remained unchanged at the minimum temperature, whereas in four strains the ratio was reversed. The proportion of the C15:0 and C17:0 isobranched acids was decreased and the proportion of anteisobranched fatty acids, namely anteiso C15:0, anteiso C17:0, and anteiso C17:1, was increased at the lower temperature range. Some changes were seen in the levels of the n-C16:0 and iso C16:0 acids, but these were strain specific.  相似文献   

19.
The TF cell line, derived from a top predatory, carnivorous marine teleost, the turbot (Scophthalmus maximus), is known to have a limited conversion of C18 to C20 polyunsaturated fatty acids (PUFA). To illuminate the underlying processes, we studied the conversions of stearidonic acid, 18:4(n–3), and its elongation product, 20:4(n–3), in TF cells and also in a cell line, AS, derived from Atlantic salmon (Salmo salar), by adding unlabelled (25 μM), U-14C (1 μM) or deuterated (d5; 25 μM) fatty acids. Stearidonic acid, 18:4(n–3), was metabolised to 20:5(n–3) in both cells lines, but more so in AS than in TF cells. Δ5 desaturation was more active in TF cells than in AS cells, whereas C18 to C20 elongation was much reduced in TF as compared to AS cells. Only small amounts of docosahexaenoic acid (22:6(n–3)) were produced by both cell lines, although there was significant production of 22:5(n–3) in both cultures, especially when 20:4(n–3) was supplemented. We conclude that limited elongation of C18 to C20 fatty acids rather than limited fatty acyl Δ5 desaturation accounts for the limited rate of conversion of 18:3(n–3) to 20:5(n–3) in the turbot cell line, as compared to the Atlantic salmon cell line. The results can account for the known differences in conversions of C18 to C20 PUFA by the turbot and the Atlantic salmon in vivo.  相似文献   

20.
Summary Mutant strains of Candida lipolytica NRRL Y-6795, which are defective in fatty acyl-CoA synthetase I linking to the system incorporating the fatty acyl moiety into cellular lipids (Kamiryo, et al., 1977), were cultivated on various carbon sources including odd-chain n-alkanes (C11 to C17) and their fatty acid compositions were examined.In the case of the wild-type strain grown on odd-chain n-alkanes (from C13 to C17), the proportions of odd-chain cellular fatty acids to total cellular fatty acids were markedly high, reaching 98–99% in the n-pentadecane- and n-heptadecane-grown cells. Those of the mutant strains, however, were drastically low, being at most 12–13% even in the n-heptadecane-grown cells. The total fatty acid contents in the mutant cells were 4–5% in dry weight, being slightly lower than those of the wild strain (4–7% in dry weight).The growth rates of the mutants on glucose, n-undecane and n-tridecane were comparable to those of the wild strain. When n-pentadecane, n-heptadecane, or oleic acid was used as carbon source, the mutants had lower, but still practicable, growth rates.The results obtained indicate that these mutant strains of Candida lipolytica will be useful as sources of biomass with low content of nonnatural odd-chain fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号