首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Dialyzed membranes of Escherichia coli prepared by an ethylenediaminetetraacetic acid-lysozyme method catalyze the oxidation of both l-alanine and d-alanine. The specific activities for the oxidations of both d-alanine and l-alanine are increased fivefold when the cells are grown in the presence of either l-alanine or dl-alanine, but are increased only slightly when grown in the presence of d-alanine. In the dl-alanine-induced system, the specific activities for the oxidations of some other d-amino acids are also raised. dl-alanine also induces two other alanine catabolizing enzymes, alanine dehydrogenase and alanine-glutamate aminotransferase which are found in the "soluble" fraction of lysozyme-treated cells. The oxidations of both l-alanine and d-alanine were associated with the membranes of induced cells. After the membranes were disintegrated by sonic treatment, both l-alanine and d-alanine oxidation catalysts sedimented in a sucrose density gradient together with d-lactate and l-lactate dehydrogenases, apparently as a single multienzyme complex.  相似文献   

2.
The accumulation of d-alanine, l-alanine, glycine, and d-cycloserine in Escherichia coli was found to be mediated by at least two transport systems. The systems for d-alanine and glycine are related, and are separate from that involved in the accumulation of l-alanine. d-Cycloserine appears to be primarily transported by the d-alanine-glycine system. The accumulation of d-alanine, glycine, and d-cycloserine was characterized by two line segments in the Lineweaver-Burk analysis, whereas the accumulation of l-alanine was characterized by a single line segment. d-Cycloserine was an effective inhibitor of glycine and d-alanine accumulation, and l-cycloserine was an effective inhibitor of l-alanine transport. The systems were further differentiated by effects of azide, enhancement under various growth conditions, and additional inhibitor studies. Since the primary access of d-cycloserine in E. coli is via the d-alanine-glycine system, glycine might be expected to be a better antagonist of d-cycloserine inhibition than l-alanine. Glycine and d-alanine at 10(-5)m antagonized the effect of d-cycloserine in E. coli, whereas this concentration of l-alanine had no effect.  相似文献   

3.
The specific activities of l-alanine:d-alanine racemase, d-alanine:d-alanine ligase, and the l-alanine, d-glutamic acid, meso-diaminopimelic acid, and d-alanyl-d-alanine adding enzymes were followed during growth of Escherichia coli. The specific activities were nearly independent of the growth phase. d-Alanine:d-alanine ligase was inhibited by d-alanyl-d-alanine, d-cycloserine, glycine, and glycyl-glycine. l-Alanine:d-alanine racemase was found to be sensitive to d-cycloserine, glycine, and glycyl-glycine. The l-alanine adding enzyme was inhibited by glycine and glycyl-glycine.  相似文献   

4.
Whole cells of Bacillus subtilis transported d-alanine and l-alanine by two different systems. The high-affinity system (K(m) of 1 muM and V(max) of 0.6 to 0.8 nmol/min per mg of protein) was specific for the two stereoisomers of alanine. The low-affinity system (K(m) of 10 muM for l-alanine and 20 muM for d-alanine and glycine) had a V(max) of 5 to 12 nmol/min per mg of protein. This system transported glycine, d-cycloserine, and d-serine, in addition to d- and l-alanine. Azide inhibited the uptake of these amino acids and caused the efflux of d-alanine from preloaded cells. These data suggest that transport of these amino acids is energized by the electron transport chain.  相似文献   

5.
The accumulation of d-alanine and the accumulation of glycine in Escherichia coli are related and appear to be separate from the transport of l-alanine. The analysis of four d-cycloserine-resistant mutants provides additional support for this conclusion. The first-step mutant from E. coli K-12 that is resistant to d-cycloserine was characterized by the loss of the high-affinity line segment of the d-alanine-glycine transport system in the Lineweaver-Burk plot. This mutation, which is linked to the met(1) locus, also resulted in the loss of the ability to transport d-cycloserine. The second-step mutation that is located 0.5 min from the first-step mutation resulted in the loss of the low-affinity line segment for the d-alanine-glycine transport system. The transport of l-alanine was decreased only 20 to 30% in each of these mutants. A multistep mutant from E. coli W that is 80-fold resistant to d-cycloserine lost >90% of the transport activity for d-alanine and glycine, whereas 75% of the transport activity for l-alanine was retained. E. coli W could utilize either d- or l-alanine as a carbon source, whereas the multistep mutant could only utilize l-alanine. Thus, a functioning transport system for d-alanine and glycine is required for both d-cycloserine action and growth on d-alanine.  相似文献   

6.
We constructed the high-expression system of the alr gene from Corynebacterium glutamicum ATCC 13032 in Escherichia coli BL 21 (DE3) to characterize the enzymological and structural properties of the gene product, Alr. The Alr was expressed in the soluble fractions of the cell extract of the E. coli clone and showed alanine racemase activity. The purified Alr was a dimer with a molecular mass of 78 kDa. The Alr required pyridoxal 5'-phosphate (PLP) as a coenzyme and contained 2 mol of PLP per mol of the enzyme. The holoenzyme showed maximum absorption at 420 nm, while the reduced form of the enzyme showed it at 310 nm. The Alr was specific for alanine, and the optimum pH was observed at about nine. The Alr was relatively thermostable, and its half-life time at 60 degrees C was estimated to be 26 min. The K(m) and V(max) values were determined as follows: l-alanine to d-alanine, K(m) (l-alanine) 5.01 mM and V(max) 306 U/mg; d-alanine to l-alanine, K(m) (d-alanine) 5.24 mM and V(max) 345 U/mg. The K(eq) value was calculated to be 1.07 and showed good agreement with the theoretical value for the racemization reaction. The high substrate specificity of the Alr from C. glutamicum ATCC 13032 is expected to be a biocatalyst for d-alanine production from the l-counter part.  相似文献   

7.
Spores of the standard transformable Marburg strain of Bacillus subtilis can be initiated to germinate by l-alanine alone. We isolated mutants which required for this process, in addition to l-alanine, the combination of d-glucose + d-fructose + K(+) or NH(4) (+) ions. In place of fructose, autoclaved or caramelized glucose could be used. Even the standard type strain required the addition of these three agents when d-alanine was present or when the temperature was raised. These findings show that l-alanine normally performs two functions during initiation, one of which is absent in the mutants or is blocked by d-alanine or elevated temperature. One of our mutants was not absolutely dependent on the addition of external l-alanine, because it could be initiated at a reduced rate by the sole addition of glucose + K(+) or NH(4) (+). When K(+) or NH(4) (+) was replaced by Na(+), the initiation rate was greatly reduced. The divalent metal ions Mg(++), Mn(++), and Ca(++) could not satisfy the cation requirement.  相似文献   

8.
The amounts of d-alanine derivatives, γ-l-glutamyl-d-alanine and N-malonyl-d-alanine, increase rapidly during the early growth of pea seeds. Pyruvate-[1?14C], l-alanine-[U?14C], d-alanine-[U?14C], l-alanine-[15N] and 15NH4Cl were therefore fed to the seedlings and the incorporation investigated. Labelling results revealed that pea seedlings can utilize these erogenous compounds to form d-alanine and that labelled l-alanine is effectively converted to the d-enantiomer with retention of 14C and, largely, 15N label. Enzyme analyses in vitro provided additional evidence that the extract of pea seedlings catalyzes the direct conversion of l-alanine to d-alanine. The data suggest that the de novo synthesis of d-alanine in pea seedlings occurs by a racemase reaction.  相似文献   

9.
  • 1.1. Eighteen molluscan species were examined for the presence of d-alanine and alanine racemase activity to probe the probable relation between them.
  • 2.2. Two bivalve species had high concentration of d-alanine and l-alanine (1:1) and showed high activities of alanine racemase. In these species, the occurrence of d-alanine could be explained by the action of alanine racemase.
  • 3.3. In other species, the levels of d-alanine and enzyme activity were low, and the occurrence of d-alanine did not correspond with the presence of alanine racemase activity.
  • 4.4. The mechanism of the occurrence of d-alanine in molluscan tissues seems to vary from species to species and seems not to be associated with the phylogenic situation or habitats of the respective species.
  相似文献   

10.
Available information on the fate and insulinotropic action of l-alanine in isolated pancreatic islets is restricted to data collected in obese hyperglycemic mice. Recent data, however, collected mostly in tumoral islet cells of either the RINm5F line or BRIN-BD11 line, have drawn attention to the possible role of Na+ co-transport in the insulinotropic action of l-alanine. In the present study conducted in islets prepared from normal adult rats, l-alanine was found (i) to inhibit pyruvate kinase in islet homogenates, (ii) not to affect the oxidation of endogenous fatty acids in islets prelabelled with [U-14C]palmitate, (iii) to stimulate 45Ca uptake in islets deprived of any other exogenous nutrient, and (iv) to augment insulin release evoked by either 2-ketoisocaproate or l-leucine, whilst failing to significantly affect glucose-induced insulin secretion. The oxidation of l-[U-14C]alanine was unaffected by d-glucose, but inhibited by l-leucine. Inversely, l-alanine decreased the oxidation of d-[U-14C]glucose, but failed to affect l-[U-14C]leucine oxidation. It is concluded that the occurrence of a positive insulinotropic action of l-alanine is restricted to selected experimental conditions, the secretory data being compatible with the view that stimulation of insulin secretion by the tested nutrient(s) reflects, as a rule, their capacity to augment ATP generation in the islet B cells. However, the possible role of Na+ co-transport in the secretory response to l-alanine cannot be ignored.  相似文献   

11.
Amino acid transport in Mycobacterium smegmatis   总被引:4,自引:2,他引:2       下载免费PDF全文
The transport of d-alanine, d-glutamic acid, and d-valine in Mycobacterium smegmatis was compared quantitatively with that of their l-isomers. It appeared that the uptake of d-alanine was mediated by an active process displaying saturation kinetics characteristic of enzyme function, whereas the uptake of d-glutamic acid was accomplished by a passive process showing diffusion kinetics. Both processes were involved in the uptake of l-alanine, l-glutamic acid, d-valine, and l-valine. d-Valine competed with l-valine for entry into the cell through a single active process. d-Alanine and l-alanine also utilized the same active process, but the d-isomer could not enter the cell through the passive process. The passive process exhibited characteristics of diffusion, but was sensitive to sulfhydryl-blocking reagents and showed competition among structurally related amino acids. These last findings suggested that the passive process is a facilitated diffusion.  相似文献   

12.
Genetic analysis of a d-alanine requiring mutant (dal) of Bacillus subtilis reveals that the gene that codes for d,l-alanine racemase is linked to purB. The order of genes in this region of the chromosome is purB, pig, tsi, dal. Thus there are at least two clusters of genes that regulate cell wall biosynthesis in B. subtilis.  相似文献   

13.
d-Glucose decreases phosphate reabsorption in rat proximal tubule. It is also postulated that some amino acids interact with phosphate reabsorption. To investigate the mechanism of these interactions, phosphate, d-glucose and l-alanine transport kinetics were measured in brush border membrane vesicles isolated from superficial rat kidney cortex by the calcium precipitation technique. At pH 7.4, Na+-dependent phosphate transport was inhibited in the presence of either d-glucose (39 mM) or l-alanine (2.4 mM). In this model, with d-glucose or with l-alanine the V value of the phosphate uptake was decreased, whereas the apparent Km for the phosphate uptake was not affected. However, some inhibition of phosphate transport was observed in the presence of l-glucose, d-alanine or d-glucose after phlorizin preincubation. A 30% Na+-dependent l-alanine (0.1 mM) transport inhibition was observed in the presence of 5 mM phosphate. d-Glucose (1 mM) was also inhibited by 20% when 5 mM phosphate was added to incubation medium. According to several authors, in our model, d-glucose decreased the l-alanine transport and vice versa. Moreover, when the membrane potential was abolished, a clear inhibition of d-glucose by l-alanine persisted. These multiple interactions could be explained by the accelerated dissipation of the Na+ gradient insofar as the rate of the Na+ uptake was increased with d-glucose, l-alanine or phosphate and since the absence of variations in membrane potential did not suppress these inhibitions.  相似文献   

14.
Factors affecting the level of alanine racemase in Escherichia coli   总被引:6,自引:5,他引:1  
Alanine racemase occupies a key position in the alanine branch of peptidoglycan biosynthesis. The level of this enzyme in Escherichia coli W is a function of the carbon source. For example, growth on l-alanine causes a 25-fold higher level of alanine racemase when compared with growth on glucose. When potential inducers of this enzyme are added to either a glucose or succinate medium, a low specificity is observed with those compounds that cause higher levels of enzyme. Growth of E. coli W on either pyruvate, d-alanine, or l-alanine resulted in lower levels of l- and d-alanine in the internal pool. With each of these carbon sources, the level of alanine racemase was markedly elevated when compared to glucose-grown cells; thus, with single carbon sources, the concentration of alanine in the pool is inversely related to the specific activity of alanine racemase. These observations support derepression as a possible mechanism that gives rise to higher levels of alanine racemase. Since multiple forms of the alanine racemase were not detected in extracts from E. coli W grown on various carbon sources, it would appear that this type of heterogeneity is not a consideration in interpreting the above results.  相似文献   

15.
Pyridoxineless mutants of Escherichia coli are lysed in a few hours when starved for pyridoxine in a glucose minimal medium containing glycine at 10 mM. The lysis is prevented equally well by l-alanine and by d-alanine when either is present at 0.1 mM. The lysis is potentiated by 0.5 mM l-methionine. The peculiar susceptibility of E. coli B to glycine-mediated lysis during starvation for pyridoxine suggests that the starvation reduces the availability of some normal antagonist of glycine, presumably alanine.  相似文献   

16.
A series of tripeptides which terminated in d-alanine, d-serine, d-leucine or l-alanine was synthesized and the peptides tested for their ability to act as substrates for an amidating enzyme present in porcine pituitary. The peptides were allowed to compete with a radiolabelled substrate 125I d-Tyr Phe Gly in the presence of a rate limiting concentration of amidating enzyme and the degree of conversion to 125I d-Tyr Phe amide was determined by ion exchange chromatography. An accelerated procedure was developed for investigating the rates of reaction. The results showed that d-Tyr Phe d-Ala has a significant affinity for the amidating enzyme; no affinity could be demonstrated with d-Tyr Phe 1-Ala, d-Tyr Phe d-Ser or d-Tyr Phe d-Leu. Direct evidence that d-Tyr Phe d-Ala can undergo amidation was obtained by incubating the 125I labelled tripeptide with the pituitary enzyme. Amidation took place readily with d-Tyr Phe d-Ala but not with the other tripeptides; thus, while the enzyme is unable to catalyse the conversion of a peptide terminating in 1-alanine, it can accept a peptide terminating in d-alanine. The results indicate that the amidating enzyme has a highly compact substrate binding site.  相似文献   

17.
From the reaction mechanism and crystal structure analysis, a bacterial alanine racemase is believed to work as a homodimer with a substrate, l-alanine or d-alanine. We analysed oligomerization states of seven alanine racemases, biosynthetic and catabolic, from Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, P. putida and P. fluorescens, with three different methods, gel filtration chromatography, native PAGE and analytical ultracentrifugation. All alanine racemases were proved to be in a dynamic equilibrium between monomeric and dimeric form with every methods used in this study. In both biosynthetic and catabolic alanine racemases, association constants for dimerization were high for the enzymes with high V(max) values. The enzymes with low V(max) values gave the low association constants. We proposed that alanine racemases are classified into two types; the enzymes with low and high-equilibrium association constants for dimerization.  相似文献   

18.
Bacteriocin (hemolysin) of Streptococcus zymogenes   总被引:22,自引:4,他引:18       下载免费PDF全文
The sensitivity of Streptococcus faecalis (ATTC 8043) to S. zymogenes X-14 bacteriocin depends greatly on its physiological age. Sensitivity decreases from the mid-log phase on and is completely lost in the stationary phase. The sensitivity of erythrocytes to the hemolytic capacity of the bacteriocin showed considerable species variation. The order of increasing sensitivity was goose < sheep < dog < horse < human < rabbit. However, when red cell stromata were used as inhibitors of hemolysis in a standard system employing rabbit erythrocytes the order of increasing effectiveness was sheep < rabbit < human < horse < goose. When rabbit cells were used in varying concentrations with a constant hemolysin concentration, there was a lag of about 30 min, which for a given hemolysin preparation was constant for all red cell concentrations. Furthermore, the rate of hemolysis increased with increasing red cell concentration. If red cells are held constant and lysin varied, the time to reach half-maximal lysis varies directly with lysin but is not strictly proportional. Bacterial membranes were one to three orders of magnitude more effective than red cell stromata as inhibitors. The order of increasing effectiveness seems to be Escherichia coli < Bacillus megaterium < S. faecalis < Micrococcus lysodeikticus. In addition to membranes, a d-alanine containing glycerol teichoic acid, trypsin in high concentration, and deoxyribonuclease also inhibited hemolysis. Ribonuclease, d-alanine, l-alanine, dl-alanyl-dl-alanine, N-acetyl-d-alanine, N-acetyl-l-alanine did not inhibit hemolysis.  相似文献   

19.
Regulation of valine catabolism in Pseudomonas putida   总被引:2,自引:10,他引:2       下载免费PDF全文
The activities of six enzymes which take part in the oxidation of valine by Pseudomonas putida were measured under various conditions of growth. The formation of four of the six enzymes was induced by growth on d- or l-valine: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-hydroxyisobutyrate dehydrogenase, and methylmalonate semialdehyde dehydrogenase. Branched-chain amino acid transaminase and isobutyryl-CoA dehydrogenase were synthesized constitutively. d-Amino acid dehydrogenase and branched-chain keto acid dehydrogenase were induced during growth on valine, leucine, and isoleucine, and these enzymes were assumed to be common to the metabolism of all three branched-chain amino acids. The segment of the pathway required for oxidation of isobutyrate was induced by growth on isobutyrate or 3-hydroxyisobutyrate without formation of the preceding enzymes. d-Amino acid dehydrogenase was induced by growth on l-alanine without formation of other enzymes required for the catabolism of valine. d-Valine was a more effective inducer of d-amino acid dehydrogenase than was l-valine. Therefore, the valine catabolic pathway was induced in three separate segments: (i) d-amino acid dehydrogenase, (ii) branched-chain keto acid dehydrogenase, and (iii) 3-hydroxyisobutyrate dehydrogenase plus methylmalonate semialdehyde dehydrogenase. In a study of the kinetics of formation of the inducible enzymes, it was found that 3-hydroxyisobutyrate and methylmalonate semialdehyde dehydrogenases were coordinately induced. Induction of enzymes of the valine catabolic pathway was studied in a mutant that had lost the ability to grow on all three branched-chain amino acids. Strain PpM2106 had lowered levels of branched-chain amino acid transaminase and completely lacked branched-chain keto acid dehydrogenase when grown in medium which contained valine. Addition of 2-ketoisovalerate, 2-ketoisocaproate, or 2-keto-3-methylvalerate to the growth medium of strain PpM2106 resulted in induction of normal levels of branched-chain keto acid dehydrogenase; therefore, the branched-chain keto acids were the actual inducers of branched-chain keto acid dehydrogenase.  相似文献   

20.
The effects of pH, solvent isotope, and primary isotope replacement on substrate dehydrogenation by Rhodotorula gracilis d-amino acid oxidase were investigated. The rate constant for enzyme-FAD reduction by d-alanine increases approximately fourfold with pH, reflecting apparent pKa values of approximately 6 and approximately 8, and reaches plateaus at high and low pH. Such profiles are observed in all presteady-state and steady-state kinetic experiments, using both d-alanine and d-asparagine as substrates, and are inconsistent with the operation of a base essential to catalysis. A solvent deuterium isotope effect of 3.1 +/- 1.1 is observed on the reaction with d-alanine at pH 6; it decreases to 1.2 +/- 0.2 at pH 10. The primary substrate isotope effect on the reduction rate with [2-D]d-alanine is 9.1 +/- 1.5 at low and 2.3 +/- 0.3 at high pH. At pH 6.0, the solvent isotope effect is 2.9 +/- 0.8 with [2-D]d-alanine, and the primary isotope effect is 8.4 +/- 2.4 in D2O. Thus, primary and solvent kinetic isotope effects (KIEs) are independent of the presence of the other isotope, i.e. the 'double' kinetic isotope effect is the product of the individual KIEs, consistent with a transition state in which rupture of the two bonds of the substrate to hydrogen is concerted. These results support a hydride transfer mechanism for the dehydrogenation reaction in d-amino acid oxidase and argue against the occurrence of any intermediates in the process. A pKa,app of approximately 8 is interpreted to arise from the microscopic ionization of the substrate amino acid alpha-amino group, but also includes contributions from kinetic parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号