首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of infrared analyzers to measure water vapor concentrations in photosynthesis systems is becoming common. It is known that sensitivity of infrared carbon dioxide and water vapor analyzers is affected by the oxygen concentration in the background gas, particularly for absolute analyzers, but the potential for large errors in estimates of stomatal conductance due to effects of oxygen concentration on the sensitivity of infrared water vapor analyzers is not widely recognized. This work tested three types of infrared water vapor analyzers for changes in sensitivity of infrared water vapor analyzers depending on the oxygen content of the background gas. It was found that changing from either 0 or 2% to 21% oxygen in nitrogen decreased the sensitivity to water vapor for all three types of infrared water vapor analyzers by about 4%. The change in sensitivity was linear with oxygen mole fraction. The resulting error in calculated stomatal conductance would depend strongly on the leaf to air vapor pressure difference and leaf temperature, and also on whether leaf temperature was directly measured or calculated from energy balance. Examples of measurements of gas exchange on soybean leaves under glasshouse conditions indicated that changing from 21% to 2% oxygen produced an artifactual apparent increase in stomatal conductance which averaged about 30%. Similar errors occurred for `conductances' of wet filter paper. Such errors could affect inferences about the carbon dioxide dependence of the sensitivity of photosynthesis to oxygen. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Seasonal changes in minimum leaf conductance to water vapor (gmin), an estimate of cuticular conductance, and photosynthetic gas exchange in two co-occurring oak species in north-east Kansas (USA) were examined to determine if leaf gas exchange characteristics correlated with differences in tree distribution. Bur oak (Quercus macrocarpa Michx.) is more abundant in mesic gallery forest sites, whereas chinquapin oak (Quercus muehlenbergii Englm.) is more abundant in xeric sites. Early, during leaf expansion, gmin was significantly lower in chinquapin oak than in bur oak, though midday water potentials were similar. After leaves had fully expanded, gmin decreased to seasonal minimum values of 4.57 (±0.274) mmol m-2 s-1 in bur oak, and 2.66 (±0.156) mmol m-2 s-1 in chinquapin oak. Water potentials at these times were significantly higher in chinquapin oak. As leaves were expanding, photosynthesis (Anet) was significantly higher in chinquapin oak than in bur oak. Later in the growing season, Anet and gleaf increased dramatically in both species, and were significantly higher in bur oak relative to chinquapin oak. We concluded that bur and chinquapin oak have a number of leaf gas exchange characteristics that minimize seasonal water loss. These characteristics are distinct from trees from more mesic sites, and are consistent with the distribution patterns of these trees in tall-grass prairie gallery forests.  相似文献   

3.
BACKGROUND AND AIMS: The influence of stomatal architecture on stomatal conductance and on the developing concentration gradient was explored quantitatively by comparing diffusion rates of water vapour and CO(2) occurring in a set of three-dimensional stoma models. The influence on diffusion of an internal cuticle, a sunken stoma, a partially closed stoma and of substomatal chambers of two different sizes was considered. METHODS: The study was performed by using a commercial computer program based on the Finite Element Method which allows for the simulation of diffusion in three dimensions. By using this method, diffusion was generated by prescribed gas concentrations at the boundaries of the substomatal chamber and outside of the leaf. The program calculates the distribution of gas concentrations over the entire model space. KEY RESULTS: Locating the stomatal pore at the bottom of a stomatal antechamber with a depth of 20 microm decreased the conductance significantly (at roughly about 30 %). The humidity directly above the stomatal pore is significantly higher with the stomatal antechamber present. Lining the walls of the substomatal chamber with an internal cuticle which suppresses evaporation had an even stronger effect by reducing the conductance to 60 % of the original value. The study corroborates therefore the results of former studies that water will evaporate preferentially at sites in the immediate vicinity to the stomatal pore if no internal cuticle is present. The conductance decrease affects only water vapour and not CO(2). Increasing the substomatal chamber increases CO(2) uptake, whereas transpiration increases if an internal cuticle is present. CONCLUSIONS: Variation of stomatal structure may, with unchanged pore size and depth, profoundly affect gas exchange and the pathways of liquid water inside the leaf. Equations for calculation of stomatal conductance which are solely based on stomatal density and pore depth and size can significantly overestimate stomatal conductance.  相似文献   

4.
Transpiration of cuticular membranes isolated from the lower stomatous surface of Hedera helix (ivy) leaves was measured using a novel approach which allowed a distinction to be made between gas phase diffusion (through stomatal pores) and solid phase diffusion (transport through the polymer matrix membrane and cuticular waxes) of water molecules. This approach is based on the principle that the diffusivity of water vapour in the gas phase can be manipulated by using different gases (helium, nitrogen, or carbon dioxide) while diffusivity of water in the solid phase is not affected. This approach allowed the flow of water across stomatal pores ('stomatal transpiration') to be calculated separately from the flow across the cuticle (cuticular transpiration) on the stomatous leaf surface. As expected, water flux across the cuticle isolated from the astomatous leaf surface was not affected by the gas composition since there are no gas-filled pores. Resistance to flux of water through the solid cuticle on the stomatous leaf surface was about 11 times lower than cuticular resistance on the astomatous leaf surface, indicating pronounced differences in barrier properties between cuticles isolated from both leaf surfaces. In order to check whether this difference in resistance was due to different barrier properties of cuticular waxes on both leaf sides, mobility of 14C-labelled 2,4-dichlorophenoxy-butyric acid 14C-2,4-DB) in reconstituted cuticular wax isolated from both leaf surfaces was measured separately. However, mobility of 14C-2,4-DB in reconstituted wax isolated from the lower leaf surface was 2.6 times lower compared with the upper leaf side. The significantly higher permeability of the ivy cuticle on the lower stomatous leaf surface compared with the astomatous surface might result from lateral heterogeneity in permeability of the cuticle covering normal epidermal cells compared with the cuticle covering the stomatal cell surface.  相似文献   

5.
The purpose of this study was to characterize leaf photosynthetic and stomatal responses of wheat (Triticum aestivum L.) plants grown under two N-nutritional regimes. High- and low-N regimes were imposed on growth-chamber-grown plants by fertilizing with nutrient solutions containing 12 or 1 millimolar nitrogen, respectively. Gas-exchange measurements indicated not only greater photosynthetic capacity of high-N plants under well-watered conditions, but also a greater sensitivity of CO2 exchange rate and leaf conductance to CO2 and leaf water potential compared to low-N plants. Increased sensitivity of high-N plants was associated with greater tissue elasticity, lower values of leaf osmotic pressure and greater aboveground biomass. These N-nutritional-related changes resulted in greater desiccation (lowered relative water content) of high-N plants as leaf water potential fell, and were implicated as being important in causing greater sensitivity of high-N leaf gas exchange to reductions in water potential. Water use efficiency of leaves, calculated as CO2 exchange rate/transpiration, increased from 9.1 to 13 millimoles per mole and 7.9 to 9.1 millimoles per mole for high- and low-N plants as water became limiting. Stomatal oscillations were commonly observed in the low-N treatment at low leaf water potentials and ambient CO2 concentrations, but disappeared as CO2 was lowered and stomata opened.  相似文献   

6.
Ubiquitous, large diameter pores have not previously been adequately demonstrated to occur in leaf cuticles. Here we show conclusively that such structures occur in Eidothea zoexylocarya, a rainforest tree species of Proteaceae restricted to the Australian Wet Tropics. The pores are abundant, large-diameter apertures (~1 μm), that extend perpendicularly most of the way through the cuticle from the inside. They occur on both sides of the leaf, but are absent from the cuticle associated with stomatal complexes on the abaxial side. No such pores were found in any other species, including the only other species of Eidothea, E. hardeniana from New South Wales, and other species that have previously been purported to possess cuticular pores. To determine whether these pores made the cuticles more leaky to water vapor, we measured astomatous cuticular conductances to water vapor for E. zoexylocarya and seven other Proteaceae species of the Wet Tropics. Cuticular conductance for E. zoexylocarya was relatively low, indicating that the prominent pores do not increase conductance. The function of the pores is currently obscure, but the presence of both pores and an adaxial hypodermis in E. zoexylocarya but not E. hardeniana suggests evolution in response to greater environmental stresses in the tropics.  相似文献   

7.
Air pressure in leaf chambers is thought to affect gas exchange measurements through changes in partial pressure of the air components. However, other effects may come into play when homobaric leaves are measured in which internal lateral gas flow may occur. When there was no pressure difference between the leaf chamber and ambient air (DeltaP=0), it was found in previous work that lateral CO(2) diffusion could affect measurements performed with clamp-on leaf chambers. On the other hand, overpressure (DeltaP>0) in leaf chambers has been reported to minimize artefacts possibly caused by leaks in chamber sealing. In the present work, net CO(2) exchange rates (NCER) were measured under different DeltaP values (0.0-3.0 kPa) on heterobaric and homobaric leaves. In heterobaric leaves which have internal barriers for lateral gas movement, changes in DeltaP had no significant effect on NCER. For homobaric leaves, effects of DeltaP>0 on measured NCER were significant, obviously due to lateral gas flux inside the leaf mesophyll. The magnitude of the effect was largely defined by stomatal conductance; when stomata were widely open, the impact of DeltaP on measured NCER was up to 7 mumol CO(2) m(-2) s(-1) kPa(-1). Since many other factors are also involved, neither DeltaP=0 nor DeltaP>0 was found to be the 'one-size fits all' solution to avoid erroneous effects of lateral gas transport on measurements with clamp-on leaf chambers.  相似文献   

8.
Summary The response of leaf gas exchange to environmental variables were measured at different levels of drought stress for Agropyron desertorum, a naturalized perennial bunchgrass of the semiarid shrub steppes of western North America. Leaf conductance (stomatal plus boundary layer) was more sensitive to changes in water vapor gradient than to changes in leaf temperature. Assimilation was sensitive to both temperature and vapor gradient, and also appeared to be affected by conductance and high transpiration rates. The magnitudes of both assimilation and conductance decreased with increased drought conditions. Diurnal patterns of gas exchange were measured during 3 growing seasons. For a typical spring day with moderate leaf temperature and vapor gradient, diurnal patterns were similar for plants at different levels of soil water availability. Assimilation was relatively constant during most of the day, but conductance decreased during the afternoon. Total daily carbon gain was decreased to a lesser extent than daily water loss as soil water was depleted. Consequently, the ratio of daily carbon gain to daily water loss, i.e. daily water use efficiency, increased with decreased soil water content for diurnals under spring conditions. Diurnal patterns of assimilation for a typical summer day with high leaf temperature and vapor gradient differend from those for a spring day. An afternoon decrease in assimilation was typical during a summer day. Daily carbon gain, water use, and water use efficiency for summer diurnals decreased only under severe drought conditions. Almost complete recovery of assimilation and conductance occurred if leaf microclimate was ameliorated during the afternoon of either spring or summer diurnals. Thus, conditions responsible for a midday depression in assimilation during a single day did not have persistent effects on leaf gas exchange. Daily carbon gain of a typical summer day was restricted by leaf microclimate during the afternoon, but daily water use efficiency was not relatively increased by the amelioration of leaf microclimate.  相似文献   

9.
等渗NaCl和KCl胁迫对高粱幼苗生长和气体交换的影响   总被引:1,自引:1,他引:1  
本文比较研究了等渗NaCl和KCl胁迫下,高粱幼苗生长及叶片离子含量、质膜相对透性和有关气体交换参数的变化。结果表明,在低浓度NaCl和KCl胁迫7天时,高粱生长、含水量和质膜相对透性与对照相比没有明显变化,而净光合速率、蒸腾速率和气孔导度已明显下降,叶肉细胞间隙CO2浓度明显增加。NaCl胁迫下叶片Na+含量成倍增加,而K+和Ca2+含量无明显变化。KCl胁迫时叶片K+含量明显增加,Ca2+含量明显下降,而Na+含量没有明显变化。随着NaCl或KCl浓度的增加,幼苗生长和叶片含水量明显下降,质膜透性和细胞间隙CO2浓度明显增加,净光合速率、蒸腾速率和气孔导度进一步下降。NaCl胁迫下叶片Na+含量进一步增加,K+和Ca2+进一步下降,而KCl胁迫下叶片K+含量进一步增加,Na+和Ca2+含量进一步下降。KCl对高粱生长抑制、质膜透性、Ca2+含量下降及光合气体交换参数的影响均明显大于等渗的NaCl。  相似文献   

10.
Cayón  M.G.  El-Sharkawy  M.A.  Cadavid  L.F. 《Photosynthetica》1998,34(3):409-418
Field trial was conducted to study the effects of quality of planting material and prolonged water stress on leaf gas exchange of the cassava (Manihot esculenta Crantz) cultivar M Col 1684. Nutrient contents of planting material affected rootlet formation, but not leaf gas exchange. Net photosynthetic rate (PN), stomatal conductance (gs), and intercellular CO2 concentration (Ci) were significantly reduced by prolonged water stress. New leaves developed after recovery from water stress showed higher PN and gs, as compared to leaves of similar ages of unstressed plants. The higher PN was associated with higher leaf nutrient contents, indicating that photosynthetic capacity was enhanced in these leaves. These compensating characteristics may partly explain the small yield reduction often observed in stressed cassava.  相似文献   

11.
Diffusion of CO2 inside leaves is generally regarded to be from the substomatal cavities to the assimilating tissues, i.e. in the vertical direction of the leaf blades. However, lateral gas diffusion within intercellular air spaces may be much more effective than hitherto considered. In a previous work it was demonstrated that, when 'clamp-on' leaf chambers are used, leaf internal 'CO2 leakage' beyond the leaf chamber gaskets may seriously affect gas exchange measurement. This effect has been used in the present paper to quantify gas conductance (g(leaf,l), mmol m(-2) s(-1)) in the lateral directions within leaves and significant differences between homo- and heterobaric leaves were observed. For the homobaric leaves, lateral gas conductance measured over a distance of 6 or 8 mm (the widths of the chamber gaskets) was 2-20% of vertical conductance taken from published data measured over much smaller distances of 108-280 microm (the thickness of the leaves). The specific internal gas diffusion properties of the leaves have been characterized by gas conductivities (g*(leaf), micromol m(-1) s(-1)). Gas conductivities in the lateral directions of heterobaric leaves were found to be small but not zero. In homobaric leaves, they were between 67 and 209 micromol m(-1) s(-1) and thus even larger than those in the vertical direction of the leaf blades (between 15 and 78 micromol m(-1) s(-1)). The potential implications for experimentalists performing gas exchange measurements are discussed.  相似文献   

12.
Field trial was conducted to study the effects of quality of planting material and prolonged water stress on leaf gas exchange of the cassava (Manihot esculenta Crantz) cultivar M Col 1684. Nutrient contents of planting material affected rootlet formation, but not leaf gas exchange. Net photosynthetic rate (PN), stomatal conductance (gs), and intercellular CO2 concentration (Ci) were significantly reduced by prolonged water stress. New leaves developed after recovery from water stress showed higher PN and gs, as compared to leaves of similar ages of unstressed plants. The higher PN was associated with higher leaf nutrient contents, indicating that photosynthetic capacity was enhanced in these leaves. These compensating characteristics may partly explain the small yield reduction often observed in stressed cassava.  相似文献   

13.
Young plants of Lotus creticus creticus growing in a hydroponic culture were submitted to 0, 70 and 140 mM NaCl treatments for 28 d and the growth and ecophysiological characteristics of these plants have been studied. The growth of Lotus plants was not affected by salinity when applied for a short period (about 15 d); however, 140 mM NaCl induced a decrease in shoot RGR at the end of the treatment. The root growth was not decreased, even it was stimulated by 140 mM NaCl. The osmotic adjustment of Lotus plants at 70 and 140 mM NaCl maintained constant pressure potential, avoiding the visual wilting. For a similar leaf water potential, cuticular transpiration of salinized plants was lower than in control plants due to the salinity effect on the cuticle. Moreover, the presence of hairy leaves (60 and 160 trichomes per mm2 in young and adult leaves, respectively) allows keeping almost 81 % of sprayed water and absorbing the 9 % of the water retained, decreased the epidermal conductance to water vapour diffusion.  相似文献   

14.
The cuticle is the major barrier against uncontrolled water loss from leaves, fruits and other primary parts of higher plants. More than 100 mean values for water permeabilities determined with isolated leaf and fruit cuticles from 61 plant species are compiled and discussed in relation to plant organ, natural habitat and morphology. The maximum barrier properties of plant cuticles exceed that of synthetic polymeric films of equal thickness. Cuticular water permeability is not correlated to the thickness of the cuticle or to wax coverage. Relationships between cuticular permeability, wax composition and physical properties of the cuticle are evaluated. Cuticular permeability to water increases on the average by a factor of 2 when leaf surface temperature is raised from 15 degrees C to 35 degrees C. Organic compounds of anthropogenic and biogenic origin may enhance cuticular permeability. The pathway taken by water across the cuticular transport barrier is reviewed. The conclusion from this discussion is that the bulk of water diffuses as single molecules across a lipophilic barrier while a minor fraction travels along polar pores. Open questions concerning the mechanistic understanding of the plant cuticular transport barrier and the role the plant cuticle plays in ensuring the survival and reproductive success of an individual plant are indicated.  相似文献   

15.
本文比较研究了等渗NaCl和KCl胁迫下,高粱幼苗生长及叶片离子含量、质膜相对透性和有关气体交换参数的变化。结果表明,在低浓度NaCl和KCl胁迫7天时,高粱生长、含水量和质膜相对透性与对照相比没有明显变化,而净光合速率、蒸腾速率和气孔导度已明显下降,叶肉细胞间隙CO2浓度明显增加。NaCl胁迫下叶片Na+含量成倍增加,而K+和Ca2+含量无明显变化。KCl胁迫时叶片K+含量明显增加,Ca2+含量明显下降,而Na+含量没有明显变化。随着NaCl或KCl浓度的增加,幼苗生长和叶片含水量明显下降,质膜透性和细胞间隙CO2浓度明显增加,净光合速率、蒸腾速率和气孔导度进一步下降。 NaCl胁迫下叶片Na+含量进一步增加,K+和Ca2+进一步下降,而KCl胁迫下叶片K+含量进一步 增加,Na+和Ca2+含量进一步下降。KCl对高粱生长抑制、质膜透性、Ca2+含量下降及光合气体交换参数的影响均明显大于等渗的NaCl。  相似文献   

16.
Imaging of photochemical yield of photosystem II (PSII) computed from leaf chlorophyll fluorescence images and gas-exchange measurements were performed on Rosa rubiginosa leaflets during abscisic acid (ABA) addition. In air ABA induced a decrease of both the net CO2 assimilation (An) and the stomatal water vapor conductance (gs). After ABA treatment, imaging in transient nonphotorespiratory conditions (0.1% O2) revealed a heterogeneous decrease of PSII photochemical yield. This decline was fully reversed by a transient high CO2 concentration (7400 μmol mol−1) in the leaf atmosphere. It was concluded that ABA primarily affected An by decreasing the CO2 supply at ribulose-1,5-bisphosphate carboxylase/oxygenase. Therefore, the An versus intercellular mole fraction (Ci) relationship was assumed not to be affected by ABA, and images of Ci and gs were constructed from images of PSII photochemical yield under nonphotorespiratory conditions. The distribution of gs remained unimodal following ABA treatment. A comparison of calculations of Ci from images and gas exchange in ABA-treated leaves showed that the overestimation of Ci estimated from gas exchange was only partly due to heterogeneity. This overestimation was also attributed to the cuticular transpiration, which largely affects the calculation of the leaf conductance to CO2, when leaf conductance to water is low.  相似文献   

17.
Hawaiian endemic tree Acacia koa is a model for heteroblasty with bipinnately compound leaves and phyllodes. Previous studies suggested three hypotheses for their functional differentiation: an advantage of leaves for early growth or shade tolerance, and an advantage of phyllodes for drought tolerance. We tested the ability of these hypotheses to explain differences between leaf types for potted plants in 104 physiological and morphological traits, including gas exchange, structure and composition, hydraulic conductance, and responses to varying light, intercellular CO2, vapour pressure deficit (VPD) and drought. Leaf types were similar in numerous traits including stomatal pore area per leaf area, leaf area‐based gas exchange rates and cuticular conductance. Each hypothesis was directly supported by key differences in function. Leaves had higher mass‐based gas exchange rates, while the water storage tissue in phyllodes contributed to greater capacitance per area; phyllodes also showed stronger stomatal closure at high VPD, and higher maximum hydraulic conductance per area, with stronger decline during desiccation and recovery with rehydration. While no single hypothesis completely explained the differences between leaf types, together the three hypotheses explained 91% of differences. These findings indicate that the heteroblasty confers multiple benefits, realized across different developmental stages and environmental contexts.  相似文献   

18.
In the spring of 1987, entire shoots were removed from Quercus rubra L. saplings in two southwestern Wisconsin forest openings. Shoots possessed newly expanding leaves at the time of coppicing. All coppiced individuals sprouted from dormant stem buds near the root collar. Leaf gas exchange and water potential were monitored on these sprouts and on untreated (control) Q. rubra saplings throughout several clear warm days during the 1987 growing season. Daily maxima and averages for sprout leaf photosynthesis and stomatal conductance generally exceeded those of controls. On average, treatment differences in daily maximum photosynthetic rate were modest (11–14%) and were attributed primarily to a 30–38% enhancement of sprout leaf stomatal conductance. Relative differences in daily average photosynthetic rate (29–39%) were substantially larger than those in daily maximum photosynthesis, owing to the fact that sprouts and controls exhibited distinct diurnal gas exchange patterns. Photosynthetic rate and stomatal conductance of control leaves typically declined during the day following a mid-morning maximum. Sprout leaves, on the other hand, tended to maintain gas exchange rates nearer to their morning maxima throughout the day. This difference in diurnal gas exchange pattern was associated with an apparent differential leaf sensitivity to leaf-to-air vapor pressure gradient (VPG). The relative decline in sprout leaf gas exchange rates with increasing VPG was less than that of controls. Treatment differences in gas exchange did not appear to be related to leaf water potential or tissue water relations, but sprouts had a higher soil-to-leaf hydraulic conductivity than controls.  相似文献   

19.
BACKGROUND AND AIMS: Roridula plants capture insects but have no digestive enzymes. It has been hypothesized that Roridula leaves absorb nitrogen from the faeces of obligately associated, carnivorous hemipterans. But rapid movement across the leaf surfaces of most plant leaves is prevented by the presence of an impermeable cuticle. However, in carnivorous plants, cuticular gaps or pores in digestive/absorptive cells allow rapid movement across the leaf surface. Recently, it was suggested that the hemipteran-plant interaction constituted a new pathway for plant carnivory. Here, a further adaptation to this pathway is described by demonstrating how Roridula plants probably absorb hemipteran faeces rapidly through their leaf cuticles. METHODS: The dye neutral red was used to document the rapidity of foliar absorption and TEM to determine the nature of cuticular discontinuities in the leaf of Roridula. KEY RESULTS: Aqueous compounds diffuse rapidly across the cuticle of Roridula's leaves but not across the cuticles of co-occurring, non-carnivorous plant leaves. Furthermore, immature Roridula leaves were unable to absorb neutral red whereas mature leaves could. Using TEM, cuticular gaps and pores similar to those in other carnivorous plants were found in the epidermal cells of mature Roridula leaves. CONCLUSIONS: The leaf cuticle of Roridula is very thin (0-120 nm) and cell wall elements project close to the leaf surface, possibly enhancing foliar absorption. In addition to these, cuticular gaps were frequently seen and probably perform a function similar to those found in other carnivorous plants: namely the absorption of aqueous compounds. The cuticular gaps of Roridula are probably an adaptation to plant carnivory, supporting the newly described pathway.  相似文献   

20.
Simultaneous cyclic variation in rates of both net photosynthesis and transpiration were induced in attached leaves of cotton and pepper plants under constant environmental conditions. The cyclic variations in photosynthesis and transpiration were found to be in phase, and the ratio net photosynthetic rate/transpiration rate remained constant over a wide range of gas exchange rates. A similar constancy of this ratio was also found as gas exchange rates declined following excision of a sunflower leaf, which was not initially cycling, in air. These results suggested that change in stomatal aperture was the only controlling factor involved and that it was affecting both processes proportionately. Visible loss of leaf turgur and measurable water stress developed in both pepper and cotton at peak exchange rates, but the gas exchange ratio remained constant. The failure of water stress and increased stomatal aperture to lower the gas exchange ratio suggested an absence of any significant leaf mesophyll resistance (r′m) to inward diffusion of CO2. The possibility that r′m was low is discussed generally, and in relation to the use of chemical antitranspirants to raise the gas exchange ratio. Within the limits of the experiments, water stress apparently had no direct adverse effect on rates of net photosynthesis. The gas exchange ratio did not rise as exchange rates declined. Ultimately, at very low exchange rates, the ratio fell, declining to zero in cotton, but not in pepper. This decline was attributed to the onset of significant gas exchange through the cuticle, which was apparently less permeable to CO2 than to water vapour. Positive net cuticular photosynthesis therefore probably does not occur in cotton. Except at very low exchange rates, the gas exchange ratio was higher in cotton than in pepper; it was similar in sunflower and cotton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号