首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent of association between donor transforming deoxyribonucleic acid (DNA) and recipient DNA in Haemophilus influenzae as a function of ultraviolet (UV) dose to the transforming DNA has been measured by isopycnic analysis of lysates of (3)H-labeled recipient cells exposed to DNA labeled with (32)P and heavy isotopes. Except for doses above 15,000 ergs/mm(2), the results of these measurements are in good agreement with previous estimates made by another technique. Experiments with a mutant temperature sensitive for DNA synthesis and another mutant defective in excision of pyrimidine dimers suggest that the discrepancy between the methods of high doses results from DNA synthesis, in which portions of the associated donor DNA containing pyrimidine dimers are excised and broken down, and the components are reutilized for synthesis.Repair of UV-irradiated, transforming DNA during incubation of recipient cells is observed as an increase in transforming ability when fractions from CsCl gradients of cell lysates are assayed on excision-deficient cells. When transforming DNA containing markers of different UV sensitivities is used, repair of the UV-resistant nov marker by excision proficient cells takes place exclusively in the donor DNA that is associated with recipient DNA, and this repair is observed even in the absence of DNA synthesis. However, no repair is observed in the case of the more UV-sensitive str marker, possibly because excision events may remove a large fraction of the integrated str markers in addition to repairing a small fraction of the integrated DNA containing this marker.  相似文献   

2.
The wild-type strain and mutants of Haemophilus influenzae, sensitive or resistant to ultraviolet light (UV) as defined by colony-forming ability, were examined for their ability to perform the incision and rejoining steps of the deoxyribonucleic acid (DNA) dark repair process. Although UV-induced pyrimidine dimers are excised by the wild-type Rd and a resistant mutant BC200, the expected single-strand DNA breaks could not be detected on alkaline sucrose gradients. Repair of the gap resulting from excision must be rapid when experimental conditions described by us are employed. Single-strand DNA breaks were not detected in a UV-irradiated sensitive mutant (BC100) incapable of excising pyrimidine dimers, indicating that this mutant may be defective in a dimer-recognizing endonuclease. No single-strand DNA breaks were detected in a lysogen BC100(HP1c1) irradiated with a UV dose large enough to induce phage development in 80% of the cells.  相似文献   

3.
The photodynamic inactivation of native or denatured transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae is described. The inactivation at the same pH was higher for denatured than native DNA. At acidic pH, the inactivation both for native and denatured DNA was faster than at alkaline pH. The guanine content of photoinactivated native DNA at neutral pH was less than untreated DNA. The inactivation of biological activity was more extensive than the alteration of guanine. The absorption spectrum of photoinactivated native or denatured DNA was only slightly different than the control DNA at the different experimental conditions.  相似文献   

4.
Transforming deoxyribonucleic acid (DNA) from Haemophilus influenzae was exposed to sonic radiation of various durations. Reductions in transforming ability of the DNA, cellular DNA uptake, and integration into the genome, and single- and double-stranded molecular weights of the transforming DNA were measured and compared. We conclude that (i) sonic radiation causes DNA strand breaks (almost always double-strand breaks with relatively few alkaline-labile bonds), the number increasing with exposure until the double-stranded molecular weight is reduced to less than 10(6) daltons; and (ii) since transformation is reduced about as much as integration and much more than uptake, inactivation of transforming DNA by sonic radiation appears to be caused mostly by failure of Haemophilus cells to integrate the transforming DNA that is taken into the cells. These results are similar to those for inactivation by X radiation but differ from those for ultraviolet radiation. A strand break caused by sonic radiation, however, does not necessarily inactivate the transforming DNA, whereas in the case of ionizing radiation it may. The results may be fit by the model proposed by Cato and Guild. From our data and the equation of Lacks, the minimum active site of DNA necessary for transformation and the frequency of exchanges between donor and recipient strands upon integration of transforming DNA were estimated as 0.35 x 10(6) to 0.7 x 10(6) daltons and 0.15 to 0.4 switches per 10(6) daltons, respectively.  相似文献   

5.
Highly competent cultures of Haemophilus influenzae are inactivated by exposure to transforming deoxyribonucleic acid (DNA) irradiated with ultraviolet light (UV). As a function of UV dose to the DNA, the killing goes to a maximum and then decreases. The killing of H. influenzae by unirradiated H. parainfluenzae DNA, reported by other workers, is enhanced by low doses of UV, but drops off at high doses. Since there are no such lethal effects in a strain of H. influenzae that takes up DNA normally but does not integrate it, it is concluded that the killing is associated with integrated UV lesions. All the killing of wild-type cells due to irradiated DNA is eliminated by photoreactivation of the DNA. The killing of an excisionless strain of H. influenzae, however, is not eliminated by maximal photoreactivation of the irradiated transforming DNA. The nonphotoreactivable fraction of killing in the excisionless strain increases with increasing dose. The kinetics of the killing-dose curves may be explained only partially in terms of UV-induced loss of integration. It is postulated that the number of pyrimidine dimers relative to other DNA components integrated decreases at higher UV doses.  相似文献   

6.
The decrease in integration of transforming deoxyribonucleic acid (DNA) caused by ultraviolet irradiation of the DNA was found to be independent of the presence or absence of excision repair in the recipient cell. Much of the ultraviolet-induced inhibition of integration resulted from the presence in the transforming DNA of pyrimidine dimers, as judged by the photoreactivability of the inhibition with yeast photoreactivating enzyme. The inhibition of integration made only a small contribution to the inactivation of transforming ability of the DNA by ultraviolet radiation.  相似文献   

7.
During genetic transformation of Haemophilus influenzae, segments of the host deoxyribonucleic acid (DNA) corresponding to the integrating donor DNA were degraded and liberated into the medium. This degradation was detected by the release of the radioactive label from host DNA during a time period matching the time of development of maximal linkage between donor and host markers. The host label released above that released from nontransformed, control cultures was equivalent to about 2% of the host genome or 16 x 10(6) daltons of DNA. The released, labeled material was acid-soluble and dialyzable. The label release from control cultures was unaffected at 30 C; at this temperature, the recombination-specific release from transformed cells was suppressed. High molecular weight fragments of host DNA corresponding in size to the donor fragments could not be found free within the cell, weakly bound to other host DNA, or bound to non-integrated donor DNA by a reciprocal cross mechanism.  相似文献   

8.
The effect of bacteriophage SPO1 infection of Bacillus subtilis and a deoxyribonucleic acid (DNA) polymerase-deficient (pol) mutant of this microorganism on the synthesis of DNA has been examined. Soon after infection, the incorporation of deoxyribonucleoside triphosphates into acid-insoluble material by cell lysates was greatly reduced. This inhibition of host DNA synthesis was not a result of host chromosome degradation nor did it appear to be due to the induction of thymidine triphosphate nucleotidohydrolase. Examination of the host chromosome for genetic linkage throughout the lytic cycle indicated that no extensive degradation occurred. After the inhibition of host DNA synthesis, a new polymerase activity arose which directed the synthesis of phage DNA. This new activity required deoxyribonucleoside triphosphates as substrates, Mg2+ ions, and a sulfhydryl reducing agent, and it was stimulated in the presence of adenosine triphosphate. The phage DNA polymerase, like that of its host, was associated with a fast-sedimenting cell membrane complex. The pol mutation had no effect on the synthesis of phage DNA or production of mature phage particles.  相似文献   

9.
To determine whether polyamine synthesis is dependent on deoxyribonucleic acid (DNA) synthesis, polyamine levels were estimated after infection of bacterial cells with ultraviolet-irradiated T4 or T4 am N 122, a DNA-negative mutant. Although phage DNA accumulation was restricted to various degrees in comparison to cells infected with T4D, nearly commensurate levels of putrescine and spermidine synthesis were observed after infection, regardless of the rate of phage DNA synthesis. We conclude from these data that polyamine synthesis after infection is independent of phage DNA synthesis.  相似文献   

10.
Transformation-deficient (com(-)) mutants, which are able to bind donor transforming deoxyribonucleic acid (DNA) without yielding a significant number of transformants, were studied with regard to the fate of donor DNA. In no case was there any detectable degradation into acid-soluble radioactivity after donor DNA uptake. Physical experiments showed that some of these mutants are deficient in their ability to associate donor DNA with the recipient's chromosome (dad(-) mutants, for donor association defective), whereas others are able to form what appear to be normal donor-recipient complexes. In spite of physical evidence for integration, none of the dad(-) mutants contains biologically active recombinant DNA, suggesting that they might be deficient in the recombination process (dab(-) mutants, for donor association biologically defective). Donor biological activity is not replicated in any of the mutant strains, and in some cases there is a 10-fold reduction of donor transforming DNA within 60 min after DNA uptake.  相似文献   

11.
12.
A method was devised for identifying nonlethal mutants of T4 bacteriophage which lack the capacity to induce degradation of the deoxyribonucleic acid (DNA) of their host, Escherichia coli. If a culture is infected in a medium containing hydroxyurea (HU), a compound that blocks de novo deoxyribonucleotide biosynthesis by interacting with ribonucleotide reductase, mutant phage that cannot establish the alternate pathway of deoxyribonucleotide production from bacterial DNA will fail to produce progeny. The progeny of 100 phages that survived heavy mutagenesis with hydroxylamine were tested for their ability to multiply in the presence of HU. Four of the cultures lacked this capacity. Cells infected with one of these mutants, designated T4nd28, accumulated double-stranded fragments of host DNA with a molecular weight of approximately 2 x 10(8) daltons. This mutant failed to induce T4 endonuclease II, an enzyme known to produce single-strand breaks in double-stranded cytosine-containing DNA. The properties of nd28 give strong support to an earlier suggestion that T4 endonuclease II participates in host DNA degradation. The nd28 mutation mapped between T4 genes 32 and 63 and was very close to the latter gene. It is, thus, in the region of the T4 map that is occupied by genes for a number of other enzymes, including deoxycytidylate deaminase, thymidylate synthetase, dihydrofolate reductase, and ribonucleotide reductase, that are nonessential to phage production in rich media.  相似文献   

13.
A replicative hybrid resulting from the infection of heavy (substituted with 5-bromodeoxyuridine) bacteria with light (not substituted with 5-bromodeoxyuridine) radioactive bacteriophage was isolated from a CsCl density gradient. Sedimentation studies indicate that 60% of the deoxyribonucleic acid (DNA) behaves as if it were in units more than four times as large as an intact reference molecule. Under the electron microscope, hybrid molecules appeared tangled, showed puffs and loops, occupied a small area, and often had a total length twice that of mature phage. This indicates that sucrose gradient sedimentation is not applicable as a method for estimating the relative molecular size of replicative forms of DNA. After denaturation, the separated strands of hybrid were of the same size as those of reference DNA. CsCl density gradient analysis revealed no terminal covalent addition of new material to the old parental strand. The possibility of a continuous growth of the DNA molecule, either on a single-stranded level or as a double helical structure, is disproved. When chloramphenicol (CM) was added at critical times after infection, DNA synthesis continued at a constant rate. The parental label soon assumed and retained a hybrid density, despite concomitant synthesis of DNA, throughout the rest of the period of incubation in CM. The hybrid moiety, however, actively participated in replication and exchanged its partner strand for a new one; this was demonstrated by changing the density label during incubation in CM. A new enzyme synthesized shortly after infection introduced single-stranded "nicks" into the parental DNA. Since nicking can be inhibited by chloramphenicol, the responsible enzyme is not of host origin. The time of the appearance of this enzyme coincided with the onset of molecular recombination. Another enzyme, which mediates the repair of the continuity of the polynucleotide chain after recombination, appeared after recombination. If selectively inhibited by chloramphenicol, recombinant molecules remained unrepaired, and, upon denaturation, the parental fragment was liberated in pure form.  相似文献   

14.
The in vivo chemical linkage of Haemophilus parainfluenzae deoxyribonucleic acid (DNA) with the H. influenzae genome has been found to occur at a much higher level than is suggested by the low efficiency of the heterospecific transformation of an antibiotic resistance marker. This linkage, about 60% of the level with homospecific DNA, was found to involve alkali-stable bonding. The amount of host DNA label released (about 60%) was about the same as that released during homospecific transformation. Also, over 60% of the H. influenzae cells adsorbing H. parainfluenzae DNA could not form colonies upon plating. This lethality of the heterospecific transformation was not immediate but followed considerable metabolic activity of the host cells. These data are presented to show that the "limited-pairing" hypothesis may be only a partial explanation for the low efficiency of heterospecific transformation. Another hypothesis is presented which takes into account the lethal effect of this kind of transformation.  相似文献   

15.
The effects of ultraviolet (UV) light on cell morphology, deoxyribonucleic acid (DNA) synthesis, and protein synthesis in UV-sensitive and UV-resistant strains of Haemophilus influenzae were examined. Relatively low doses of UV induce lyses in the sensitive strains but not in the resistant mutant; however, UV temporarily blocks cell division of the resistant mutant, and elongated cells are formed after a period of incubation. Low doses of UV do not stop DNA synthesis in any of the strains examined; however, they do slow the rate of DNA synthesis in a manner consistent with the model correlating the kinetics of postirradiation DNA synthesis with the cell's ability to repair UV-induced DNA lesions. The data are not consistent with a model in which UV causes all DNA synthesis to stop for a time linearly dependent on dose.  相似文献   

16.
The influence of ribo- and deoxyribonucleosides and ribo- and deoxyribonucleotides on the uptake of radiolabeled thymidine and thymine by Haemophilus influenzae during growth was investigated. A nucleoside-degrading enzyme similar to that reported in Escherichia coli was found to break down thymidine unless other nucleosides were present to divert its action. The presence of other nucleosides permitted a nearly quantitative uptake of even low levels of thymidine. This quantitative uptake of thymidine in the presence of an excess of other nucleosides suggests that the uptake mechanism for thymidine is specific in this organism. Under optimal conditions, as much as 50% of the deoxyribonucleic acid (DNA) thymine was derived from exogenous thymidine. Thymine was not taken up by H. influenzae but, in the presence of purine deoxynucleosides, labeled thymine entered the cells, presumably as thymidine. Ribonucleosides or ribonucleotides inhibited thymine conversion to thymidine, but, as noted above, they were degraded by a cellular enzyme. Thus, unless the ribonucleoside level was excessively high, a cell level of growth was reached at which the inhibiting ribonucleoside was broken down and labeled thymine appeared in the cells at an increasing rate. Twenty-five per cent of the DNA thymine of this organism was labeled with exogenous thymine. The information noted above serves as the basis for isotopically labeling the DNA.  相似文献   

17.
A transformation-deficient strain of Haemophilus influenzae (efficiency of transformation 104-fold less than that of the wild type), designated TD24, was isolated by selection for sensitivity to mitomycin C. In its properties the mutant was equivalent to recA type mutants of Escherichia coli. The TD24 mutation was linked with the str-r marker (about 30%) and only weakly linked with the nov-r2.5 marker. The uptake of donor deoxyribonucleic acid (DNA) was normal in the TD24 strain, but no molecules with recombinant-type activity (molecules carrying both the donor and the resident marker) were formed. In the mutant the intracellular presynaptic fate of the donor DNA was the same as that in the transformation-proficient (wild-type) strain, and the radioactive label of the donor DNA associated covalently with the recipient chromosome in about the same quantity as in the wild type. However, many fewer donor atoms were associated with segments of the mutant's recipient chromosome as compared with segments of the wild-type chromosome. In the mutant the association was accompanied by complete loss of donor marker activity. The lack of donor marker activity of the donor-recipient complex of DNA isolated from the mutant was not due to lack of uptake of the complex by the second recipient and its inability to associate with the second recipient's chromosome. Because the number of donor-atom-carrying resident molecules was higher than could be accounted for by the lengths of presynaptic donor molecules, we favor the idea that the association of donor DNA atoms with the mutant chromosome results from local DNA synthesis rather than from dispersive integration of donor DNA by recombination.  相似文献   

18.
Synthesis of deoxyribonucleic acid (DNA) has been measured as a function of ultraviolet (UV) radiation dose in wild-type and seven UV-sensitive strains of Haemophilus influenzae. At the UV doses used, all strains were able to resume DNA synthesis, even those which are unable to excise pyrimidine dimers from their DNA. These excisionless strains showed longer UV-induced delays in DNA synthesis than all but one of the other strains. The longest delay was shown by DB117, a strain which can excise dimers but which is recombination deficient and unable to rejoin X ray-induced single-strand breaks. All strains showed a progressive decrease in sensitivity as they approached the stationary phase.  相似文献   

19.
Elder, Robert L. (Johns Hopkins University, Baltimore, Md.), and Roland F. Beers, Jr. Nonphotoreactivating repair of ultraviolet light-damaged transforming deoxyribonucleic acid by Micrococcus lysodeikticus extracts. J. Bacteriol. 90:681-686. 1965.-Extracts from Micrococcus lysodeikticus repair Haemophilus influenzae transforming deoxyribonucleic acid (DNA) damaged by ultraviolet light radiation. The repair is demonstrable over a wide dose range, with a constant dose reduction factor for a given concentration of DNA. The active component in the crude extract may be separated into a heat-stable dialyzable and a heat-labile nondialyzable component. The dialyzable fraction contains at least one component which appears to limit the maximal level of repair. Mg(2+) ions are required for the repair process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号