首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of proteins putatively involved in the generation of axonal diversity was identified. Neurons from ventral spinal cord and dorsal root ganglia were grown in a compartmented cell-culture system which offers separate access to cell somas and axons. The proteins synthesized in the neuronal cell somas and subsequently transported into the axons were selectively analyzed by 2-dimensional gel electrophoresis. The patterns of axonal proteins were substantially less complex than those derived from the proteins of neuronal cell bodies. The structural and functional similarity of axons from different neurons was reflected in a high degree of similarity of the gel pattern of the axonal proteins from sensory ganglia and spinal cord neurons. Each axonal type, however, had several proteins that were markedly less abundant or absent in the other. These neuron-population enriched proteins may be involved in the implementation of neuronal diversity. One of the proteins enriched in dorsal root ganglia axons had previously been found to be expressed with decreased abundance when dorsal root ganglia axons were co-cultured with ventral spinal cord cells under conditions in which synapse formation occurs (P. Sonderegger, M. C. Fishman, M. Bokoum, H. C. Bauer, and P.G. Nelson, 1983, Science [Wash. DC], 221:1294-1297). This protein may be a candidate for a role in growth cone functions, specific for neuronal subsets, such as pathfinding and selective axon fasciculation or the initiation of specific synapses. The methodology presented is thus capable of demonstrating patterns of protein synthesis that distinguish different neuronal subsets. The accessibility of these proteins for structural and functional studies may contribute to the elucidation of neuron-specific functions at the molecular level.  相似文献   

2.
Postsynaptic currents and action potentials recorded from neurons in a mixed culture of rat dorsal root ganglion and spinal cord cells are described. The existence of mutual synaptic connections between the above two types of neurons is demonstrated. Neirofiziologiya/Neurophysiology, Vol. 38, No. 4, pp. 358–360, July–August, 2006.  相似文献   

3.
4.
We hypothesize that innate immune signals from infectious organisms and/or injured tissues may activate peripheral neuronal pain signals. In this study, we demonstrated that TLRs 3, 7, and 9 are expressed by human dorsal root ganglion neurons (DRGNs) and in cultures of primary mouse DRGNs. Stimulation of murine DRGNs with TLR ligands induced expression and production of proinflammatory chemokines and cytokines CCL5 (RANTES), CXCL10 (IP-10), IL-1α, IL-1β, and PGE(2), which have previously been shown to augment pain. Further, TLR ligands upregulated the expression of a nociceptive receptor, transient receptor potential vanilloid type 1 (TRPV1), and enhanced calcium flux by TRPV1-expressing DRGNs. Using a tumor-induced temperature sensitivity model, we showed that in vivo administration of a TLR9 antagonist, known as a suppressive oligodeoxynucleotide, blocked tumor-induced temperature sensitivity. Taken together, these data indicate that stimulation of peripheral neurons by TLR ligands can induce nerve pain.  相似文献   

5.
6.
7.
8.
9.
目的 研究生长休止蛋白7(Gas7)在成年大鼠脊髓和脊神经节的表达.方法 成年SD大鼠12只,采用逆转录聚合酶链反应(RT-PCR)方法、焦油紫染色以及免疫组织化学方法来观察Gas7基因核酸和蛋白在成年SD大鼠脊髓和脊神经节的表达.结果 RT-PCR结果显示,脊髓和脊神经节有较丰富的Gas7 mRNA表达.免疫组化结果显示:与焦油紫染色相对照,脊髓灰质各板层神经元均表达Gas7蛋白,与其它版层相比较,后角Ⅱ版层胶状质的小细胞和前角Ⅸ版层的运动神经元显色较深且数量较多.脊髓白质Gas7免疫阳性反应较弱且分布均匀.脊神经节内大型感觉神经元呈Gas7免疫强阳性反应,中、小型感觉神经元为弱阳性反应.结论 本文首次描述了Gas7在成年大鼠脊髓和脊神经节的表达,为进一步研究Gas7在成年神经系统再生和修复过程中的功能提供形态学基础.  相似文献   

10.
Zhang C  Xiong W  Zheng H  Wang L  Lu B  Zhou Z 《Neuron》2004,42(2):225-236
Synaptic vesicle endocytosis is believed to require calcium and the GTPase dynamin. We now report a form of rapid endocytosis (RE) in dorsal root ganglion (DRG) neurons that, unlike previously described forms of endocytosis, is independent of calcium and dynamin. The RE is tightly coupled to calcium-independent but voltage-dependent secretion (CIVDS). Using FM dye and capacitance measurements, we show that membrane depolarization induces RE in the absence of calcium. Inhibition of dynamin function does not affect RE. The magnitude of RE is proportional to that of preceding CIVDS and stimulation frequency. Inhibitors of protein kinase A (PKA) suppress RE induced by high-frequency depolarization, while PKA activators enhance RE induced by low-frequency depolarization. Biochemical experiments demonstrate that depolarization directly upregulates PKA activity in calcium-free medium. These results reveal a calcium- and dynamin-independent form of endocytosis, which is controlled by neuronal activity and PKA-dependent phosphorylation, in DRG neurons.  相似文献   

11.
Necdin is expressed predominantly in postmitotic neurons and serves as a growth suppressor that is functionally similar to the retinoblastoma tumor suppressor protein. Using primary cultures of dorsal root ganglion (DRG) of mouse embryos, we investigated the involvement of necdin in the terminal differentiation of neurons. DRG cells were prepared from mouse embryos at 12.5 days of gestation and cultured in the presence of nerve growth factor (NGF). Immunocytochemistry revealed that necdin accumulated in the nucleus of differentiated neurons that showed neurite extension and expressed the neuronal markers microtubule-associated protein 2 and synaptophysin. Suppression of necdin expression in DRG cultures treated with antisense oligonucleotides led to a marked reduction in the number of terminally differentiated neurons. The antisense oligonucleotide-treated cells did not attempt to reenter the cell cycle, but underwent death with characteristics of apoptosis such as caspase-3 activation, nuclear condensation, and chromosomal DNA fragmentation. Furthermore, a caspase-3 inhibitor rescued antisense oligonucleotide-treated cells from apoptosis and significantly increased the population of terminally differentiated neurons. These results suggest that necdin mediates the terminal differentiation and survival of NGF-dependent DRG neurons and that necdin-deficient nascent neurons are destined to caspase-3-dependent apoptosis.  相似文献   

12.
GDNF对体外运动神经元和感觉神经元的影响   总被引:5,自引:0,他引:5  
目的:探讨胶质细胞源性神经营养因子(GDNF)对正常胎鼠脊髓运动神经元(SMN)和背根神经节神经元(DRG)生长活性的作用.方法:建立大鼠胚胎SMN和DRG单细胞培养体系,观察1 μg/L、10 μg/L、50 μg/L和100 μg/L GDNF对SMN和DRG存活及突起生长的影响.结果: GDNF组培养的SMN和DRG存活数目明显增加,神经元突起长度比对照组明显增长,且具有剂量依赖趋势.结论: GDNF对正常大鼠胚胎发育期运动神经元和感觉神经元具有神经营养作用.  相似文献   

13.
Kozlova  ELENA N.  Seiger  AKE  Aldskogius  HAKAN 《Brain Cell Biology》1997,26(12):811-822
Following dorsal root crush, the lesioned axons regenerate in the peripheral compartment of the dorsal root, but stop at the boundary between the peripheral and the central nervous system, the dorsal root transitional zone. We have previously shown that fibres from human fetal dorsal root ganglia grafted to adult rat hosts are able to grow into the spinal cord, but were not able to specify the route taken by the ingrowing fibres. In this study we have challenged the dorsal root transitional zone astrocyte boundary with human dorsal root ganglion transplants from 5–8-week-old embryos. By tracing immunolabelled human fibres in serial sections, we found that fibres consistently grow around the dorsal root transitional zone astrocytes in laminin-rich peripheral surroundings, and extend into the host rat spinal cord along blood vessels, either into deep or superficial laminae of the dorsal horn, or into the dorsal funiculus. Human fibres that did not have access to blood vessels grew on the spinal cord surface. These findings indicate, that in spite of a substantial growth capacity by axons from human embryonic dorsal root ganglion cells as well as their tolerance to non-permissive factors in the mature mammalian CNS, these axons are still sensitive to the repellent effects of astrocytes of the mature dorsal root transitional zone. Furthermore, this axonal ingrowth is consistently associated with laminin-expressing structures until the axons reach the host spinal cord.  相似文献   

14.
Orexins (orexin A and B) are initially known to be a hypothalamic peptide critical for feeding and normal wakefulness. In addition, emerging evidence from behavioral tests suggests that orexins are also involved in the regulation of nociceptive processing, suggesting a novel potential therapeutic approach for pain treatment. Both spinal and supraspinal mechanisms appear to contribute to the role of orexin in nociception. In the spinal cord, dorsal root ganglion (DRG) neurons are primary afferent neurons that transmit peripheral stimuli to the pain-processing areas. Morphological results show that both orexin A and orexin-1 receptor are distributed in DRG neurons. Moreover, by using whole-cell patch-clamp recordings and calcium imaging measurements we found that orexin A induced excitability and intracellular calcium concentration elevation in the isolated rat DRG neurons, which was mainly dependent on the activation of spinal orexin-1 receptor. Based on these findings, we propose a hypothesis that the direct effect of orexin A on DRG neurons would represent a possible mechanism for the orexinergic modulation of spinal nociceptive transmission.  相似文献   

15.
Recent advances in microelectrode array technology now permit a direct examination of the way populations of sensory neurons encode information about a limb's position in space. To address this issue, we recorded nerve impulses from about 100 single units simultaneously in the L6 and L7 dorsal root ganglia (DRG) of the anesthetized cat. Movement sensors, placed near the hip, knee, ankle, and foot, recorded passive movements of the cat's limb while it was moved pseudo-randomly. The firing rate of the neurons was correlated with the position of the limb in various coordinate systems. The firing rates were less correlated to the position of the foot in Cartesian coordinates (x, y) than in joint angular coordinates (hip, knee, ankle), or in polar coordinates. A model was developed in which position and its derivatives are encoded linearly, followed by a nonlinear spike-generating process. Adding the nonlinear portion significantly increased the correlations in all coordinate systems, and the full models were able to accurately predict the firing rates of various types of sensory neurons. The observed residual variability is captured by a simple stochastic model. Our results suggest that compact encoding models for primary afferents recorded at the DRG are well represented in polar coordinates, as has previously been suggested for the cortical and spinal representation of movement. This study illustrates how sensory receptors encode a sense of limb position, and it provides a general framework for modeling sensory encoding by populations of neurons.  相似文献   

16.
17.
Counts performed on dissociated cell cultures of E10 chick embryo dorsal root ganglia (DRG) showed after 4-6 days of culture a pronounced decline of the neuronal population in neuron-enriched cultures and a net gain in the number of ganglion cells in mixed DRG cell cultures (containing both neurons and nonneuronal cells). In the latter case, the increase in the number of neurons was found to depend on NGF and to average 119% in defined medium or 129% in horse serum-supplemented medium after 6 days of culture. The lack of [3H]thymidine incorporation into the neuronal population indicated that the newly formed ganglion cells were not generated by proliferation. On the contrary, the differentiation of postmitotic neuroblasts present in the nonneuronal cell compartment was supported by sequential microphotographs of selected fields taken every hour for 48-55 hr after 3 days of culture. Apparently nonneuronal flat dark cells exhibited morphological changes and gradually evolved into neuronal ovoid and refringent cell bodies with expanding neurites. The ultrastructural organization of these evolving cells corresponded to that of primitive or intermediate neuroblasts. The neuronal nature of these rounding up cell bodies was indeed confirmed by the progressive expression of various neuronal cell markers (150 and 200-kDa neurofilament triplets, neuron specific enolase, and D2/N-CAM). Besides a constant lack of immunoreactivity for tyrosine hydroxylase, somatostatin, parvalbumin, and calbindin-D 28K and a lack of cytoenzymatic activity for carbonic anhydrase, all the newly produced neurons expressed three main phenotypic characteristics: a small cell body, a strong immunoreactivity to MAG, and substance P. Hence, ganglion cells newly differentiated in culture would meet characteristics ascribed to small B sensory neurons and more specifically to a subpopulation of ganglion cells containing substance P-immunoreactive material.  相似文献   

18.
HGF-like protein (HLP) is a member of the hepatocyte growth factor (HGF) family. Although HGF is shown to have neurotrophic activities on many of CNS and PNS neurons, the role of HLP in the nervous system is poorly understood despite the knowledge that Ron/HLP receptor is expressed in embryonic neurons. Here we show that HGF but not HLP promotes neurite extension and migration emanating from chick embryonic day 9 (E9) dorsal root ganglia (DRG) explants in the presence of low levels of NGF, however, HLP does promote neurite extension and cellular migration from E15 chick DRG explants with low levels of NGF. Ron-Fc, a chimeric molecule composed of the extracellular domain of Ron fused with immunoglobulin Fc, eliminated activities of HLP, such as cellular migration and long neurite extension emanating from E15 DRG explants in the presence of NGF, but did not eliminate short neurites. These results suggested that promotion of long neurite extension and migration depends on activities of HLP through its receptor/Ron. Taken together, we propose that HLP may play an important role in chick sensory ganglia at relatively late stages of development. This is the first evidence that HLP functions as a neurotrophic factor.  相似文献   

19.
Selenium concentration in the brain tissue is far less variable than those in peripherals, such as the liver and kidneys, in rodents, when fed a selenium-deficient diet. This fact implies the importance of this element for maintaining the integrity of brain functions and the distinctive selenium metabolism and/or the regulatory mechanism in the brain. To obtain basic information concerning the homeostatically maintained selenium store in the brain, we investigated absorption and retention characteristics of selenium from selenious acid (SA) and seleno-l-methionine (SeMet) in rat dorsal root ganglion (DRG) neurons, in comparison to isolated rat hepatocytes and renal cells in vitro. When DRG neurons were cultured in an SA-free medium subsequent to an SA-supplemented one for 24 h, the DRG neurons maintained a higher selenium concentration than that before SA supplementation over a period of 96 h after removal of SA from the culture medium. The cellular glutathione peroxidase activity of the cells increased for 72 h after removal of SA from the culture medium. A similar retention characteristic of selenium was also observed for DRG neurons treated with SeMet-supplemented culture medium. Consequently, selenium from source compounds, in part, was thought to be retained in DRG neurons and then be utilized for the synthesis of selenium-containing proteins, which implied the presence of a neuron-specific selenium retention mechanism.  相似文献   

20.
Electrical stimulation (ES) can be useful for promoting the regeneration of injured axons, but the mechanism underlying its positive effects is largely unknown. The current study aimed to investigate whether ES could enhance the regeneration of injured neurites in dorsal root ganglion explants and regulate the MMP-2 expression level, which is correlated with regeneration. Significantly increased neurite regeneration and MMP-2 expression was observed in the ES group compared with the sham group. However, an MMP inhibitor significantly decreased this ES-induced neurite regeneration. Our data suggest that the positive effect of ES on neurite regeneration could likely be mediated by an increase in MMP-2 expression, thereby promoting the regeneration of injured neurites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号