首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurons in the nascent dorsal root ganglia are born and differentiate in a complex cellular milieu composed of postmitotic neurons, and mitotically active glial and neural progenitor cells. Neurotrophic factors such as NT-3 are critically important for promoting the survival of postmitotic neurons in the DRG. However, the factors that regulate earlier events in the development of the DRG such as the mitogenesis of DRG progenitor cells and the differentiation of neurons are less defined. Here we demonstrate that both NT-3 and CNTF induce distinct dose-dependent responses on cells in the immature DRG: at low concentrations, they induce the proliferation of progenitor cells while at higher concentrations they promote neuronal differentiation. Furthermore, the mitogenic response is indirect; that is, NT-3 and CNTF first bind to nascent neurons in the DRG--which then stimulates those neurons to release mitogenic factors including neuregulin. Blockade of this endogenous neuregulin activity completely blocks the CNTF-induced proliferation and reduces about half of the NT-3-mediated proliferation. Thus, the genesis and differentiation of neurons and glia in the DRG are dependent upon reciprocal interactions among nascent neurons, glia, and mitotically active progenitor cells.  相似文献   

2.
Abstract: There is increasing, although largely indirect, evidence that neurotrophic factors not only function as target-derived survival factors for projection neurons, but also act locally to regulate developmental processes. We studied the expression of ciliary neurotrophic factor (CNTF) and the CNTF-specific ligand-binding α-subunit of the CNTF receptor complex (CNTFRα) in the rat retina, a well-defined CNS model system, and CNTF effects on cultured retinal neurons. Both CNTF and CNTFRα (mRNA and protein) are expressed during phases of retinal neurogenesis and differentiation. Retina-specific Müller glia are immunocytochemically identified as the site of CNTF production and CNTFRα-expressing, distinct neuronal cell types as potential CNTF targets. Biological effects on corresponding neurons in culture further support the conclusion that locally supplied CNTF plays a regulatory role in the development of various retinal cell types including ganglion cells and interneurons.  相似文献   

3.
采用PCR的方法对睫状神经营养因子(CNTF)基因进行改造,获得CNTF突变体基因(CNTFM) ,将CNTFM基因克隆入表达载体pBV2 2 0 ,在大肠杆菌BL 2 1(Gold)中进行了表达.目的蛋白占细胞总蛋白5 5 %左右,以包涵体形式存在,经Superdex 75凝胶过滤柱一步纯化和复性,获得纯度达90 %目的蛋白.纯化的重组CNTFM蛋白能促进培养的鸡胚背根神经节长出神经突起,能明显减轻实验小鼠的体重,表明CNTFM具有良好的体内、体外生物学活性,为开发新型高效的减肥药奠定了基础.  相似文献   

4.
CNTF对烧伤大鼠血清引起大鼠海马神经元细胞毒性的影响   总被引:3,自引:0,他引:3  
应用整体和离体神经元培养,观察CNTF对烧伤大鼠海马神经元及烧伤血清引起海马神经元损伤的影响,结果表明,大鼠烧伤后海马组织神经元数目减少,NO含量升高;烧伤大鼠血清可引起培养的海马神经元细胞存活率下降,培养液中NO含量升高;CNTF能降低烧伤大鼠海马组织中NO的含量,保护海马神经元,并能提高培养的海马神经元的存活率,减少培养液中NO含量,其作用呈剂量依赖性;CNTF对神经元存活率的影响与NO含量呈显著负相关,提示CNTF对烧伤大鼠血清引起的海马神经元损伤有保护作用,其作用机制可能是通过抑制NO的神经毒性。  相似文献   

5.
I Saggio  I Gloaguen  G Poiana    R Laufer 《The EMBO journal》1995,14(13):3045-3054
Human CNTF is a neurocytokine that elicits potent neurotrophic effects by activating a receptor complex composed of the ligand-specific alpha-receptor subunit (CNTFR alpha) and two signal transducing proteins, which together constitute a receptor for leukemia inhibitory factor (LIFR). At high concentrations, CNTF can also activate the LIFR and possibly other cross-reactive cytokine receptors in the absence of CNTFR alpha. To gain a better understanding of its structure-function relationships and to develop analogs with increased receptor specificity, the cytokine was submitted to affinity maturation using phage display technology. Variants with greatly increased CNTFR alpha affinity were selected from a phage-displayed library of CNTF variants carrying random amino acid substitutions in the putative D helix. Selected variants contained substitutions of the wild-type Gln167 residue, either alone or in combination with neighboring mutations. These results provide evidence for an important functional role of the mutagenized region in CNTFR alpha binding. Affinity enhancing mutations conferred to CNTF increased potency to trigger biological effects mediated by CNTFR alpha and enhanced neurotrophic activity on chicken ciliary neurons. In contrast, the same mutations did not potentiate the CNTFR alpha-independent receptor actions of CNTF. These CNTF analogs thus represent receptor-specific superagonists, which should help to elucidate the mechanisms underlying the pleiotropic actions of the neurocytokine.  相似文献   

6.
The neuronal survival promoting ability of brain derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF), individually and in combination, was evaluated in dissociated cell cultures of postnatal day 5 (P5) rat acoustic ganglia. The neuritogenic promoting effect of these same neurotrophic factors was examined in organotypic explants of P5 rat acoustic ganglia. The results showed that BDNF was maximally effective at a concentration of 10 ng/mL in promoting both survival and neuritogenesis of these postnatal auditory neurons in vitro. CNTF was maximally effective at a concentration of 0.01 ng/mL at promoting both survival and neuritogenesis in the acoustic ganglion cultures. BDNF had its strongest effect on neuronal survival while CNTF was most effective in stimulating neurite outgrowth. These two neurotrophic factors, when added together at their respective maximally effective concentrations, behave in an additive manner for promoting both survival and neuritic outgrowth by the auditory neurons. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
人睫状神经营养因子(hCNTF)及其突变体有望成为治疗肥胖症的新型药物。为了减少hCNTF的副反应,提高其疗效,在hCNTF四重突变体AX15 (R13K)的基础上引入S16 5D Q16 6H突变,构建了高比活的DH_AX15 (R13K)突变体。体外和体内实验表明DH_AX15 (R13K)的活性约是AX15 (R13K)的5倍。同时体内实验还发现DH_AX15(R13K)的作用比AX15 (R13K)更为持久。这种更为持久的作用可能是由于活性提高而非半衰期延长引起的。高比活的hCNTF突变体一方面可以在保证疗效的前提下减少蛋白用量,减少副反应;另一方面可以在不增加副反应的前提下增加最大耐受剂量,提高疗效,在临床应用上具有潜在的优势  相似文献   

8.
We observed that recombinant ciliary neurotrophic factor (CNTF) enhanced survival and neurite outgrowth of cultured adult rat dorsal root ganglion (DRG) neurons. Among other neurotrophic factors (NGF and GDNF) and interleukin (IL)-6 cytokine members [IL-6, LIF, cardiotrophin-1, and oncostatin M (OSM)] at the same concentration (50 ng/ml), CNTF, as well as LIF and OSM, displayed high efficacy for the promotion of the number of viable neurons and neurite-bearing cells. CNTF enhanced the number of neurite-bearing cells in both small neurons (soma diameter <30 mum) and large neurons (soma diameter >/=30 mum), whereas NGF and GDNF promoted that in only small neurons. Western blot analysis revealed that CNTF induced phosphorylation of STAT3, Akt, and ERK1/2 in the neurons. Furthermore, the neurite outgrowth-promoting activity of CNTF was diminished by co-treatment with Janus kinase (JAK) 2 inhibitor, AG490; STAT3 inhibitor, STA-21; phosphatidyl inositol-3'-phosphate-kinase (PI3K) inhibitor, LY294002; and mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, in a concentration-dependent manner. Its survival-promoting activity was also affected by AG490, STA-21, and LY294002 at higher concentrations, but not by PD98059. These findings suggest the involvement of JAK2/STAT3, PI3K/Akt, and MEK/ERK signaling pathways in CNTF-induced neurite outgrowth, where the former two pathways are thought to play major roles in mediating the survival response of neurons to CNTF.  相似文献   

9.
A series of N-4-methansulfonamidobenzyl-N'-2-substituted-4-tert-butylbenzyl thioureas were prepared for the study of their agonistic/antagonistic activities to the vanilloid receptor in rat DRG neurons. Their structure-activity relationship reveals that there is a space for another hydrophobic binding interaction around 2-position in 4-tert-butylbenzyl region. Among the prepared derivatives, 6n show the highest antagonistic activity against the vanilloid receptor (IC(50)=15 nM).  相似文献   

10.
Ciliary neurotrophic factor (CNTF) is abundantly expressed in Schwann cells in adult mammalian peripheral nerves, but not in neurons. After peripheral nerve injury, CNTF released from disrupted Schwann cells is likely to promote neuronal survival and axonal regeneration. In the present study, we examined the expression and histochemical localization of CNTF in adult rat DRG in vivo and in vitro. In contrast to the restricted expression in Schwann cells in vivo, we observed abundant CNTF mRNA and protein expression in DRG neurons after 3 h, 2, 7, and 15 days in dissociated cell culture. At later stages (7 and 15 days) of culture, CNTF immunoreactivity was detected in both neuronal cell bodies and regenerating neurites. These results suggest that CNTF is synthesized and transported to neurites in cultured DRG neurons. Since we failed to observe CNTF immunoreactivity in DRG neurons in explant culture, disruption of cell–cell interactions, rather than the culture itself, may be an inducible factor for localization of CNTF in the neurons.  相似文献   

11.
Ciliary neurotrophic factor (CNTF) induces neuronal differentiation and promotes the survival of various neuronal cell types by binding to a receptor complex formed by CNTF receptor α (CNTFRα), gp130, and the leukemia inhibitory factor (LIF) receptor (LIFR). The CD loop-D helix region of CNTF has been suggested to be important for the cytokine interaction with LIFR. We designed a peptide, termed cintrofin, that encompasses this region. Surface plasmon resonance analysis demonstrated that cintrofin bound to LIFR and gp130, but not to CNTFRα, with apparent KD values of 35 nM and 1.1 nM, respectively. Cintrofin promoted the survival of cerebellar granule neurons (CGNs), in which cell death was induced either by potassium withdrawal or H2O2 treatment. Cintrofin induced neurite outgrowth from CGNs, and this effect was inhibited by specific antibodies against both gp130 and LIFR, indicating that these receptors are involved in the effects of cintrofin. The C-terminal part of the peptide, corresponding to the D helix region of CNTF, was shown to be essential for the neuritogenic action of the peptide. CNTF and LIF induced neurite outgrowth in CGNs plated on laminin-coated slides. On uncoated slides, CNTF and LIF had no neuritogenic effect but were able to inhibit cintrofin-induced neuronal differentiation, indicating that cintrofin and cytokines compete for the same receptors. In addition, cintrofin induced the phosphorylation of STAT3, Akt, and ERK, indicating that it exerts cell signaling properties similar to those induced by CNTF and may be a valuable survival agent with possible therapeutic potential.  相似文献   

12.
Gangliosides, in particular the monosialoglycosphingolipids Gtet 1 (GM1), have previously been implicated in the mediation of neuronal rescue and restitutional axonal growth, both in vitro and subsequent to brain and peripheral nerve lesions. In the present study it is shown that the bis-sialosyl gangliosides Gtet2b and Gtet3b, but not the gangliosides Gtet2a and Gtet1, promote the survival of dissociated dorsal root ganglion (DRG) neurons cultured from Embryonic Day (E) 8 chicks (DRG8) almost to the same extent as nerve growth factor (NGF). Ciliary ganglion (CG) neurons from E8 chicks (CG8) and DRG10 neurons were virtually not supported suggesting considerable specificity in terms of neuronal targets and developmental stages being addressed. Moreover, a variety of other lipids including cerebroside (Cb), dipalmitoylphosphatidylcholine (DPPC) and -serine (DPPS), sulfatide (Sf), and sphingomyelin (Sm) were tested for putative survival promoting activity toward chick CG, DRG, and lumbar sympathetic ganglion (SG11) neurons. At the highest concentration employed (2.5 x 10(-5) M), Sm, DPPC, and DPPS maintained between 45 and 65% of the plateau survival with CG8 (maximally supported by ciliary neuronotrophic factor (CNTF], DRG8, and DRG10 neurons, and 30 to 40% with SG11 neurons. Cb supported CG8 neurons at about 55% of the plateau value achieved with CNTF, but had hardly any effect on the other neuron populations tested. Control experiments using highly enriched neurons and serum-free conditions assured that the effects were unlikely to be mediated by serum components or nonneuronal cells. A variety of detergents, in particular Triton X-100, also promoted the survival of CG8 and DRG10 neurons. Ganglioside Gtet1, Sm, and Triton X-100 shifted the NGF titration curve for DRG10 neurons between 6- and 15-fold in a dose-dependent manner suggesting synergisms between NGF and lipids for neuronal maintenance. These results document the neuronotrophic potency of certain gangliosides, a heterogeneous group of structurally unrelated lipids, and detergents. The mechanisms by which these agents modulate neuronal survival still await clarification.  相似文献   

13.
A series of N-4-substituted-benzyl-N'-tert-butylbenzyl thioureas were prepared for the study of their agonistic/antagonistic activities to the vanilloid receptor in rat DRG neurons. Their structure-activity relationship reveals that not only the two oxygens and amide hydrogen of sulfonamido group, but also the optimal size of methyl in methanesulfonamido group play an integral role for the antagonistic activity on vanilloid receptor.  相似文献   

14.
rhCNTF对鸡胚感觉与运动神经元神经营养作用的比较   总被引:4,自引:0,他引:4  
在无血清培养条件下,观察了重组人睫状营养因子(rhCNTF)对鸡胚背根节感觉神经元及腹角运动神经元的营养作用。结果表明rhCNTF对这两类神经元均有明显的促存活作用,并呈一定的剂量/效应关系。rhCNTF浓度在0.5ng/ml以下时无作用,1.0-1.5ng/ml时已有促神经元存活作用,4ng/ml时作用最明显,再增加到100ng/ml神经元存活数无进一步增加。比较培养7天时两类神经元存活数发现感觉神经元对CNTF缺乏的敏感性高于运动神经元,提示CNTF对运动神经元的促存活作用只是它多种类型神经元营养作用中较弱的一环  相似文献   

15.
Ciliary neurotrophic factor (CNTF) is a neuroprotective cytokine initially identified in chick embryo. It has been evaluated for the treatment of neurodegenerative diseases. CNTF also acts on non-neuronal cells such as oligodendrocytes, astrocytes, adipocytes and skeletal muscles cells. CNTF has regulatory effects on body weight and is currently in clinical trial for the treatment of diabetes and obesity. CNTF mediates its function by activating a tripartite receptor comprising the CNTF receptor alpha chain (CNTFRalpha), the leukemia inhibitory factor receptor beta chain (LIFRbeta) and gp130. Human, rat and chicken CNTF have been expressed as recombinant proteins, and most preclinical studies in murine models have been performed using rat recombinant protein. Rat and human CNTF differ in their fine specificities: in addition to CNTFR, rat CNTF has been shown to activate the LIFR (a heterodimer of LIFRbeta and gp130), whereas human CNTF can bind and activate a tripartite receptor comprising the IL-6 receptor alpha chain (IL-6Ralpha) and LIFR. To generate tools designed for mouse models of human diseases; we cloned and expressed in E. coli both mouse CNTF and the CNTFRalpha chain. Recombinant mouse CNTF was active and showed a high level of specificity for mouse CNTFR. It shares the arginine residue with rat CNTF which prevents binding to IL-6Ralpha. It did not activate the LIFR at all concentrations tested. Recombinant mouse CNTF is therefore specific for CNTFR and as such represents a useful tool with which to study CNTF in mouse models. It appears well suited for the comparative evaluation of CNTF and the two additional recently discovered CNTFR ligands, cardiotrophin-like cytokine\cytokine-like factor-1 and neuropoietin.  相似文献   

16.
The interleukin-1beta converting enzyme (ICE) gene family, (homologues of C. elegans cell death gene product Ced-3) plays an important role in controlling programmed cell death. Nerve growth factor (NGF) promotes survival of cultured embryonic chicken dorsal root ganglion neurons. Ciliary ganglion neurons depend exclusively on ciliary neurotrophic factor (CNTF) for survival. Complete depletion of NGF or CNTF from culture medium induces apoptosis in both types of neurons. We can prevent apoptosis, due either to NGF or CNTF withdrawal and in either type of neuron, by overexpression of a mutant inactive ICE and an ICE inhibitor, the product of cowpox virus gene crmA. Bcl-2 does not prevent apoptosis in CNTF-dependent ciliary neurons or DRG neurons as it does in NGF-dependent neurons. These results suggest that neuronal cell death is mediated through a common effector mechanism involving the Ice family of genes, whereas different suppression mechanisms are engaged depending upon the specific neurotrophic factors present.  相似文献   

17.
A possible molecular mechanism for the constitutive activity of mutants of the angiotensin type 1 receptor (AT1) at position 111 was suggested by molecular modeling. This involves a cascade of conformational changes in spatial positions of side chains along transmembrane helix (TM3) from L112 to Y113 to F117, which in turn, results in conformational changes in TM4 (residues I152 and M155) leading to the movement of TM4 as a whole. The mechanism is consistent with the available data of site-directed mutagenesis, as well as with correct predictions of constitutive activity of mutants L112F and L112C. It was also predicted that the double mutant N111G/L112A might possess basal constitutive activity comparable with that of the N111G mutant, whereas the double mutants N111G/Y113A, N111G/F117A, and N111G/I152A would have lower levels of basal activity. Experimental studies of the above double mutants showed significant constitutive activity of N111G/L112A and N111G/F117A. The basal activity of N111G/I152A was higher than expected, and that of N111G/Y113A was not determined due to poor expression of the mutant. The proposed mechanism of constitutive activity of the AT(1) receptor reveals a novel nonsimplistic view on the general problem of constitutive activity, and clearly demonstrates the inherent complexity of the process of G protein-coupled receptor (GPCR) activation.  相似文献   

18.
Ciliary neurotrophic factor (CNTF) induces neurogenesis, reduces feeding, and induces weight loss. However, the central mechanisms by which CNTF acts are vague. We employed the mHypoE-20/2 line that endogenously expresses the CNTF receptor to examine the direct effects of CNTF on mRNA levels of urocortin-1, urocortin-2, agouti-related peptide, brain-derived neurotrophic factor, and neurotensin. We found that treatment of 10 ng/ml CNTF significantly increased only urocortin-1 mRNA by 1.84-fold at 48 h. We then performed intracerebroventricular injections of 0.5 mg/mL CNTF into mice, and examined its effects on urocortin-1 neurons post-exposure. Through double-label immunohistochemistry using specific antibodies against c-Fos and urocortin-1, we showed that central CNTF administration significantly activated urocortin-1 neurons in specific areas of the hypothalamus. Taken together, our studies point to a potential role for CNTF in regulating hypothalamic urocortin-1-expressing neurons to mediate its recognized effects on energy homeostasis, neuronal proliferaton/survival, and/or neurogenesis.  相似文献   

19.
20.
Galectin-1 (GAL-1), a member of a family of β-galactoside binding animal lectins, is predominantly expressed in isolectin B4 (IB4)-binding small non-peptidergic (glial cell line-derived neurotrophic factor (GDNF)-responsive) sensory neurons in the sections of adult rat dorsal root ganglia (DRG), but its functional role and the regulatory mechanisms of its expression in the peripheral nervous system remain unclear. In the present study, both recombinant nerve growth factor (NGF) and GDNF (50 ng/ml) promoted neurite outgrowth from cultured adult rat DRG neurons, whereas GDNF, but not NGF, significantly increased the number of IB4-binding neurons and the relative protein expression of GAL-1 in the neuron-enriched culture of DRG. The GAL-1 expression in immortalized adult rat Schwann cells IFRS1 and DRG neuron-IFRS1 cocultures was unaltered by treatment with GDNF, which suggests that GDNF/GAL-1 signaling axis is more related to neurite outgrowth, rather than neuron-Schwann cell interactions. The GDNF-induced neurite outgrowth and GAL-1 upregulation were attenuated by anti-GDNF family receptor (RET) antibody and phosphatidyl inositol-3′-phosphate-kinase (PI3K) inhibitor LY294002, suggesting that the neurite-outgrowth promoting activity of GDNF may be attributable, at least partially, to the upregulation of GAL-1 through RET-PI3K pathway. On the contrary, no significant differences were observed between GAL-1 knockout and wild-type mice in DRG neurite outgrowth in the presence or absence of GDNF. Considerable immunohistochemical colocalization of GAL-3 with GAL-1 in DRG sections and GDNF-induced upregulation of GAL-3 in cultured DRG neurons imply the functional redundancy between these galectins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号