首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of an Escherichia coli thymidylate synthase (TS) ternary complex containing 5-fluoro-2'-deoxyuridylate (FdUMP) and 10-propargyl-5,8-dideazafolate (PDDF) has been determined and refined at 2.3 A resolution. Each of the two chemically identical subunits folds into a three-layer domain anchored by a large six-stranded mixed beta-sheet. The backside of one sheet is juxtaposed against the corresponding face of the equivalent sheet in the second protomer creating a beta-sandwich. In contrast to other proteins of known structure in which aligned beta-sheets stack face to face with a counterclockwise rotation, sheets in the TS dimer are related by a clockwise twist. The substrate-binding pocket is a large funnel-shaped cleft extending some 25 A into the interior of each subunit and is surrounded by 30 amino acids, 28 from one subunit and two from the other. FdUMP binds at the bottom of this pocket covalently linked through C-6 to the sulfur of Cys146. Up-pointing faces of the pyrimidine and ribose rings are exposed to provide a complementary docking surface for the quinazoline ring of PDDF. The quinazoline inhibitor binds in a partially folded conformation with its p-aminobenzoyl glutamate tail exposed at the entrance to the active site cleft. Ternary complex formation is associated with a large conformational change involving four residues at the protein's carboxy terminus that close down on the distal side of the inhibitor's quinazoline ring, capping the active site and sequestering the bound ligands from bulk solvent.  相似文献   

2.
Interaction of thymidylate synthetase with 5-nitro-2'-deoxyuridylate   总被引:1,自引:0,他引:1  
5-Nitro-2'-deoxyuridylate (NO2dUMP) is a potent mechanism-based inhibitor of dTMP synthetase. After formation of a reversible enzymeìnhibitor complex, there is a rapid first order loss of enzyme activity which can be protected against by the nucleotide substrate dUMP. From studies of model chemical counterparts and the NO2dUMPdTMP synthetase complex, it has been demonstrated that a covalent bond is formed between a nucleophile of the enzyme and carbon 6 of NO2dUMP. The covalent NO2dUMPènzyme complex is sufficiently stable to permit isolation on nitrocellulose membranes, and dissociates to give unchanged NO2-dUMP with a first order rate constant of 8.9 x 10(-3) min-1. Dissociation of the complex formed with [6-3H]NO2dUMP shows a large alpha-secondary isotope effect of 19%, verifying that within the covalent complex, carbon 6 of the heterocycle is sp3-hybridized. The spectral changes which accompany formation of the NO2dUMPènzyme complex support the structural assignment and, when used to tritrate the binding sites, demonstrate that 2 mol of NO2dUMP are bound/mol of dimeric enzyme. The interaction of NO2dUMP with dTMP synthetase is quite different than that of other mechanism-based inhibitors such as 5-fluoro-2'-deoxyuridylate in that it neither requires nor is facilitated by the concomitant interaction of the folate cofactor, 5,10-CH2-H4folate, and that the covalent complex formed is unstable to protein denaturants.  相似文献   

3.
The structure of the Escherichia coli thymidylate synthase (TS) covalent inhibitory ternary complex consisting of enzyme, 5-fluoro-2'-deoxyuridylate (FdUMP) and 5,10-methylene tetrahydrofolate (CH2-H4PteGlu) has been determined at 2.5 A resolution using difference Fourier methods. This complex is believed to be a stable structural analog of a true catalytic intermediate. Knowledge of its three-dimensional structure and that for the apo enzyme, also reported here, suggests for the first time how TS may activate dUMP and CH2-H4PteGlu leading to formation of the intermediate and offers additional support for the hypothesis that the substrate and cofactor are linked by a methylene bridge between C-5 of the substrate nucleotide and N-5 of the cofactor. By correlating these structural results with the known stereospecificity of the TS-catalyzed reaction it can be inferred that the catalytic intermediate, once formed, must undergo a conformational isomerization before eliminating across the bond linking C-5 of dUMP to C-11 of the cofactor. The elimination itself may be catalyzed by proton transfer to the cofactor's 5 nitrogen from invariant Asp169 buried deep in the TS active site. The juxtaposition of Asp169 and bound tetrahydrofolate in TS is remarkably reminiscent of binding geometry found in dihydrofolate reductase where a similarly conserved carboxyl group serves as a general acid for protonating the corresponding pyrazine ring nitrogen of dihydrofolate.  相似文献   

4.
5.
6.
7.
8.
In the ternary complex of thymidylate synthetase, 5-fluoro-2'-deoxyuridylate (FdUMP), and 5,10-methylenetetrahydrofolate (5,10-CH2H4folate), the 5-fluorouracil moiety is covalently bound to the enzyme by a sulfide linkage from C-6 and to either N-5 or N-10 of H4folate by a methylene bridge from C-5. In an effort to establish the site by which H4folate is attached to FdUMP, the ternary complex was subjected to reagents that cleave the C-9, N-10 bond of folate derivatives. The complex was stable to zinc dust in hydrochloric acid, a reagent that cleaves N-10-substituted but not N-5-substituted folates. The conditions of the Bratton-Marshall reaction, which involve the use of nitrous acid, were found to cleave N-5-substituted folates in yields ranging from 5 to 50%. Exposure of the double-labeled thymidylate synthetase-FdUMP-[2-14C,7,9,3',5'-3H]5,10-CH2H4folate complex to the Bratton-Marshall reaction resulted in 16% cleavage of the C-9, N-10 bond with release solely of p-aminobenzoylglutamate, whereas all of the carbon-14-labeled pterin residue remained covalently bound to the protein. These results demonstrate that in the ternary complex, the 5-fluorouracil residue is connected by a covalent bond to N-5 of H4folate.  相似文献   

9.
10.
Thymidylate synthetase forms a complex with 5-fluoro-2′-deoxyuridylate and 5,10-methylenetetrahydrofolate in which a nucleophile of the enzyme is covalently attached to the 6-position of the nucleotide. Treatment of the complex with Pronase provides a small peptide to which both the nucleotide and cofactor are covalently attached. From amino acid analysis, it may be deduced that the amino acid which is covalently attached to 5-fluoro-2′-deoxyuridylate is threonine or histidine. Implications with regard to catalysis are discussed.  相似文献   

11.
5-Nitro-2′-deoxyuridylate is a potent reversible inhibitor of thymidylate synthetase. Once the reversible binary complex is formed, a nucleophile of the enzyme covalently binds to the 6-position of this inhibitor. The interaction does not require the cofactor of the normal enzymic reaction, and spectrophotometric properties of the complex are ideal for detailed studies of the interaction.  相似文献   

12.
New analogs of dUMP, dTMP and 5-fluoro-dUMP, including the corresponding 5'-thiophosphates (dUMPS, dTMPS and FdUMPS), 5'-dithiophosphates (dUMPS2, dTMPS2 and FdUMPS2), 5'-H-phosphonates (dUMP-H, dTMP-H and FdUMP-H) and 5'-S-thiosulfates (dUSSO3, dTSSO3 and FdUSSO3), have been synthesized and their interactions studied with highly purified mammalian thymidylate synthase. dUMPS and dUMPS2 proved to be good substrates, and dTMPS and dTMPS2 classic competitive inhibitors, only slightly weaker than dTMP. Their 5-fluoro congeners behaved as potent, slow-binding inhibitors. By contrast, the corresponding 5'-H-phosphonates and 5'-S-thiosulfates displayed weak activities, only FdUMP-H and FdUSSO3 exhibiting significant interactions with the enzyme, as weak competitive slow-binding inhibitors versus dUMR The pH-dependence of enzyme time-independent inhibition by FdUMP and FdUMPS was found to correlate with the difference in pKa values of the phosphate and thiophosphate groups, the profile of FdUMPS being shifted (approximately 1 pH unit) toward lower pH values, so that binding of dUMP and its analogs is limited by the phosphate secondary hydroxyl ionization. Hence, together with the effects of 5'-H-phosphonate and 5'-S-thiosulfate substituents, the much weaker interactions of the nucleotide analogs (3-5 orders of magnitude lower than for the parent 5'-phosphates) with the enzyme is further evidence that the enzyme's active center prefers the dianionic phosphate group for optimum binding.  相似文献   

13.
14.
The role of the pyrimidine N(3)-H in binding of dUMP derivatives to thymidylate synthase was evaluated with the aid of a new dUMP analogue, 5-fluoro-4-thio-dUMP, synthesized by an improved thiation and enzymatic phosphorylation. The interaction of this analogue, and of 5-FdUMP, with the enzyme, and the pH-dependence of these interactions, were compared. Both were slow-binding competitive inhibitors of the enzyme from Ehrlich carcinoma, L1210 and CCRF-CEM cells, with Ki an order of magnitude higher for 5-fluoro-4-thio-dUMP than for 5-FdUMP. With both nucleotides, as well as the parent nucleosides, enzyme inactivation increased as the pH was lowered from 8 to 6. Maximum inactivation with 5-FdUrd was at pH 7.0, and with 5-fluoro-4-thio-dUrd at pH 6.0, in agreement with the higher pKa for the N(3)-H dissociation of the former, and pointing to participation of the N(3)-H as a hydrogen donor in binding to the enzyme.  相似文献   

15.
The thermodynamic parameters, ΔH′, ΔG′, and ΔS′, and the stoichiometry for the binding of the substrate 2′-deoxyuridine-5′-phosphate (dUMP) and the inhibitor 5-fluoro-2′-deoxyuridine-5′-phosphate (FdUMP) to Lactobacillus casei thymidylate synthetase (TSase) have been investigated using both direct calorimetric methods and gel filtration methods. The data obtained show that two ligand binding sites are available but that the binding of the second mole of dUMP is extremely weak. Binding of the first mole of dUMP can best be illustrated by dUMP + TSase + H+?(dUMP-TSase-H+). [1] The enthalpy, ΔH1′, for reaction [1] was measured directly on a flow modification of a Beckman Model 190B microcalorimeter. Experiments in two different buffers (I = 0.10 m) show that ΔH1′ = ?28 kJ mol?1 and that 0.87 mol of protons enters into the reaction. Analysis of thermal titrations for reaction [1] indicates a free energy change of ΔG1′ = ?30 kJ mol?1 (K1 = 1.7 × 105 m?1). From these parameters, ΔS1′ was calculated to be +5 J mol?1 degree?1, showing that the reaction is almost totally driven by enthalpy changes. Gel filtration experiments show that at very high substrate concentrations, binding to a second site can be observed. Gel filtration experiments performed at low ionic strength (I = 0.05 m) reveal a stronger binding, with ΔG1′ = ?35 kJ mol?1 (K1 = 1.2 × 106 m?1), suggesting that the forces driving the interaction are, in part, electrostatic. Addition of 2-mercaptoethanol (0.10 m) had the effect of slightly increasing the dUMP binding constant. Binding of FdUMP to TSase is best illustrated by 2FdUMP + TSase + nHH+?FdUMP2 ? TSase ? (H+)nH. [2] The enthalpy for this reaction, ΔH2, was also measured calorimetrically and found to be ?30 kJ mol?1 with nH = 1.24 at pH 7.4 Assuming two FdUMP binding sites per dimer as established by Galivan et al. [Biochemistry15, 356–362 (1976)] our calorimetric results indicate different binding energies for each site. Based on the binding data, a thermodynamic model is presented which serves to rationalize much of the confusing physical and chemical data characterizing thymidylate synthetase.  相似文献   

16.
Previous studies have shown that human TS mRNA translation is controlled by a negative autoregulatory mechanism. In this study, an RNA electrophoretic gel mobility shift assay confirmed a direct interaction between Escherichia coli (E.coli) TS protein and its own E.coli TS mRNA. Two cis-acting sequences in the E.coli TS mRNA protein-coding region were identified, with one site corresponding to nucleotides 207-460 and the second site corresponding to nucleotides 461-807. Each of these mRNA sequences bind TS with a relative affinity similar to that of the full-length E.coli TS mRNA sequence (IC50 = 1 nM). A third binding site was identified, corresponding to nucleotides 808-1015, although its relative affinity for TS (IC50 = 5.1 nM) was lower than that of the other two cis-acting elements. E.coli TS proteins with mutations in amino acids located within the nucleotide-binding region retained the ability to bind RNA while proteins with mutations at either the nucleotide active site cysteine (C146S) or at amino acids located within the folate-binding region were unable to bind TS mRNA. These studies suggest that the regions on E.coli TS defined by the folate-binding site and/or critical cysteine sulfhydryl groups may represent important RNA binding domains. Further evidence is presented which demonstrates that the direct interaction with TS results in in vitro repression of E.coli TS mRNA translation.  相似文献   

17.
18.
The 31P nuclear magnetic resonance signal of deoxyuridylate was studied in the presence and absence of thymidlate synthase. In the absence of enzyme the chemical shift of deoxyuridylate is pH dependent with a pKa of 6.25. In the presence of enzyme, a peak corresponding to the dianioinc form of deoxyuridylate is observed which is independent of pH between pH 5.7 and pH 7.4. The pKa of the phosphate in the deoxyuridylate-thymidylate synthase complex is therefore less than 5. The release of inorganic phosphate from deoxyuridylate catalyzed by contaminating phosphatase was also observed.  相似文献   

19.
Thymidylate synthetase catalyses the formation of thymidine monophosphate from deoxyuridine monophosphate. Purified thymidylate synthetase can be assayed radiochemically using labelled deoxyuridine monophosphate as substrate, but cells are impervious to deoxyuridine monophosphate and so intracellular thymidylate synthetase activity cannot be assayed in this way. In this paper we describe the assay of intracellular thymidylate synthetase activity in intact cells using labelled 2'-deoxyuridine. The assay showed linear kinetics with respect to time, concentration of 2'-deoxyuridine, and cell concentration. 5-fluoro-2'-deoxyuridine inhibited intracellular thymidylate synthetase activity measured with this assay by 50% at 5 nM. Cell growth was inhibited by 50% at 6 nM 5-fluoro-2'-deoxyuridine. The assay was specific for thymidylate synthetase and enabled measurement of thymidylate synthetase activity in situ in intact cells.  相似文献   

20.
A series of 2'-fluoro-substituted dUMP/FdUMP analogues were synthesized, their interaction with human recombinant thymidylate synthase investigated, and structural (1)H and (19)F NMR study of the corresponding nucleosides performed. While 2'-F-dUMP (fluorine in the "down" configuration), in striking contrast to 2'-F-ara-UMP (fluorine in the "up" configuration) and 2',2'-diF-dUMP, showed substrate activity, 2'-F-ara-UMP and 2',2'-diF-dUMP were classic inhibitors, and 2',5-diF-ara-UMP behaved as a strong slow-binding inhibitor, suggesting the 2'-F substituent in the "up" position to interfere with the active center cysteine thiol addition to the pyrimidine C(6) and the pyrimidine C(5)-F to prevent this interference. In support, the direct through space heteronuclear coupling J(HF) was observed for the fluorine "up" derivatives, 2'-F-ara-U and 2',5-diF-ara-U, causing the splitting of the H(6) resonance lines. The absence of such splitting in 2',2'-diF-dUrd, indicating an unusual orientation of the base in relation to the furanose, was associated with an exceptionally weak interaction with the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号