首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Microbial mats are a good model system for ecological and evolutionary analysis of microbial communities. There are more than 20 alkaline hot springs on the banks of the Barguzin river inflows. Water temperature reaches 75 °C and pH is usually 8.0–9.0. The formation of microbial mats is observed in all hot springs. Microbial communities of hot springs of the Baikal rift zone are poorly studied. Garga is the biggest hot spring in this area.

Results

In this study, we investigated bacterial and archaeal diversity of the Garga hot spring (Baikal rift zone, Russia) using 16S rRNA metagenomic sequencing. We studied two types of microbial communities: (i) small white biofilms on rocks in the points with the highest temperature (75 °C) and (ii) continuous thick phototrophic microbial mats observed at temperatures below 70 °C. Archaea (mainly Crenarchaeota; 19.8% of the total sequences) were detected only in the small biofilms. The high abundance of Archaea in the sample from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. In the microbial mats, primary products were formed by cyanobacteria of the genus Leptolyngbya. Heterotrophic microorganisms were mostly represented by Actinobacteria and Proteobacteria in all studied samples of the microbial mats. Planctomycetes, Chloroflexi, and Chlorobi were abundant in the middle layer of the microbial mats, while heterotrophic microorganisms represented mostly by Firmicutes (Clostridia, strict anaerobes) dominated in the bottom part. Besides prokaryotes, we detect some species of Algae with help of detection their chloroplasts 16 s rRNA.

Conclusions

High abundance of Archaea in samples from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. Metagenomic analysis of microbial communities of the microbial mat of Garga hot spring showed that the three studied points sampled at 70 °C, 55 °C, and 45 °C had similar species composition. Cyanobacteria of the genus Leptolyngbya dominated in the upper layer of the microbial mat. Chloroflexi and Chlorobi were less abundant and were mostly observed in the middle part of the microbial mat. We detected domains of heterotrophic organisms in high abundance (Proteobacteria, Firmicutes, Verrucomicrobia, Planctomicetes, Bacteroidetes, Actinobacteria, Thermi), according to metabolic properties of known relatives, which can form complete cycles of carbon, sulphur, and nitrogen in the microbial mat. The studied microbial mats evolved in early stages of biosphere formation. They can live autonomously, providing full cycles of substances and preventing live activity products poisoning.
  相似文献   

2.
In this study the bacterial diversity of thermophilic microbial mats (40 to 65°C) in three alkaline hot springs of the Baikal Rift Zone (BRZ) was determined through pyrosequencing of 16S rRNA gene libraries. Significant diversity of bacterial species was found in the biomats of the hot springs with total number of detected phylotypes of 607. The highest share of the microbial community was represented by the phyla Chloroflexi (Seya Spring, 76.4%), Deinococcus-Thermus (Alla Spring, 45.1%), Nitrospira (Alla Spring, 36.1%), Cyanobacteria (Tsenkher Spring, 33.1%), and Proteobacteria (Tsenkher Spring, 22.6%), but their ratio varied significantly in different springs. A comparison of the biodiversity and composition of microbial communities between hot springs showed a decrease in biodiversity with increasing temperature. A large number of sequences showed a low degree of similarity with cultivated representatives in public databases. Microbial communities showed intensive rates of production and destruction of organic compounds, as revealed by the quantitative assessment of their functional activity.  相似文献   

3.
Mounting evidence suggests that ammonia-oxidizing archaea (AOA) may play important roles in nitrogen cycling in geothermal environments. In this study, the diversity, distribution and ecological significance of AOA in terrestrial hot springs in Kamchatka (Far East Russia) were explored using amoA genes complemented by analysis of glycerol dialkyl glycerol tetraethers (GDGTs) of archaea. PCR amplification of functional genes (amoA) from AOA and ammonia-oxidizing bacteria (AOB) was performed on microbial mats/streamers and sediments collected from three hot springs (42°C to 87°C and pH 5.5-7.0). No amoA genes of AOB were detected. The amoA genes of AOA formed three distinct phylogenetic clusters with Cluster 3 representing the majority (~59%) of OTUs. Some of the sequences from Cluster 3 were closely related to those from acidic soil environments, which is consistent with the predominance of low pH (<7.0) in these hot springs. Species richness (estimated by Chao1) was more frequently higher at temperatures below 75°C than above it, indicating that AOA may be favored in the moderately high temperature environments. Quantitative PCR of 16S rRNA genes showed that crenarchaeota counted for up to 80% of total archaea. S-LIBSHUFF separated all samples into two phylogenetic groups. The profiles of GDGTs were well separated among the studied springs, suggesting a spatial patterning of archaeal lipid biomarkers. However, this patterning did not correlate significantly with variation in archaeal amoA, suggesting that AOA are not the predominant archaeal group in these springs producing the observed GDGTs.  相似文献   

4.
The diversity and community composition of Actinobacteria in microbial mats of five Tibetan hot springs (temperatures 26°C to 81°C) and a sympatric soil were investigated with 16S rRNA gene phylogentic analysis. A total of 278 clones were obtained. The actinobacterial communities in the Tibetan hot springs were diverse, and most of the retrieved clones were affiliated with Actinobacteridae, Acidimicrobidae, and unclassified Actinobacteria. The Actinobacteridae sequences were distributed into seven suborders (e.g., Frankineae, Corynebacterineae, Micromonosporineae, Pseudonocardineae, Propionibacterineae, Micrococcineae, and Actinomycineae) and unclassified Actinobacteridae. The actinobacterial composition varied among different hot springs. Statistical analysis showed that the actinobacterial diversity in the investigated Tibetan hot springs was not significantly correlated with temperature, suggesting that temperature is not a key factor in shaping the actinobacterial diversity in hot springs.  相似文献   

5.
Diversity of Crenarchaeota in terrestrial hot springs in Tengchong, China   总被引:3,自引:0,他引:3  
Diversity of Crenarchaeota was investigated in eight terrestrial hot springs (pH 2.8–7.7; temperature 44–96°C) located in Tengchong, China, using 16S rRNA gene phylogenetic analysis. A total of 826 crenarchaeotal clones were sequenced and a total of 47 operational taxonomic units (OTUs) were identified. Most (93%) of the identified OTUs were closely related (89–99%) to those retrieved from hot springs and other thermal environments. Our data showed that temperature may predominate over pH in affecting crenarchaeotal diversity in Tengchong hot springs. Crenarchaeotal diversity in moderate-temperature (59–77°C) hot springs was the highest, indicating that the moderately hot-temperature springs may provide optimal conditions for speciation of Crenarchaeota.  相似文献   

6.
Odisha (East India) is home to several hot springs, of which Atri and Taptapani are the two with variation in temperature and located in the Mahanadi geothermal province having altitude 120 and 1800 ft., respectively, above sea level. Average temperature of Atri hot spring is as higher as 58 ± 5°C as compared to 48 ± 5°C of Taptapani. In-depth analysis of the microbial diversity of these hot springs through 16S rRNA deep sequencing analysis, targeting V3 region was performed using Illumina bar-coded sequencing platform. Existence of higher microbial diversity in Atri hot spring (1662 OTUs; 2708 species) as compared to Taptapani (1561 Operational Taxonomic Units [OTUs]; 2045 species) is supported by higher value of diversity indices for Atri (6.24, Shannon; 0.95, Simpson) than Taptapani (4.03, Shannon; 0.79, Simpson), probably due to favorable influence of environmental parameters around it. Irrespective of the four databases (GREENGENE, M5RNA, Ribosomal Database Project [RDP], and Small Subunit [SSU] databases) used for understanding community structure, the dominant phyla in the Atri hot spring were different from the predominant populations in the Taptapani in terms of percentage representation in different databases. From Principal Coordinates Analysis [PCoA] analysis, Atri and Taptapani metagenome, on comparison with other three metagenomes, were found to be matching with the community structure of hot springs of Gujarat, India, but differed from that of saline desert. Furthermore, predicted functional analysis in both the hot springs were found to be affiliated with carbohydrate, amino acids, energy, vitamins and cofactor, nucleotide, membrane transport metabolic pathways, and the genes involved in them, although their intensity of occurrence was varying as analyzed through PICRUSt and Tax4Fun probably due to physicochemical parameters prevailing around each hot spring. The present study for the first time has revealed the differential microbial community structure and predicted functional diversity of Atri and Taptapani hot springs of Odisha in such a great detail.  相似文献   

7.
The nitrogen, sulfur and carbon cycles all rely on critical microbial transformations that are carried out by enzymes that require molybdenum (Mo) as a cofactor. Despite Mo importance in these biogeochemical cycles, little information exists about microbial Mo utilization in extreme environments where, due to geochemical conditions, bioavailable Mo may be limited. Using metagenomic data from nine hot springs in Tengchong, Yunnan Province, China, which range in temperature from 42°C to 96°C and pH from 2.3 to 9, the effects of pH, temperature and spring geochemistry on the abundance and taxonomic affiliation of genes related to Mo were studied. Dissolved Mo was only detected at sites with circumneutral pH. However, processes and organisms that require Mo were detected at all sites across all temperature and pH gradients. All sites contained xanthine dehydrogenase, formate dehydrogenase, carbon‐monoxide dehydrogenase, nitrate reductase, sulfite oxidase and methionine‐sulfoxide reductase despite different community compositions. This suggests that different microbial communities, resulting from different physicochemical conditions, may be performing similar metabolic functions. Furthermore, the abundance and taxonomic diversity of Mo‐related annotations increased with higher concentrations of Mo. This study shows that despite geochemical conditions that can limit Mo bioavailability, microbes require Mo for a variety of processes.  相似文献   

8.
In solfataric fields in southwestern Iceland, neutral and sulfide-rich hot springs are characterized by thick bacterial mats at 60 to 80 degrees C that are white or yellow from precipitated sulfur (sulfur mats). In low-sulfide hot springs in the same area, grey or pink streamers are formed at 80 to 90 degrees C, and a Chloroflexus mat is formed at 65 to 70 degrees C. We have studied the microbial diversity of one sulfur mat (high-sulfide) hot spring and one Chloroflexus mat (low-sulfide) hot spring by cloning and sequencing of small-subunit rRNA genes obtained by PCR amplification from mat DNA. Using 98% sequence identity as a cutoff value, a total of 14 bacterial operational taxonomic units (OTUs) and 5 archaeal OTUs were detected in the sulfur mat; 18 bacterial OTUs were detected in the Chloroflexus mat. Although representatives of novel divisions were found, the majority of the sequences were >95% related to currently known sequences. The molecular diversity analysis showed that Chloroflexus was the dominant mat organism in the low-sulfide spring (1 mg liter(-1)) below 70 degrees C, whereas Aquificales were dominant in the high-sulfide spring (12 mg liter(-1)) at the same temperature. Comparison of the present data to published data indicated that there is a relationship between mat type and composition of Aquificales on the one hand and temperature and sulfide concentration on the other hand.  相似文献   

9.
Fan L  McElroy K  Thomas T 《PloS one》2012,7(6):e39948
Direct sequencing of environmental DNA (metagenomics) has a great potential for describing the 16S rRNA gene diversity of microbial communities. However current approaches using this 16S rRNA gene information to describe community diversity suffer from low taxonomic resolution or chimera problems. Here we describe a new strategy that involves stringent assembly and data filtering to reconstruct full-length 16S rRNA genes from metagenomicpyrosequencing data. Simulations showed that reconstructed 16S rRNA genes provided a true picture of the community diversity, had minimal rates of chimera formation and gave taxonomic resolution down to genus level. The strategy was furthermore compared to PCR-based methods to determine the microbial diversity in two marine sponges. This showed that about 30% of the abundant phylotypes reconstructed from metagenomic data failed to be amplified by PCR. Our approach is readily applicable to existing metagenomic datasets and is expected to lead to the discovery of new microbial phylotypes.  相似文献   

10.
Culture-independent and enrichment techniques, with an emphasis on members of the Archaea, were used to determine the composition and structure of microbial communities inhabiting microbial mats in the source pools of two geothermal springs near the towns of Arzakan and Jermuk in Armenia. Amplification of small-subunit rRNA genes using “universal” primers followed by pyrosequencing (pyrotags) revealed highly diverse microbial communities in both springs, with >99 % of pyrosequences corresponding to members of the domain Bacteria. The spring in Arzakan was colonized by a photosynthetic mat dominated by Cyanobacteria, in addition to Proteobacteria, Bacteroidetes, Chloroflexi, Spirochaeta and a diversity of other Bacteria. The spring in Jermuk was colonized by phylotypes related to sulfur, iron, and hydrogen chemolithotrophs in the Betaproteobacteria and Epsilonproteobacteria, along with a diversity of other Bacteria. Analysis of near full-length small subunit rRNA genes amplified using Archaea-specific primers showed that both springs are inhabited by a diversity of methanogens, including Methanomicrobiales and Methanosarcinales and relatives of Methanomassiliicoccus luminyensis, close relatives of the ammonia-oxidizing archaeon (AOA) “Candidatus Nitrososphaera gargensis”, and the yet-uncultivated Miscellaneous Crenarchaeotal Group and Deep Hydrothermal Vent Crenarchaeota group 1. Methanogenic enrichments confirmed the predicted physiological diversity, revealing methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis at 45 and 55 °C, but not 65 °C. This is one of only a few studies combining cultivation-independent and -dependent approaches to study archaea in moderate-temperature (37–73 °C) terrestrial geothermal environments and suggests important roles for methanogenic archaea and AOA in the carbon and nitrogen biogeochemical cycles in these environments.  相似文献   

11.
The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs.  相似文献   

12.
13.
Anammox, the oxidation of ammonium with nitrite to dinitrogen gas under anoxic conditions, is an important process in mesophilic environments such as wastewaters, oceans and freshwater systems, but little is known of this process at elevated temperatures. In this study, we investigated anammox in microbial mats and sediments obtained from several hot springs in California and Nevada, using geochemical and molecular microbiological methods. Anammox bacteria-specific ladderane core lipids with concentrations ranging between 0.3 and 52 ng g−1 sediment were detected in five hot springs analyzed with temperatures up to 65 °C. In addition, 16S rRNA gene analysis showed the presence of genes phylogenetically related to the known anammox bacteria Candidatus Brocadia fulgida, Candidatus Brocadia anammoxidans and Candidatus Kuenenia stuttgartiensis (96.5–99.8% sequence identity) in three hot springs with temperatures up to 52 °C. Our data indicate that anammox bacteria may be able to thrive at thermophilic temperatures and thus may play a significant role in the nitrogen cycle of hot spring environments.  相似文献   

14.
Extraction of good-quality metagenomic DNA from extreme environments is quite challenging, particularly from high elevation hot spring sediments. Low microbial load, high humic acid content and other contaminants complicate the process of extraction of metagenomic DNA from hot spring sediments. In the present study, efficacy of five manual DNA extraction protocols with modifications has been evaluated for metagenomic DNA extraction from boron–sulfur rich high elevation Puga hot spring sediments. Best suited protocol was identified based on the cell lysis efficiency, DNA yield, humic acid content, PCR reproducibility and representation of bacterial diversity. Quantity as well as quality of crude metagenomic DNA differed remarkably between various protocols used and were not pure enough to give PCR amplification using 16S rRNA bacterial and archaeal primers. Crude metagenomic DNA extracted using five different DNA extraction protocols was purified using spin column based purification method. Even after purification, only three protocols C, D and E yielded metagenomic DNA that could be amplified using both archaeal and bacterial primers. To evaluate the degree of microbial diversity represented by protocols C, D and E, phylogenetic genes amplified were subjected to amplified ribosomal DNA restriction analysis (ARDRA) and denaturing gradient gel electrophoresis analysis (DGGE) analysis. ARDRA banding pattern of amplicons generated for all the three extraction protocols, i.e., C, D and E were found to be similar. DGGE of protocol E derived amplicons resulted in the similar number of dominant bands but a greater number of non-dominant bands, i.e., the highest microbial diversity in comparison to protocols C and D, respectively. In the present study, protocol E developed from Yeates et al. protocol has been found to be best in terms of DNA yield, DNA purity and bacterial diversity depiction associated with boron–sulfur rich sediment of high elevation hot springs.  相似文献   

15.
Modern microbial mats are potential analogues of some of Earth''s earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic next-generation sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats.  相似文献   

16.
Two ecologically distinct tropical sulfur-rich alkaline hot springs, Taptapani at 48°C harboring mesophiles and Atri at 58°C comprising thermophiles situated in the Eastern Ghats foothills of India, differ in their geochemical conditions, and provide an interesting platform to unravel the eco-physiological reasons behind the differential cyanobacterial diversity. The predominance of mesophilic Arthronema (83.81%) in Taptapani and shifting predominance of thermophilic Leptolyngbya (96.25%) in Atri as discovered through 16S rRNA gene Illumina sequencing of their metagenomics DNA as a function of temperature are the intriguing features of the present study. Differential presence of the cyanobacterial community at the phylum level in these two hot springs was found to be correlated with the unequal coexistence of Chloroflexi, Taptapani the non-cyanobacteria members and the possible influence of physiochemical parameters including temperature. Variation in cyanobacterial diversity and composition of these hot springs as revealed through sequence analysis were also evinced by respective differences in richness, evenness, and Shannon diversity indices.  相似文献   

17.
Central America is one of the most important biodiversity hot spots in the world, and Costa Rican microbial communities from thermal springs are the best characterized in the isthmus. Miravalles is an inactive quaternary stratovolcano, and the Rincón de la Vieja is a unique active volcano, in whose slopes diverse hydrothermal springs, such as Las Lilas, are located. These springs harbor extensive microbial mats, whose diversity has been studied. Based on their importance as primary producers, in this study we focused on cultured cyanobacterial diversity from two geothermal environments of northern Costa Rica. Several cultural, molecular and taxonomic techniques were employed to maximize the results of a polyphasic approach. Sample collection sites were physicochemically described, and strains were isolated and characterized by light and electron microscopy. Phylogenetic analysis was performed using 16S rRNA gene sequences and amplified ribosomal DNA restriction analysis (ARDRA). Fifty‐six phylotypes were isolated and classified into 21 morphotypes and identified in 14 genera, some of them might be new species within these genera. Furthermore, according to phylogenetic analysis, there are three possible new genera in our collection. Miravalles and Las Lilas thermal springs are reservoirs of novel phylogeographic lineages of phototrophic microorganisms. This study is the first report of strains that belong to the genera Gloeocapsa, Stanieria, Microseira, Klisinema and Oculatella isolated from thermal springs and growing at temperatures above 50°C. We also obtained isolates assigned to Synechococcus, Leptolyngbya spp., and Fischerella, which are considered typical strains in these environments.  相似文献   

18.
Abstract

Hot springs are natural environments where hot groundwater comes out from the earth. Exploring the microbial diversity present in hot springs is important first to determine the microorganisms able to proliferate there and to understand their role in biogeochemical cycles. In Algeria, research concerning microbial populations in those ecosystems is limited. This study describes bacterial and archaeal diversity of the ‘Hammam Essalihine’ hot spring in Khenchela province in north-east Algeria using a culture-independent approach. This is the first microbial diversity investigation in the ‘Hammam Essalihine’ hot spring using next-generation sequencing techniques to assess the species classification of thermophilic microorganisms. Genomic DNA was extracted from water samples and the V4–V5 region of 16S rRNA gene were amplified, sequenced, and analyzed. The average temperature of water varies from 68 to 70?°C. High-throughput sequencing analysis revealed the presence of 21 bacterial phyla, including an unknown phylum and distributed across 42 families and 39 genera. The majority of the sequences were observed to belong to the kingdom Bacteria. The bacterial community from this hot spring is dominated by Proteobacteria (41.52%), Chloroflexi (7.62%), and Bacteroidetes (7.62%), whereas the community of Archaea is scarcely present in the study site and the two identified operational taxonomic units (OTUs) are far from what is known in the GenBank database. The study shows several uncharacterized sequences, indicating that the water of ‘Hammam Essalihine’ hot spring contains undescribed microorganisms. This study is thought to add to the understanding of thermophile diversity and ecology of ‘Hammam Essalihine’ hot spring.  相似文献   

19.
The respiratory and photosynthetic quinones of microbial mats which occurred in Japanese sulfide-containing neutral-pH hot springs at different temperatures were analyzed by spectrochromatography and mass spectrometry. All of the microbial mats that developed at high temperatures (temperatures above 68°C) were so-called sulfur-turf bacterial mats and produced methionaquinones (MTKs) as the major quinones. A 78°C hot spring sediment had a similar quinone profile. Chloroflexus-mixed mats occurred at temperatures of 61 to 65°C and contained menaquinone 10 (MK-10) as the major component together with significant amounts of either MTKs or plastoquinone 9 (PQ-9). The sunlight-exposed biomats growing at temperatures of 45 to 56°C were all cyanobacterial mats, in which the photosynthetic quinones (PQ-9 and phylloquinone) predominated and MK-10 was the next most abundant component in most cases. Ubiquinones (UQs) were not found or were detected in only small amounts in the biomats growing at temperatures of 50°C and above, whereas the majority of the quinones of a purple photosynthetic mat growing at 34°C were UQs. A numerical analysis of the quinone profiles was performed by using the following three parameters: dissimilarity index (D), microbial divergence index (MDq), and bioenergetic divergence index (BDq). A D matrix tree analysis showed that the hot spring mats consisting of the sulfur-turf bacteria, Chloroflexus spp., cyanobacteria, and purple phototrophic bacteria formed distinct clusters. Analyses of MDq and BDq values indicated that the microbial diversity of hot spring mats decreased as the temperature of the environment increased. The changes in quinone profiles and physiological types of microbial mats in hot springs with thermal gradients are discussed from evolutionary viewpoints.  相似文献   

20.
The deep sequencing of 16S rRNA genes amplified by universal primers has revolutionized our understanding of microbial communities by allowing the characterization of the diversity of the uncultured majority. However, some universal primers also amplify eukaryotic rRNA genes, leading to a decrease in the efficiency of sequencing of prokaryotic 16S rRNA genes with possible mischaracterization of the diversity in the microbial community. In this study, we compared 16S rRNA gene sequences from genome-sequenced strains and identified candidates for non-degenerate universal primers that could be used for the amplification of prokaryotic 16S rRNA genes. The 50 identified candidates were investigated to calculate their coverage for prokaryotic and eukaryotic rRNA genes, including those from uncultured taxa and eukaryotic organelles, and a novel universal primer set, 342F-806R, covering many prokaryotic, but not eukaryotic, rRNA genes was identified. This primer set was validated by the amplification of 16S rRNA genes from a soil metagenomic sample and subsequent pyrosequencing using the Roche 454 platform. The same sample was also used for pyrosequencing of the amplicons by employing a commonly used primer set, 338F-533R, and for shotgun metagenomic sequencing using the Illumina platform. Our comparison of the taxonomic compositions inferred by the three sequencing experiments indicated that the non-degenerate 342F-806R primer set can characterize the taxonomic composition of the microbial community without substantial bias, and is highly expected to be applicable to the analysis of a wide variety of microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号