首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We estimated the effect of invading Sasa vegetation and accelerated terrestrialization on the microbial community structure in Sarobetsu-genya wetland (SGW) and Nakanominedaira wetland (NW) (original vegetation, Sphagnum). All examined peat-pore water samples were acidic. Electrical conductivity significantly differed between SGW and NW. Nonmetric multidimensional scaling (NMDS) and analysis of similarity based on denaturing gradient gel electrophoresis (DGGE) band patterns revealed differences in the bacterial community structure between the Sasa and Sphagnum vegetations at a depth of 10 cm in NW. In contrast, the bacterial NMDS profiles at all depths differed between the 2 wetlands rather than between the 2 vegetations. The archaeal community structure significantly differed between the wetlands at depths of 30 and 50 cm. The bacterial diversity index derived from the DGGE profiles significantly differed between the wetlands at all depths. The archaeal diversity index significantly differed between the wetlands at a depth of 50 cm. Sasa invasion affected the microbial community structure in the rhizosphere, up to a depth of 10 cm; this effect differed with the terrestrialization speed. These results suggest that in peat bogs subjected to artificially accelerated terrestrialization, the microbial community changes before the occurrence of the natural hydrarch ecological succession involving ground vegetation.  相似文献   

2.
Uncovering microbial diversity and their influencing factors is a primary goal for microbial ecology. In comparison with studies on bacterial diversity, limited is known about archaeal diversity and its response to influencing factors in lakes. Here, we investigated the archaeal community compositions (ACCs) and their correlation with spatial/environmental factors in the sediments from 38 Chinese lakes with a large range of salinity (0.2–363.1 g/l) and pairwise geographic distance (3–3656 km). Illumina-Miseq sequencing was employed to characterize the ACCs in the lakes samples. The results showed that Euryarchaeota, Bathyarchaeota, Thaumarchaeota, and Woesearchaeota were the dominant archaeal phyla in the studied samples, and they each can occur in the samples with a wide range of salinity (0.2–363.1 g/l) although their abundance was relatively low (<1%) in certain samples. The Thaumarchaeota and Woesearchaeota phyla dominated (up to 90% of total sequences) some lake sediments. Mantel test indicated that compositions of total archaeal community and the Euryarchaeota and Woesearchaeota populations were significantly (p < 0.05) correlated with geographic distance in the studied lake sediments. Salinity was the most important environmental factor influencing the compositions of the total archaeal community and the Euryarchaeota population, while it did not show significant influence on the distribution of the Woesearchaeota and Thaumarchaeota populations. Taken together, this survey expands our current knowledge on the ecology of lacustrine archaea and give clues for studying the archael role in biogeochemical cycles in lakes.  相似文献   

3.
An integrated view of bacterial and archaeal diversity in saline soil habitats is essential for understanding the biological and ecological processes and exploiting potential of microbial resources from such environments. This study examined the collective bacterial and archaeal diversity in saline soils using a meta-analysis approach. All available 16S rDNA sequences recovered from saline soils were retrieved from publicly available databases and subjected to phylogenetic and statistical analyses. A total of 9,043 bacterial and 1,039 archaeal sequences, each longer than 250 bp, were examined. The bacterial sequences were assigned into 5,784 operational taxonomic units (OTUs, based on ≥97 % sequence identity), representing 24 known bacterial phyla, with Proteobacteria (44.9 %), Actinobacteria (12.3 %), Firmicutes (10.4 %), Acidobacteria (9.0 %), Bacteroidetes (6.8 %), and Chloroflexi (5.9 %) being predominant. Lysobacter (12.8 %) was the dominant bacterial genus in saline soils, followed by Sphingomonas (4.5 %), Halomonas (2.5 %), and Gemmatimonas (2.5 %). Archaeal sequences were assigned to 602 OTUs, primarily from the phyla Euryarchaeota (88.7 %) and Crenarchaeota (11.3 %). Halorubrum and Thermofilum were the dominant archaeal genera in saline soils. Rarefaction analysis indicated that less than 25 % of bacterial diversity, and approximately 50 % of archaeal diversity, in saline soil habitats has been sampled. This analysis of the global bacterial and archaeal diversity in saline soil habitats can guide future studies to further examine the microbial diversity of saline soils.  相似文献   

4.
The UK hosts 15–19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat oligotrophy, re-vegetation recalcitrance, rhizosphere-microbe-soil interactions, C, N and P cycling, trajectory of restoration, and ecosystem service implications for peatland restoration.  相似文献   

5.
Diatom sediment records of large lakes can be used to decipher the history of ancient phytoplankton. The upper layer of the sediment is an important area of remineralization of the sedimenting phytoplankton biomass. It hosts a bacterial community different from those of both the water column and deeper sediment layers. In this work, we analyzed the structure and diversity of the communities of Bacteria and Archaea in the surface sediment core containing valves of diatoms, the major producers in Lake Baikal. Pyrosequencing of the bacterial V3–V4 region of the 16 S ribosomal RNA (rRNA) and archaeal V1–V3 16 S rRNA gene regions yielded 29,168 and 36,997 reads, respectively. In total, we have identified 33 bacterial phyla; uncultured Actinobacteria were the most abundant in the upper layers, while lower sediment was dominated by Firmicutes and Alphaproteobacteria. The composition of the archaeal community changed with depth, but was generally dominated by Crenarchaeota from the classes Marine Group I and Miscellaneous Crenarchaeotic Group, as well as Euryarchaeota from the class Thermoplasmata. These dominant bacterial and archaeal taxa are presumed to participate in the destruction of buried organic matter, which eventually leads to degradation of the diatom valves.  相似文献   

6.
土壤微生物是生态系统维持正常结构与功能的重要组成部分,为探究盐城滩涂典型湿地土壤微生物群落结构特征,以江苏盐城滩涂互花米草、藨草、盐地碱蓬、芦苇及淤泥质光滩5种典型群落为对象,采用16S rRNA高通量测序技术分析0—10 cm(表层)、10—30 cm(中层)、30—60 cm(深层)土壤微生物多样性及群落结构。结果表明:(1)几种植物群落间,土壤微生物群落结构差异较大,主要体现在细菌群落结构的差异性,古菌群落结构差异相对较小。光滩与植物群落间,在土壤细菌种类及相对丰度上差异相对较大,互花米草群落与本土植物群落间,在微生物群落的细菌种类组成上存在较大差异;藨草群落土壤表层微生物群落结构与互花米草群落相似,深层与盐地碱蓬、芦苇群落相似。(2)同一群落不同层次土壤微生物群落结构相似,差异小于不同群落间土壤微生物群落的结构差异性;不同群落对应层次间,表深层土壤中五种群落土壤微生物多样性存在显著差异,中层土壤中五种群落微生物多样性差异不显著。总体上,植物群落类型对土壤微生物群落结构的影响大于土壤深度;与本土植物群落相比,互花米草群落土壤主要优势门微生物种类差异较小,但部分优势门微生物相对丰度...  相似文献   

7.
Microorganisms are known to play fundamental roles in the biogeochemical cycling of carbon in the coastal environments. To get to know the composition and ecological roles of the archaeal communities within the sediments of the Pearl River Estuary, Southern China, the diversity and vertical distribution of archaea in a sediment core was reported based on the 16S rRNA and mcrA genes for the first time. Quantitative PCR analysis revealed that archaea were present at 106–107 16S rRNA gene copies/g (wet weight) in the sediment core, and the proportion of mcrA versus 16S rRNA gene copies varied from 11 to 45%. 16S rRNA gene libraries were constructed and analyzed for the top layer (0–6 cm), middle layer (18–24 cm), sulfate-methane transition zone (SMTZ, 32–42 cm), and bottom layer (44–50 cm) sediments. The results indicated that Miscellaneous Crenarchaeotal Group (MCG) was the main component in the sediments. The MCG archaea could be further divided into six subgroups: MCG-A, B, C, D, E, and F. On the other hand, mcrA sequences from methanogens related to the order Methanomicrobiales and ANME-2 methanotrophs were detected in all sediment layers. Taken together, our data revealed a largely unknown archaeal community in which MCG dominated within the Pearl River estuarine sediments, while methanogens and methane-oxidizing archaea putatively involving in methane metabolism, were also found in the community. This is the first important step towards elucidating the biogeochemical roles of these archaea in the Pearl River Estuary.  相似文献   

8.
The anoxic sediments of the White Oak River estuary comprise a distinctive sulfate–methane transition zone (SMTZ) and natural enrichment of the archaea affiliated with the Miscellaneous Crenarchaeotal Group (MCG). Archaeal biphytanes were generally depleted in 13C, with δ13C values being less than –35‰, indicative of production by active sedimentary archaeal populations. Multivariate analysis of the downcore distributions of 63 lipid biomarkers identified three major groups of lipids that were enriched in the surface, SMTZ or subsurface depths. Intact polar lipids with phosphatidylglycerol headgroups and glycerol dibiphytanyl glycerol tetraethers containing one, two or three cyclopentane rings were enriched at the base of the SMTZ and likely represent the accumulated product of a small but active ANME‐1 community. The recently identified butanetriol dibiphytanyl glycerol tetraethers (BDGT), which increased relatively to other lipids with depth, were correlated with the relative abundance of MCG in archaeal 16S rRNA clone libraries, and were 13C depleted throughout the depth profile, suggesting BDGT lipids as putative biomarkers of an MCG community that may either be autotrophic or feeding on 13C‐depleted organic substrates transported by porewater.  相似文献   

9.
Tropical peat swamp forests are important and endangered ecosystems, although little is known of their microbial diversity and ecology. We used molecular and enzymatic techniques to examine patterns in prokaryotic community structure and overall microbial activity at 0-, 10-, 20-, and 50-cm depths in sediments in a peat swamp forest in Malaysia. Denaturing gradient gel electrophoresis profiles of amplified 16S ribosomal ribonucleic acid (rRNA) gene fragments showed that different depths harbored different bacterial assemblages and that Archaea appeared to be limited to the deeper samples. Cloning and sequencing of longer 16S rRNA gene fragments suggested reduced microbial diversity in the deeper samples compared to the surface. Bacterial clone libraries were largely dominated by ribotypes affiliated with the Acidobacteria, which accounted for at least 27–54% of the sequences obtained. All of the sequenced representatives from the archaeal clone libraries were Crenarchaeota. Activities of microbial extracellular enzymes involved in carbon, nitrogen, and phosphorus cycling declined appreciably with depth, the only exception being peroxidase. These results show that tropical peat swamp forests are unusual systems with microbial assemblages dominated by members of the Acidobacteria and Crenarchaeota. Microbial communities show clear changes with depth, and most microbial activity is likely confined to populations in the upper few centimeters, the site of new leaf litter fall, rather than the deeper, older, peat layers.  相似文献   

10.
Dissolved organic carbon (DOC) plays a key role in the peatland carbon balance and serves numerous ecological and chemical functions including acting as a microbial substrate. In this study, we quantify the concentration, biodegradability, and intrinsic properties of DOC obtained from peat, fresh material, and litter from nine species of ombrotrophic bog vegetation. Potential biodegradability was assessed by incubating vegetation extracts for 28 days in the dark and measuring percent DOC loss as the fraction of biodegradable DOC (%BDOC) while DOC properties were characterized using UV–Vis absorbance and fluorescence measurements. The mean initial DOC concentration extracted differed significantly among species (P < 0.05) and was significantly higher in fresh material, 217 ± 259 mg DOC l?1, than either litter or peat extracts with mean concentrations of 82.1 ± 117 mg DOC l?1 and 12.7 ± 1.0 mg DOC l?1, respectively (P < 0.05). %BDOC also differed significantly among species (P < 0.05) and ranged from 52 to 73% in fresh cuttings with the greatest fraction observed in S. magellanicum; 22–46% in litter; and 24% in peat. The majority of variability (82.5%) in BDOC was explained by initial absorbance at 254 nm and total dissolved nitrogen concentration which was further resolved into significant non-linear relationships between %BDOC and both humic-like and protein-like DOC fractions (P < 0.05). Our results highlight the extremely heterogeneous nature of the surface vegetation-derived DOC input in peatlands and stress the importance of vegetation species in peatland ecosystem function.  相似文献   

11.
A primary tropical peat swamp forest is a unique ecosystem characterized by long-term accumulation of plant biomass under high humidity and acidic water-logged conditions, and is regarded as an important terrestrial carbon sink in the biosphere. In this study, the microbial community in the surface peat layer in Pru Toh Daeng, a primary tropical peat swamp forest, was studied for its phylogenetic diversity and metabolic potential using direct shotgun pyrosequencing of environmental DNA, together with analysis of 16S rRNA gene library and key metabolic genes. The community was dominated by aerobic microbes together with a significant number of facultative and anaerobic microbial taxa. Acidobacteria and diverse Proteobacteria (mainly Alphaproteobacteria) constituted the major phylogenetic groups, with minor representation of archaea and eukaryotic microbes. Based on comparative pyrosequencing dataset analysis, the microbial community showed high metabolic versatility of plant polysaccharide decomposition. A variety of glycosyl hydrolases targeting lignocellulosic and starch-based polysaccharides from diverse bacterial phyla were annotated, originating mostly from Proteobacteria, and Acidobacteria together with Firmicutes, Bacteroidetes, Chlamydiae/Verrucomicrobia, and Actinobacteria, suggesting the key role of these microbes in plant biomass degradation. Pyrosequencing dataset annotation and direct mcrA gene analysis indicated the presence of methanogenic archaea clustering in the order Methanomicrobiales, suggesting the potential on partial carbon flux from biomass degradation through methanogenesis. The insights on the peat swamp microbial assemblage thus provide a valuable approach for further study on biogeochemical processes in this unique ecosystem.  相似文献   

12.
Mesophilic and thermophilic anaerobic digesters (MD and TD, respectively) utilizing Gracilaria and marine sediment as the substrate and inoculum, respectively, were compared by analyzing their performances and microbial community changes. During three successive transfers, the average cumulative methane yields in the MD and TD were 222.6 ± 17.3 mL CH4/g volatile solids (VS) and 246.1 ± 11 mL CH4/g VS, respectively. The higher hydrolysis rate and acidogenesis in the TD resulted in a several fold greater accumulation of volatile fatty acids (acetate, propionate, and butyrate) followed by a larger pH drop with a prolonged recovery than in the MD. However, the operational stability between both digesters remained comparable. Pyrosequencing analyses revealed that the MD had more complex microbial diversity indices and microbial community changes than the TD. Interestingly, Methanomassiliicoccales, the seventh methanogen order was the predominant archaeal order in the MD along with bacterial orders of Clostridiales, Bacteriodales, and Synergistales. Meanwhile, Coprothermobacter and Methanobacteriales dominated the bacterial and archaeal community in the TD, respectively. Although the methane yield is comparable, both MD and TD show a different profile of pH, VFA and the microbial communities.  相似文献   

13.
Sediments of the White Oak River (WOR) estuary are situated on the coast of North Carolina harbour, one of the most diverse known populations of uncultured Archaea, specifically the miscellaneous Crenarchaeotal group (MCG). In order to constrain the environmental factors influencing the uncultured archaeal groups in the WOR estuary, biogeochemical profiles as well as archaeal 16S rRNA genes from sediment pushcores were analysed. The relative fraction of MCG Archaea in clone libraries decreased at shallow sediment depths (27% of the total MCG). A LINKTREE analysis of the MCG intragroup diversity reinforced the observation that the MCG subgroup 6 was found predominantly within sulfide‐depleted shallow sediment layers; other subgroups (especially MCG‐1 and MCG‐5/8) occurred preferentially in deeper, more strongly reducing sediment layers. The available evidence from this study and published MCG distribution patterns indicates that the MCG‐6 subgroup is a specialized MCG lineage that, in contrast to other MCG subgroups, prefers suboxic sediment horizons with minimal or no free sulfide. Collectively, our results reveal the habitat preferences of different MCG subgroups in the WOR sediments and suggest that physiological adaptations to distinct sedimentary geochemical niches evolved in different MCG subgroups.  相似文献   

14.
Culture conditions for the maintenance of previously uncultured members of the Archaea thriving in anoxic water layers of stratified freshwater lakes are described. The proposed enrichment conditions, based on the use of defined medium composition and the maintenance of anoxia, have been proven effective for the maintenance of the archaeal community with virtually no changes over time for periods up to 6 months as revealed by a PCR-DGGE analysis. Phylotypes belonging to groups poorly represented in culture collections such as the Deep-Sea Hydrothermal Vent Euryarchaeota (DHVE) and the Miscellaneous Crenarchaeotic Group (MCG) were maintained and selectively enriched when compared to the correspondent indigenous planktonic archaeal community.  相似文献   

15.
Caves are windows to the extreme habitats of deep subsurface, and provide answers of unknowns about the underground life. Furthermore, sulfidic caves are important analogues for the early Earth environments, since some environmental conditions are common, such as high sulfur concentration, high temperature and oxygen-poor conditions. Kaklik Cave (Denizli, Turkey) with its travertine formation, carbonate- and sulfur-rich thermal springs, exhibits a unique ecosystem as a sulfidic cave. This study represents the first molecular survey of the microbial community in the Kaklik Cave, Turkey using high-throughput 16S rRNA gene amplicon sequencing analysis. An average of 859–2,416 operational taxonomic units per sample were observed including 25 bacterial phyla and 3 archaeal phyla. The bacterial diversity profiles were generally dominated by Epsilonproteobacteria and Gammaproteobacteria. At the carbonate-rich hot spring, that formed travertine structure, 9.7% of sequence reads affiliated with Thiofaba spp. In contrast, 38.74% of the total sequence reads at the sulfidic hot spring samples associated with the genus Sulfurimonas and Sulfurovum. In the archaeal community composition, Thermoplasmata was the most abundant group in all sampling areas. The 454-pyrotag results provide leads about ammonia-, nitrite- and sulfur-oxidation as well as sulfur-reduction, carbon dioxide fixation, and nitrogen fixation.  相似文献   

16.
In order to obtain insight into the prokaryotic diversity and community in leachate sediment, a culture-independent DNA-based molecular phylogenetic approach was performed with archaeal and bacterial 16S rRNA gene clone libraries derived from leachate sediment of an aged landfill. A total of 59 archaeal and 283 bacterial rDNA phylotypes were identified in 425 archaeal and 375 bacterial analyzed clones. All archaeal clones distributed within two archaeal phyla of the Euryarchaeota and Crenarchaeota, and well-defined methanogen lineages, especially Methanosaeta spp., are the most numerically dominant species of the archaeal community. Phylogenetic analysis of the bacterial library revealed a variety of pollutant-degrading and biotransforming microorganisms, including 18 distinct phyla. A substantial fraction of bacterial clones showed low levels of similarity with any previously documented sequences and thus might be taxonomically new. Chemical characteristics and phylogenetic inferences indicated that (1) ammonium-utilizing bacteria might form consortia to alleviate or avoid the negative influence of high ammonium concentration on other microorganisms, and (2) members of the Crenarchaeota found in the sediment might be involved in ammonium oxidation. This study is the first to report the composition of the microbial assemblages and phylogenetic characteristics of prokaryotic populations extant in leachate sediment. Additional work on microbial activity and contaminant biodegradation remains to be explored.  相似文献   

17.
Peatland ecosystems have been consistent carbon (C) sinks for millennia, but it has been predicted that exposure to warmer temperatures and drier conditions associated with climate change will shift the balance between ecosystem photosynthesis and respiration providing a positive feedback to atmospheric CO2 concentration. Our main objective was to determine the sensitivity of ecosystem photosynthesis, respiration and net ecosystem production (NEP) measured by eddy covariance, to variation in temperature and water table depth associated with interannual shifts in weather during 2004–2009. Our study was conducted in a moderately rich treed fen, the most abundant peatland type in western Canada, in a region (northern Alberta) where peatland ecosystems are a significant landscape component. During the study, the average growing season (May–October) water depth declined approximately 38 cm, and temperature [expressed as cumulative growing degree days (GDD, March–October)] varied approximately 370 GDD. Contrary to previous predictions, both ecosystem photosynthesis and respiration showed similar increases in response to warmer and drier conditions. The ecosystem remained a strong net sink for CO2 with an average NEP (± SD) of 189 ± 47 g C m?2 yr?1. The current net CO2 uptake rates were much higher than C accumulation in peat determined from analyses of the relationship between peat age and cumulative C stock. The balance between C addition to, and total loss from, the top 0–30 cm depth (peat age range 0–70 years) of shallow peat cores averaged 43 ± 12 g C m?2 yr?1. The apparent long‐term average rate of net C accumulation in basal peat samples was 19–24 g C m?2 yr?1. The difference between current rates of net C uptake and historical rates of peat accumulation is likely a result of vegetation succession and recent increases in tree establishment and productivity.  相似文献   

18.
This study investigated the abundance, distribution, and composition of microbial communities at the watershed scale in a boreal peatland within the Marcell Experimental Forest (MEF), Minnesota, USA. Through a close coupling of next-generation sequencing, biogeochemistry, and advanced analytical chemistry, a biogeochemical hot spot was revealed in the mesotelm (30- to 50-cm depth) as a pronounced shift in microbial community composition in parallel with elevated peat decomposition. The relative abundance of Acidobacteria and the Syntrophobacteraceae, including known hydrocarbon-utilizing genera, was positively correlated with carbohydrate and organic acid content, showing a maximum in the mesotelm. The abundance of Archaea (primarily crenarchaeal groups 1.1c and 1.3) increased with depth, reaching up to 60% of total small-subunit (SSU) rRNA gene sequences in the deep peat below the 75-cm depth. Stable isotope geochemistry and potential rates of methane production paralleled vertical changes in methanogen community composition to indicate a predominance of acetoclastic methanogenesis mediated by the Methanosarcinales in the mesotelm, while hydrogen-utilizing methanogens predominated in the deeper catotelm. RNA-derived pyrosequence libraries corroborated DNA sequence data to indicate that the above-mentioned microbial groups are metabolically active in the mid-depth zone. Fungi showed a maximum in rRNA gene abundance above the 30-cm depth, which comprised only an average of 0.1% of total bacterial and archaeal rRNA gene abundance, indicating prokaryotic dominance. Ratios of C to P enzyme activities approached 0.5 at the acrotelm and catotelm, indicating phosphorus limitation. In contrast, P limitation pressure appeared to be relieved in the mesotelm, likely due to P solubilization by microbial production of organic acids and C-P lyases. Based on path analysis and the modeling of community spatial turnover, we hypothesize that P limitation outweighs N limitation at MEF, and microbial communities are structured by the dominant shrub, Chamaedaphne calyculata, which may act as a carbon source for major consumers in the peatland.  相似文献   

19.

Bacterial and archaeal assemblages are one of the most important contributors to the recycling of nutrients and the decomposition of organic matter in aquatic sediments. However, their spatiotemporal variation and its driving factors remain unclear, especially for drinking reservoirs, which are strongly affected by human consumption. Using quantitative PCR and Illumina MiSeq sequencing, we investigated the bacterial and archaeal communities in the sediments of a drinking reservoir, the Miyun Reservoir, one of the most important drinking sources for Beijing City. The abundance of bacteria and archaea presented no spatiotemporal variation. With respect to community diversity, visible spatial and temporal differences were observed in archaea, whereas the bacterial community showed minor variation. The bacterial communities in the reservoir sediment mainly included Proteobacteria, Bacteroidetes, Nitrospirae, Acidobacteria, and Verrucomicrobia. The bacterial community structure showed obvious spatial variation. The composition of the bacterial operational taxonomic units (OTUs) and main phyla were dam-specific; the composition of samples in front of the dam were significantly different from the composition of the other samples. The archaeal communities were mainly represented by Woesearchaeota and Euryarchaeota. Distinctly spatial and seasonal variation was observed in the archaeal community structure. The sediment NH4 +–N, pH, and water depth were identified as the key driving factors of changes in the composition of the bacterial and archaeal communities. Water depth might have the greatest influence on the microbial community structure. The dam-specific community structure may be related to the greater water depth in front of the dam. This finding indicates that water depth might be the greatest contributor to the microbial community structure in the Miyun Reservoir.

  相似文献   

20.
The fungal and bacterial activity was determined in 20 northern European peatlands ranging from ombrotrophic bogs to eutrophic fens with key differences in degree of humification, pH, dry bulk density, carbon (C) content and vegetation communities using the selective inhibition (SI) technique. These peatlands were partly disturbed and the respective water tables lowered below the surface layer. Basal respiration ranged from 24 to 128 µg CO2-C g?1 dry peat d?1. Bacterial contributions to CO2 production were high in most peatlands and showed the following pattern: eutrophic >> transitional ≥ mesotrophic >> ombrotrophic peatland types. The fungal-to-bacterial (F:B) ratios varied substantially within peatland type, and this was mainly attributed to differences in peat botanical compositions and chemistry. The computed mean Inhibitor Additivity Ratio (IAR) was quite close to 1 to suggest that the SI techniques can be used to partition eukaryotic and prokaryotic activity in wide range of peatlands. Overall, basal respiration, microbial biomass-C, fungal and bacterial activities varied across the studied peatland types, and such differences could have consequences for C- and nutrient-cycling as well as how bogs and fens will respond to environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号