首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
【目的】当前对全球冷泉生态系统微生物生态学研究显示,冷泉生态系统中主要微生物类群为参与甲烷代谢的微生物,它们的分布差异与所处冷泉区生物地球化学环境密切相关。但在冷泉区内也存在环境因子截然不同的生境,尚缺乏比较冷泉区内小尺度生境间微生物多样性和分布规律的研究。本研究旨在分析南海Formosa冷泉区内不同生境间微生物多样性差异,完善和理解不同环境因子对冷泉内微生物群落结构的影响。【方法】对采集自南海Formosa冷泉区不同生境(黑色菌席区、白色菌席区和碳酸盐岩区)沉积物样本中古菌和细菌16S rRNA基因进行测序,结合环境因子,比较微生物多样性差异,分析环境因子对微生物分布的影响。【结果】发现在Formosa冷泉内的不同生境中,甲烷厌氧氧化古菌(anaerobic methanotrophic archaea,ANME)是主要古菌类群,占古菌总体相对丰度超过70%;在菌席区ANME-1b和ANME-2a/b是主要ANME亚群,碳酸盐岩区则是ANME-1b。硫酸盐还原菌(sulfate-reducing bacteria,SRB)和硫氧化菌(sulfur-oxidizing bacteria...  相似文献   

2.
Vesicomyidae clams harbor sulfide‐oxidizing endosymbionts and are typical members of cold seep communities where active venting of fluids and gases takes place. We investigated the central biogeochemical processes that supported a vesicomyid clam colony as part of a locally restricted seep community in the Japan Trench at 5346 m water depth, one of the deepest seep settings studied to date. An integrated approach of biogeochemical and molecular ecological techniques was used combining in situ and ex situ measurements. In sediment of the clam colony, low sulfate reduction rates (maximum 128 nmol mL?1 day?1) were coupled to the anaerobic oxidation of methane. They were observed over a depth range of 15 cm, caused by active transport of sulfate due to bioturbation of the vesicomyid clams. A distinct separation between the seep and the surrounding seafloor was shown by steep horizontal geochemical gradients and pronounced microbial community shifts. The sediment below the clam colony was dominated by anaerobic methanotrophic archaea (ANME‐2c) and sulfate‐reducing Desulfobulbaceae (SEEP‐SRB‐3, SEEP‐SRB‐4). Aerobic methanotrophic bacteria were not detected in the sediment, and the oxidation of sulfide seemed to be carried out chemolithoautotrophically by Sulfurovum species. Thus, major redox processes were mediated by distinct subgroups of seep‐related microorganisms that might have been selected by this specific abyssal seep environment. Fluid flow and microbial activity were low but sufficient to support the clam community over decades and to build up high biomasses. Hence, the clams and their microbial communities adapted successfully to a low‐energy regime and may represent widespread chemosynthetic communities in the Japan Trench. In this regard, they contributed to the restricted deep‐sea trench biodiversity as well as to the organic carbon availability, also for non‐seep organisms, in such oligotrophic benthic environment of the dark deep ocean.  相似文献   

3.
The Sorrento wetland hosts several Fe- and Mn-rich seeps that are reported to have appeared after the area was disturbed by recent attempts at development. Culture-independent and culture-based analyses were utilized to characterize the microbial community at the main site of the Fe and Mn seep. Several bacteria capable of oxidizing Mn(II) were isolated, including members related to the genera Bacillus, Lysinibacillus, Pseudomonas, and Leptothrix, but none of these were detected in clone libraries. Most probable number assays demonstrated that seep and wetland sites contained higher numbers of culturable Mn-oxidizing microorganisms than an upstream reference site. When compared with quantitative real time PCR (qPCR) assays of total bacteria, MPN analyses indicated that less than 0.01% of the total population (estimated around 109 cells/g) was culturable. Light microscopy and fluorescence in situ hybridization (FISH) images revealed an abundance of morphotypes similar to Fe- and Mn-oxidizing Leptothrix spp. and Gallionella spp. in seep and wetland sites. FISH allowed identification of Leptothrix-type sheath-forming organisms in seep samples but not in reference samples. Gallionella spp. and Leptothrix spp. cells numbers were estimated using qPCR with a novel primer set that we designed. Results indicated that numbers of Gallionella, Leptothrix or total bacteria were all significantly higher at the seep site relative to the reference site (where Gallionella was below detection). Interestingly, numbers of Leptothrix in the seep site were estimated at only 107 cells/g and were not statistically different in the late summer versus the late winter, despite dramatic changes in sheath abundance (as indicated by microscopy). qPCR also indicated that Gallionella spp. may represent up to 10% (3 × 108 cells/g) of the total bacteria in seep samples. These data corroborate clone library data from samples taken in October 2008, where 11 SSU rRNA sequences related to Gallionella spp. were detected out of 77 total sequences (roughly 10–15%), and where Leptothrix sequences were not detected. Analysis of this SSU rRNA clonal library revealed that a diverse microbial community was present at seep sites. At a 3% difference cutoff, 30 different operational taxonomic units were detected out of 77 sequences analyzed. Dominant sequence types clustered among the beta- and gamma- Proteobacteria near sequences related to the genera Ideonella, Rhodoferax, Methylotenera, Methylobacter, and Gallionella. Overall, results suggest that high metal concentrations at the seep sites have enriched for Fe- and Mn-oxidizing bacteria including organisms related to Gallionella and Leptothrix species, and that members of these genera coexist within a diverse microbial community.  相似文献   

4.
The vestimentiferan tubeworms Lamellibrachia luymesi and Seepiophila jonesi are found at hydrocarbon seeps in the Gulf of Mexico. Primers for polymorphic microsatellite loci were developed from genomic libraries of L. luymesi (five loci) and from S. jonesi tissue (eight loci) and were used to screen individuals collected from nine northern Gulf of Mexico hydrocarbon seep sites. Loci had from four to more than 50 alleles with high expected levels of heterozygosity. Cross‐species amplification, tested on seven vestimentiferan species including both hydrothermal vent and cold seep species, was generally strong in similar species but weak in more genetically distant species.  相似文献   

5.
Symbiotic relationships between vestimentiferan tubeworms and chemosynthetic Gammaproteobacteria build the foundations of many hydrothermal vent and hydrocarbon seep ecosystems in the deep sea. The association between the vent tubeworm Riftia pachyptila and its endosymbiont Candidatus Endoriftia persephone has become a model system for symbiosis research in deep‐sea vestimentiferans, while markedly fewer studies have investigated symbiotic relationships in other tubeworm species, especially at cold seeps. Here we sequenced the endosymbiont genome of the tubeworm Lamellibrachia barhami from a cold seep in the Gulf of California, using short‐ and long‐read sequencing technologies in combination with Hi‐C and Dovetail Chicago libraries. Our final assembly had a size of ~4.17 MB, a GC content of 54.54%, 137X coverage, 4153 coding sequences, and a CheckM completeness score of 97.19%. A single scaffold contained 99.51% of the genome. Comparative genomic analyses indicated that the L. barhami symbiont shares a set of core genes and many metabolic pathways with other vestimentiferan symbionts, while containing 433 unique gene clusters that comprised a variety of transposases, defence‐related genes and a lineage‐specific CRISPR/Cas3 system. This assembly represents the most contiguous tubeworm symbiont genome resource to date and will be particularly valuable for future comparative genomic studies investigating structural genome evolution, physiological adaptations and host‐symbiont communication in chemosynthetic animal‐microbe symbioses.  相似文献   

6.
SYNOPSIS. The primary ecosystem-structuring organisms at manyhydrothermal vents and cold seeps are phylogenetically relatedand quite similar physiologically and anatomically. Vestimentiferantube worms and Vesicomyid clams in particular all rely on chemoautotrophicsulfur-oxidizing symbionts and have blood which binds sulfidewith high affinity and capacity. However, there are significantdifferences between cold seep and hydrothermal vent environments,including large differences in flow rate of the emitted fluidand the chemistry of that fluid. Here we review extant dataon the hydrothermal vent species, present new data on the physiologicallyrelevant chemical microhabitat of cold seep vestimentiferansand vesicomyids, and compare the physiological ecology of theseep species to their hydrothermal vent relatives  相似文献   

7.
We investigated microorganisms associated with a deep-sea sponge, Characella sp. (Pachastrellidae) collected at a hydrothermal vent site (686 m depth) in the Sumisu Caldera, Ogasawara Island chain, Japan, and with two sponges, Pachastrella sp. (Pachastrellidae) and an unidentified Poecilosclerida sponge, collected at an oil seep (572 m depth) in the Gulf of Mexico, using polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE) directed at bacterial 16S rRNA gene sequences. In the PCR-DGGE profiles, we detected a single clearly dominant band in each of the Characella sp. and the unidentified Poecilosclerida sponge. BLAST search of their sequences showed that they were most similar (>99% identity) to those of the gammaproteobacterial thioautotrophic symbionts of deep-sea bivalves from hydrothermal vents, Bathymodiolus spp. Phylogenetic analysis of the near-full length sequences of the 16S rRNA genes cloned from the unidentified Poecilosclerida sponge and Characella sp. confirmed that they were closely related to thioautotrophic symbionts. Although associations between sponges and methanotrophic bacteria have been reported previously, this is the first report of a possible stable association between sponges and thioautotrophic bacteria.  相似文献   

8.
Deep‐sea hydrothermal vents and cold seeps, limited environments without sunlight, are two types of extreme habitat for marine organisms. The differences between vents and cold seeps may facilitate genetic isolation and produce population heterogeneity. However, information on such chemosynthetic fauna taxa is rare, especially regarding the population diversity of species inhabiting both vents and cold seeps. In this study, three mitochondrial DNA fragments (the cytochrome c oxidase submit I (COI), cytochrome b gene (Cytb), and 16S) were concatenated as a mitochondrial concatenated dataset (MCD) to examine the genetic diversity, population structure, and demographic history of Shinkaia crosnieri and Bathymodiolus platifrons. The genetic diversity differences between vent and seep populations were statistically significant for S. crosnieri but not for B. platifrons. S. crosnieri showed less gene flow and higher levels of genetic differentiation between the vent and seep populations than B. platifrons. In addition, the results suggest that all the B. platifrons populations, but only the S. crosnieri vent populations, passed through a recent expansion or bottleneck. Therefore, different population distribution patterns for the two dominant species were detected; a pattern of population differentiation for S. crosnieri and a homogeneity pattern for B. platifrons. These different population distribution patterns were related to both extrinsic restrictive factors and intrinsic factors. Based on the fact that the two species were collected in almost identical or adjacent sampling sites, we speculated that the primary factors underlying the differences in the population distribution patterns were intrinsic. The historical demographics, dispersal ability, and the tolerance level of environmental heterogeneity are most likely responsible for the different distribution patterns.  相似文献   

9.
Sediment samples were obtained from areas of diffuse hydrothermal venting along the seabed in the Tonga sector of the Tonga‐Kermadec Arc, southwest Pacific Ocean. Sediments from Volcano 1 and Volcano 19 were analyzed by X‐ray diffraction (XRD) and found to be composed primarily of the iron oxyhydroxide mineral, two‐line ferrihydrite. XRD also suggested the possible presence of minor amounts of more ordered iron (hydr)oxides (including six‐line ferrihydrite, goethite/lepidocrocite and magnetite) in the biogenic iron oxides (BIOS) from Volcano 1; however, Mössbauer spectroscopy failed to detect any mineral phases more crystalline than two‐line ferrihydrite. The minerals were precipitated on the surfaces of abundant filamentous microbial structures. Morphologically, some of these structures were similar in appearance to the known iron‐oxidizing genus Mariprofundus spp., suggesting that the sediments are composed of biogenic iron oxides. At Volcano 19, an areally extensive, active vent field, the microbial cells appeared to be responsible for the formation of cohesive chimney‐like structures of iron oxyhydroxide, 2–3 m in height, whereas at Volcano 1, an older vent field, no chimney‐like structures were apparent. Iron reduction of the sediment material (i.e. BIOS) by Shewanella putrefaciens CN32 was measured, in vitro, as the ratio of [total Fe(II)]:[total Fe]. From this parameter, reduction rates were calculated for Volcano 1 BIOS (0.0521 day?1), Volcano 19 BIOS (0.0473 day?1), and hydrous ferric oxide, a synthetic two‐line ferrihydrite (0.0224 day?1). Sediments from both BIOS sites were more easily reduced than synthetic ferrihydrite, which suggests that the decrease in effective surface area of the minerals within the sediments (due to the presence of the organic component) does not inhibit subsequent microbial reduction. These results indicate that natural, marine BIOS are easily reduced in the presence of dissimilatory iron‐reducing bacteria, and that the use of common synthetic iron minerals to model their reduction may lead to a significant underestimation of their biological reactivity.  相似文献   

10.

Background  

Comparative phylogeography recently performed on the mitochondrial cytochrome oxidase I (mtCOI) gene from seven deep-sea vent species suggested that the East Pacific Rise fauna has undergone a vicariant event with the emergence of a north/south physical barrier at the Equator 1-2 Mya. Within this specialised fauna, the tube-dwelling polychaete Alvinella pompejana showed reciprocal monophyly at mtCOI on each side of the Equator (9°50'N/7°25'S), suggesting potential, ongoing allopatric speciation. However, the development of a barrier to gene flow is a long and complex process. Secondary contact between previously isolated populations can occur when physical isolation has not persisted long enough to result in reproductive isolation between genetically divergent lineages, potentially leading to hybridisation and subsequent allelic introgression. The present study evaluates the strength of the equatorial barrier to gene flow and tests for potential secondary contact zones between A. pompejana populations by comparing the mtCOI gene with nuclear genes.  相似文献   

11.
Symbioses between marine invertebrates and their chemoautotrophic and methanotrophic symbionts are now known to exist in a variety of habitats where reduced chemical species are present. The utilization of chemical energy and reliance on C1 compounds by these symbioses are well documented. Much less is known about their metabolism of nitrogen. Earlier work has shown that the tissues of organisms in these associations are depleted of 15N compared with those of other marine organisms, indicating that local sources of nitrogen are assimilated and that novel mechanisms of nitrogen metabolism may be involved. Although these symbioses have access to rich sources of ammonium (NH4+ and NH3) and/or nitrate, several investigators have proposed that N2 fixation may account for some of these isotope values. Here we report that [15N]ammonium and, to a lesser degree, [15N]nitrate are assimilated into organic compounds by Solemya reidi, a gutless clam containing S-oxidizing bacteria, and seep mussel Ia, an undescribed mytilid containing methanotrophic bacteria. In contrast, Riftia pachyptila, the giant hydrothermal vent tube worm symbiotic with S-oxidizing bacteria, assimilated nitrate but not exogenous ammonium. The rates of assimilation of these sources are sufficient to at least partially support C1 compound metabolism. N2 assimilation was not exhibited by the symbionts tested.  相似文献   

12.
Ciliate assemblages are often overlooked, but ubiquitous components of microbial biofilms which require a better understanding. Ciliate, diatom and bacterial colonisation were evaluated on two fouling-release (FR) coatings, viz. Intersleek 970 and Hempasil X3, and two biocidal antifouling (AF) coatings, viz. Intersmooth 360 and Interspeed 5640, in Port Phillip Bay, Australia. A total of 15 genera were identified during the 10 week deployment. Intersleek 970 displayed the most rapid fouling by ciliates, reaching 63.3(± 5.9) cells cm?2. After 10 weeks, all four coatings were extensively fouled. However, the toxicity of the AF coatings still significantly inhibited microbial fouling compared to the FR coatings. On all treatments, colonies of sessile peritrichs dominated the ciliate assemblage in the early stage of succession, but as the biofilm matured, vagile ciliates exerted more influence on the assemblage structure. The AF coatings showed selective toxic effects, causing significant differences in the ciliate species assemblages among the treatments.  相似文献   

13.
The release of abiotic methane from marine seeps into the atmosphere is a major source of this potent greenhouse gas. Methanotrophic microorganisms in methane seeps use methane as carbon and energy source, thus significantly mitigating global methane emissions. Here, we investigated microbial methane oxidation at the sediment–water interface of a shallow marine methane seep. Metagenomics and metaproteomics, combined with 13C-methane stable isotope probing, demonstrated that various members of the gammaproteobacterial family Methylococcaceae were the key players for methane oxidation, catalysing the first reaction step to methanol. We observed a transfer of carbon to methanol-oxidizing methylotrophs of the betaproteobacterial family Methylophilaceae, suggesting an interaction between methanotrophic and methylotrophic microorganisms that allowed for rapid methane oxidation. From our microcosms, we estimated methane oxidation rates of up to 871 nmol of methane per gram sediment per day. This implies that more than 50% of methane at the seep is removed by microbial oxidation at the sediment–water interface, based on previously reported in situ methane fluxes. The organic carbon produced was further assimilated by different heterotrophic microbes, demonstrating that the methane-oxidizing community supported a complex trophic network. Our results provide valuable eco-physiological insights into this specialized microbial community performing an ecosystem function of global relevance.  相似文献   

14.

Background  

Owing to its independence from the main Central European drainage systems, the Italian freshwater fauna is characterized by a high degree of endemicity. Three main ichthyogeographic districts have been proposed in Italy. Yet, the validity of these regions has not been confirmed by phylogenetic and population genetic analyses and a phylogeographic scenario for Italy's primary freshwater fish fauna is still lacking. Here, we investigate the phylogeography of the Italian vairone (Telestes muticellus).  相似文献   

15.

Background

Here, insight is provided into the present knowledge on free-living nematodes associated with chemosynthetic environments in the deep sea. It was investigated if the same trends of high standing stock, low diversity, and the dominance of a specialized fauna, as observed for macro-invertebrates, are also present in the nematodes in both vents and seeps.

Methodology

This review is based on existing literature, in combination with integrated analysis of datasets, obtained through the Census of Marine Life program on Biogeography of Deep-Water Chemosynthetic Ecosystems (ChEss).

Findings

Nematodes are often thriving in the sulphidic sediments of deep cold seeps, with standing stock values ocassionaly exceeding largely the numbers at background sites. Vents seem not characterized by elevated densities. Both chemosynthetic driven ecosystems are showing low nematode diversity, and high dominance of single species. Genera richness seems inversely correlated to vent and seep fluid emissions, associated with distinct habitat types. Deep-sea cold seeps and hydrothermal vents are, however, highly dissimilar in terms of community composition and dominant taxa. There is no unique affinity of particular nematode taxa with seeps or vents.

Conclusions

It seems that shallow water relatives, rather than typical deep-sea taxa, have successfully colonized the reduced sediments of seeps at large water depth. For vents, the taxonomic similarity with adjacent regular sediments is much higher, supporting rather the importance of local adaptation, than that of long distance distribution. Likely the ephemeral nature of vents, its long distance offshore and the absence of pelagic transport mechanisms, have prevented so far the establishment of a successful and typical vent nematode fauna. Some future perspectives in meiofauna research are provided in order to get a more integrated picture of vent and seep biological processes, including all components of the marine ecosystem.  相似文献   

16.
Hydrothermal vents represent a unique habitat in the marine ecosystem characterized with high water temperature and toxic acidic chemistry. Vents are distributed at depths ranging from a few meters to several thousand meters. The biological communities of shallow-water vents have, however, been insufficiently studied in most biogeographic areas. We attempted to characterize the macrofauna and macroflora community inhabiting the shallow-water vents off Kueishan Island, Taiwan, to identify the main abiotic factors shaping the community structure and the species distribution. We determined that positively buoyant vent fluid exhibits a more pronounced negative impact to species on the surface water than on the bottom layer. Species richness increased with horizontal distance from the vent, and continuing for a distance of 2000 m, indicating that the vent fluid may exert a negative impact over several kilometers. The community structure off Kueishan Island displayed numerous transitions along the horizontal gradient, which were broadly congruent with changes in environmental conditions. Combination of variation in Ca2+, Cl-, temperature, pH and depth were revealed to show the strongest correlation with the change in benthic community structure, suggesting multiple factors of vent fluid were influencing the associated fauna. Only the vent crabs of Kueishan Island may have an obligated relationship with vents and inhabit the vent mouths because other fauna found nearby are opportunistic taxa that are more tolerant to acidic and toxic environments.  相似文献   

17.
Abstract. This paper reports the second occurrence of a sand‐grain encrusting interstitial epifauna dominated by bryozoans and polychaetes at a site thousands of kilometers from the first described occurrence of such a fauna 20 years ago. Such faunas seem to have gone almost unrecorded in the marine ecological literature, but they are potentially geographically widespread and ecologically significant, deserving recognition and further study by benthic ecologists. Although rooted‐erect and free‐living lunulitiform bryozoans can be abundant in soft‐bottom habitats, the presence of encrusting forms was, until recently, considered to be limited to patches of hard substrata. In 1985 and 1988, a new and seemingly unique habitat for encrusting bryozoans and other organisms on single grains of shell or sand was reported from the coastal waters of Florida, USA. Here we report a second discovery of an interstitial encrusting fauna from the continental shelf off the state of São Paulo, Brazil. In addition to the cupuladriid Discoporella umbellata, several species of bryozoans (9 cheilostomes, 3 ctenostomes, and 1 cyclostome) were found encrusting on or boring into sand grains from the 4 stations examined. Four species were found exclusively on sand to gravel size grains. The most abundant colonies, with ~1300–1500 colonies m?2, belonged to a new species of Cleidochasma. New species of Trypostega and Reginella, each with up to 200–300 colonies m?2, were also discovered. The grain‐encrusting bryozoans were characterized by their small size, and by the fact that sexual reproduction was initiated very early in colony growth; brood chambers (for the development of embryos into larvae) occurred in colonies having only a few zooids. Colonies of boring ctenostome and cheilostome bryozoans were even more abundant than those of grain encrusting forms, being present in almost every piece of shell (~5000–5500 colonies m?2). The fauna also included representatives of other groups of encrusting organisms, especially tubeworms (11,000–13,000 tubes m?2). Planned work on samples from additional stations on the São Paulo shelf will no doubt yield a larger number of species from various taxa and perhaps show some overlap in sand fauna species between the Brazilian and Floridian sites. In addition to the unique species of single grain encrusters, colonies of bryozoan species characteristic of larger subtidal hard substrata were also found on sand or gravel size grains, indicating that an interstitial refuge may be available to some epifaunal taxa and suggesting that this interstitial refuge, which remains almost completely unknown to benthic ecologists, may play a large role in determining distributions of those taxa.  相似文献   

18.
Microbial fuel cell energy from an ocean cold seep   总被引:5,自引:0,他引:5  
Benthic microbial fuel cells are devices that generate modest levels of electrical power in seafloor environments by a mechanism analogous to the coupled biogeochemical reactions that transfer electrons from organic carbon through redox intermediates to oxygen. Two benthic microbial fuel cells were deployed at a deep-ocean cold seep within Monterey Canyon, California, and were monitored for 125 days. Their anodes consisted of single graphite rods that were placed within microbial mat patches of the seep, while the cathodes consisted of carbon-fibre/titanium wire brushes attached to graphite plates suspended ∼0.5 m above the sediment. Power records demonstrated a maximal sustained power density of 34 mW·m−2 of anode surface area, equating to 1100 mW m−2 of seafloor. Molecular phylogenetic analyses of microbial biofilms that formed on the electrode surfaces revealed changes in microbial community composition along the anode as a function of sediment depth and surrounding geochemistry. Near the sediment surface (20–29 cm depth), the anodic biofilm was dominated by micro-organisms closely related to Desulfuromonas acetoxidans. At horizons 46–55 and 70–76 cm below the sediment–water interface, clone libraries showed more diverse populations, with increasing representation of δ-proteobacteria such as Desulfocapsa and Syntrophus, as well as ɛ-proteobacteria. Genes from phylotypes related to Pseudomonas dominated the cathode clone library. These results confound ascribing a single electron transport role performed by only a few members of the microbial community to explain energy harvesting from marine sediments. In addition, the microbial fuel cells exhibited slowly decreasing current attributable to a combination of anode passivation and sulfide mass transport limitation. Electron micrographs of fuel cell anodes and laboratory experiments confirmed that sulfide oxidation products can build up on anode surfaces and impede electron transfer. Thus, while cold seeps have the potential to provide more power than neighbouring ocean sediments, the limits of mass transport as well as the proclivity for passivation must be considered when developing new benthic microbial fuel cell designs to meet specific power requirements.  相似文献   

19.
Inferring cophylogeographic events requires matching the timing of these events on both host and symbiont (e.g., parasites) phylogenies because divergences of hosts and their symbionts may not temporally coincide, and host switches may occur. We investigate a large radiation of birds (Passeriformes) and their permanent symbionts, the proctophyllodid feather mites (117 species from 116 bird species; six genes, 11,468 nt aligned) using two time‐calibration strategies for mites: fossils only and host phylogeography only. Out of 10 putative cophylogeographic events 4 agree in timing for both symbiont and host events being synchronous co‐origins or codispersals; three were based on host shifts, but agree in timing being very close to the origin of modern hosts; two disagree; and one large basal mite split was seemingly independent from host phylogeography. Among these events was an ancient (21–25.3 Mya), synchronous codispersal from the Old World leading to the origin and diversifications of New World emberizoid passerids and their mites, the thraupis + quadratus species groups of Proctophyllodes. Our framework offers a more robust detection of host and symbiont cophylogeographic events (as compared to host‐symbiont reconciliation analysis and using host phylogeography for time‐calibration) and provides independent data for testing alternative hypotheses on timing of host diversification and dispersal.  相似文献   

20.
Chemical knockdown and branch clipping procedures were used in wandoo (Eucalyptus wandoo) woodland and jarrah (E. marginata)/marri (E. calophylla) open-forest to sample arboreal invertebrate faunas on three species of Western Australian eucalypts. Jarrah was sampled in both habitats and had significantly lower invertebrate populations and a less diverse fauna than either wandoo or marri. The two procedures provided similar results with respect to the relative abundance of invertebrates on each plant species but the knockdowns sampled a more diverse fauna, including species sheltering in or on bark. Chemical knockdowns underestimated the abundance of sessile invertebrates, such as psyllids. Branch clipping sampled insufficient numbers of large, mobile, or cryptic invertebrates to estimate abundances, but provided a more accurate estimate of the abundance of sessile, leaf-dwelling organisms. Neither procedure provides a complete sample of arboreal invertebrates, but they are complementary. When used in conjunction with each other a more complete estimate of arboreal invertebrate abundance and diversity is obtained. Both procedures can be used concurrently with only a small increase in field time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号