首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water–rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10–160 cm) and groundwater from a 50‐m‐deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative‐PCR. Different microbial communities were observed in the groundwater, the fracture‐coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen‐oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low‐temperature water–rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer–Tropsch‐type reactions, dominated in the fracture‐coating material. Putative hydrogen‐, ammonia‐, manganese‐ and iron‐oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by differences in fracture size and distribution, and mixing of fluids. The particularly dense microbial communities in the shallow fracture coatings seem to be fuelled by both photosynthesis and oxidation of reduced chemical species produced by water–rock reactions.  相似文献   

2.

Recent studies have shown that the biosphere extends to depths that exceed 3 km, raising questions regarding the age of the microbes in these deep ecosystems and their sources of energy for metabolism. Abiogenic energy sources that are derived from in situ, purely geochemical sources and thus independent from photosynthesis have been suggested. We sampled saline fracture water emanating from a 3.1-km deep borehole in a Au mine in the Witwatersrand Basin of South Africa and characterized the chemical constituents (including stable isotopes), groundwater age, and indigenous microorganisms. Salinity data and ratios of dissolved noble gases indicate that extremely ancient (2.0 Ga) saline fracture water has mixed with meteoric water to yield an average subsurface residence time of 20–160 Ma, the oldest age of any waters collected to date in the Witwatersrand Basin. H2 isotope data suggest the water originated from a depth of 4 to 5 km. Sulfur isotope fractionation indicates biological sulfate reduction. Calculations of free energies and steady state energy fluxes based on water chemistry data also support sulfate reduction as the dominant terminal electron accepting process. Lipid and flow cytometry data indicate a sparse microbial community (103 cells ml?1), despite the presence of relatively high concentrations of energy-rich compounds (H2, CH4, CO, ethane, propane, butane, and acetate). The H2 can be explained by radiolysis of water. Stable isotopic signatures of the CH4 and short chain hydrocarbons indicate abiogenic synthesis. The persistence of energy-rich compounds suggests that other factors are limiting to microbial metabolism and growth, e.g., availability of an inorganic nutrient, such as Fe or phosphate.  相似文献   

3.
Abstract

Microbiological and geochemical data are presented to characterize the hydrogeochemistry and to investigate extant microbial life in fracture waters 2.4?km below surface, at the Kidd Creek Observatory in Canada. Previous studies identified the world’s oldest groundwaters with mean residence times on the order of millions to billions of years trapped in fractures in Precambrian host rock here. In this study, major ion chemistry, δ18O and δ2H isotopic signatures and dissolved gases in the fracture waters are shown to be distinct from potential contamination end-members, demonstrating the fracture waters are not impacted by waters used in mining operations. A previous work on sulfur isotope signatures suggested a longstanding indigenous population of sulfate-reducing bacteria in these highly reducing fluids and sufficient sulfate to support microbial activity. Here, we report the first evidence for extant visible and cultivable microbial life at this location. Anaerobic metabolisms were investigated using the Most Probable Number (MPN) method. The fracture fluids contained extant cells at low biomass density (~103–104 cells/mL) and showed a strong response from autotrophic sulfate-reducers and alkane-oxidizing sulfate reducers. These lines of evidence provide the interpretational framework (chemical, hydrogeologic, and microbiologic) essential to the on-going genomic and metagenomic investigations at the Kidd Creek Observatory – the world’s most longstanding location for investigation of subsurface fluids and deep life at such profound depth.  相似文献   

4.
Detailed analyses of changes in the ultraviolet-visible absorption spectra of the anti-aithritic gold drug disodium gold(I) thiomalate·0 3 glycerol·2H2O with time, suggest that the solid may contain about 23% of a species with λmax of 337 and 370 nm. This disappears in a two-step process soon after dissolution in water. The reaction was monitored at a variety of temperatures (20–47°C), pH's (6–11), and ionic strengths (0.05–0.61 M). The first step is complete in ca. 3 min. The second step is independent of Au(tm) concentration with ko' = 8.5 × 10?2min?1 and activation parameters of ΔH± = 82.1 4.1 kJmol?1 and ΔS = 13.65 KJ?1 mol?1. The logarithm of the rate of this step increases linearly with the square root of the ionic strength. The reaction is readily reversed at high ionic strengths and is interpreted as a cooperative structural transition of polymeric gold(I) thiomalate, possibly involving Au(I)-Au(I) bonding. The relationship of these observations to reactions of other 1:1 Au(I) thiolate complexes and their method of preparation is discussed.  相似文献   

5.
The kinetics of the decomposition reactions of the CO(py)3(CO3)(H2O)+ ion have been investigated in aqueous perchloric acid solutions over a range of hydrogen ion concentrations (0.10 to 5.0 M) and at two ionic strengths (I = 1.0 and 5.0 M). At the lower ionic strength, plots of ln (AtA versus time show a nonlinearity that is consistent with that expected for consecutive first-order reactions. The rates of the faster reaction are similar to those reported for the spontaneous reduction of aquopyridine-cobalt(III) cations. At the higher ionic strength, the above noted curvature is not apparent and the decarboxylation kinetics of the title complex may be described by a pseudo-first-order rate constant: kobs = k[H3O+]. At 20°C, k = (1.75−+0.09) s−1 M−1 with activation parameters ofΔH = (97 −+ 4) kJ mol−1 and ΔS = −(54 −+ 32) J deg−1 mol−1. These kinetic parameters are compared with those previously reported for the similar complexes, Co(py)4CO3+ and Co(py)2(CO3)(H2O)2+.  相似文献   

6.
Simple mixing of acid purified histones H3 and H4 in equimolar quantities at low ionic strength near pH 7 does not yield the tetramer but rather a high Mr aggregate. Dialysis of acid extracted total or core histones into 2 M NaCl 150 mM phosphate (pH 7.4) followed by fractionation of the histone complexes at lower ionic strength (150 mM NaCl) results in an H3H4 tetramer of a structure identical to that derived from salt-extracted histones. Dialysis of acid extracted total or core histones directly into the lower ionic strength buffer with subsequent fractionation, results in H3H4 tetramer of closely similar structure.  相似文献   

7.
Alkaline, sulfidic, 54 to 60°C, 4 to 53 million-year-old meteoric water emanating from a borehole intersecting quartzite-hosted fractures >3.3 km beneath the surface supported a microbial community dominated by a bacterial species affiliated with Desulfotomaculum spp. and an archaeal species related to Methanobacterium spp. The geochemical homogeneity over the 650-m length of the borehole, the lack of dividing cells, and the absence of these microorganisms in mine service water support an indigenous origin for the microbial community. The coexistence of these two microorganisms is consistent with a limiting flux of inorganic carbon and SO42− in the presence of high pH, high concentrations of H2 and CH4, and minimal free energy for autotrophic methanogenesis. Sulfide isotopic compositions were highly enriched, consistent with microbial SO42− reduction under hydrologic isolation. An analogous microbial couple and similar abiogenic gas chemistry have been reported recently for hydrothermal carbonate vents of the Lost City near the Mid-Atlantic Ridge (D. S. Kelly et al., Science 307:1428-1434, 2005), suggesting that these features may be common to deep subsurface habitats (continental and marine) bearing this geochemical signature. The geochemical setting and microbial communities described here are notably different from microbial ecosystems reported for shallower continental subsurface environments.  相似文献   

8.
The linear dichroism (LD) has been measured for DNA molecules 239–164,000 base pairs long oriented in shear flow over a large range of velocity gradients (30–3,000 s ?1) and ionic strengths (2–250 mM). At very low gradients, the degree of DNA orientation increases quadratically with the applied shear as predicted by the Zimm theory [J. Zimm, (1956) Chemical Physics, Vol. 24, p. 269]. At higher gradients, the orientation of fragments ≥ 7 kilobase pairs (kbp) increases linearly with increasing shear, whereas the orientation of fragments ≥ 15 kbp shows a more complicated dependence. In general, the orientation decreases with increasing ionic strength throughout the studied ionic strength interval, owing to a decrease in the persistence length of the DNA. The effect is most dramatic at ionic strengths below 10 mM, and is more pronounced for longer DNA fragments. For fragments ≥ 15 kbp and velocity gradients ≥ 100 s?1, the orientation can be adequately described by the empirical relation: LDr= –(k1-G)/(k2 + G), where k1is a linear function of the square root of the ionic strength and k2 depends on the DNA contour length. Since the DNA persistence length can be represented as a linear function of the reciprocal square root of the ionic strength [D. Porschke, (1991) Biophysical Chemistry, Vol. 40, p. 169], extrapolation of the empirical relation provides information about the stiffness of the DNA fibers. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Abstract

Vapour-liquid phase diagrams for pure fluids and mixtures of molecules with Lennard-Jones plus quadrupole-quadrupole interaction potentials were determined by Monte Carlo simulation in the Gibbs ensemble [1]. This is the first reported application of the method to molecular fluids. We have demonstrated that the Gibbs method works reliably for strongly interacting molecular fluids at liquid densities. Pure fluid calculations were performed for reduced quadrupole strengths, Q* = Q/(εσ5)1/2 equal to 1 and √2, typical of molecules like C2H2 and C2H4. It was found that the critical temperature of the quadrupolar fluid increased rapidly with increasing quadrupolar strength, in good agreement with previous computer simulation and theoretical results. A single mixture with components characterized by identical Lennard-Jones parameters and Q*1 = + 1, Q*2 = - 1 was studied at three temperatures. A negative azeotrope was observed at the lowest temperature studied, as seen experimentally in the CO2/C2H2 mixture. The perturbation theory calculations are in good agreement with the simulation results for all properties except coexisting liquid densities. The results illustrate some of the strengths and limitations of perturbation theories based on the Padé approximant for the free energy of polar fluids.  相似文献   

10.
We report the first investigation of a deep subpermafrost microbial ecosystem, a terrestrial analog for the Martian subsurface. Our multidisciplinary team analyzed fracture water collected at 890 and 1,130 m depths beneath a 540-m-thick permafrost layer at the Lupin Au mine (Nunavut, Canada). 14C, 3H, and noble gas isotope analyses suggest that the Na–Ca–Cl, suboxic, fracture water represents a mixture of geologically ancient brine, ~25-kyr-old, meteoric water and a minor modern talik-water component. Microbial planktonic concentrations were ~103 cells mL?1. Analysis of the 16S rRNA gene from extracted DNA and enrichment cultures revealed 42 unique operational taxonomic units in 11 genera with Desulfosporosinus, Halothiobacillus, and Pseudomonas representing the most prominent phylotypes and failed to detect Archaea. The abundance of terminally branched and midchain-branched saturated fatty acids (5 to 15 mol%) was consistent with the abundance of Gram-positive bacteria in the clone libraries. Geochemical data, the ubiquinone (UQ) abundance (3 to 11 mol%), and the presence of both aerobic and anaerobic bacteria indicated that the environment was suboxic, not anoxic. Stable sulfur isotope analyses of the fracture water detected the presence of microbial sulfate reduction, and analyses of the vein-filling pyrite indicated that it was in isotopic equilibrium with the dissolved sulfide. Free energy calculations revealed that sulfate reduction and sulfide oxidation via denitrification and not methanogenesis were the most thermodynamically viable consistent with the principal metabolisms inferred from the 16S rRNA community composition and with CH4 isotopic compositions. The sulfate-reducing bacteria most likely colonized the subsurface during the Pleistocene or earlier, whereas aerobic bacteria may have entered the fracture water networks either during deglaciation prior to permafrost formation 9,000 years ago or from the nearby talik through the hydrologic gradient created during mine dewatering. Although the absence of methanogens from this subsurface ecosystem is somewhat surprising, it may be attributable to an energy bottleneck that restricts their migration from surface permafrost deposits where they are frequently reported. These results have implications for the biological origin of CH4 on Mars.  相似文献   

11.
Subsurface microbial communities comprise a significant fraction of the global prokaryotic biomass; however, the carbon metabolisms that support the deep biosphere have been relatively unexplored. In order to determine the predominant carbon metabolisms within a 3-km deep fracture fluid system accessed via the Tau Tona gold mine (Witwatersrand Basin, South Africa), metagenomic and thermodynamic analyses were combined. Within our system of study, the energy-conserving reductive acetyl-CoA (Wood-Ljungdahl) pathway was found to be the most abundant carbon fixation pathway identified in the metagenome. Carbon monoxide dehydrogenase genes that have the potential to participate in (1) both autotrophic and heterotrophic metabolisms through the reversible oxidization of CO and subsequent transfer of electrons for sulfate reduction, (2) direct utilization of H2 and (3) methanogenesis were identified. The most abundant members of the metagenome belonged to Euryarchaeota (22%) and Firmicutes (57%)—by far, the highest relative abundance of Euryarchaeota yet reported from deep fracture fluids in South Africa and one of only five Firmicutes-dominated deep fracture fluids identified in the region. Importantly, by combining the metagenomics data and thermodynamic modeling of this study with previously published isotopic and community composition data from the South African subsurface, we are able to demonstrate that Firmicutes-dominated communities are associated with a particular hydrogeologic environment, specifically the older, more saline and more reducing waters.  相似文献   

12.
As in many deep underground environments, the microbial communities in subsurface high‐CO2 ecosystems remain relatively unexplored. Recent investigations based on single‐gene assays revealed a remarkable variety of organisms from little studied phyla in Crystal Geyser (Utah, USA), a site where deeply sourced CO2‐saturated fluids are erupted at the surface. To provide genomic resolution of the metabolisms of these organisms, we used a novel metagenomic approach to recover 227 high‐quality genomes from 150 microbial species affiliated with 46 different phylum‐level lineages. Bacteria from two novel phylum‐level lineages have the capacity for CO2 fixation. Analyses of carbon fixation pathways in all studied organisms revealed that the Wood‐Ljungdahl pathway and the Calvin‐Benson‐Bassham Cycle occurred with the highest frequency, whereas the reverse TCA cycle was little used. We infer that this, and selection for form II RuBisCOs, are adaptions to high CO2‐concentrations. However, many autotrophs can also grow mixotrophically, a strategy that confers metabolic versatility. The assignment of 156 hydrogenases to 90 different organisms suggests that H2 is an important inter‐species energy currency even under gaseous CO2‐saturation. Overall, metabolic analyses at the organism level provided insight into the biochemical cycles that support subsurface life under the extreme condition of CO2 saturation.  相似文献   

13.
Salts affect protein stability by multiple mechanisms (e.g., the Hofmeister effect, preferential hydration, electrostatic effects and weak ion binding). These mechanisms can affect the stability of both the native state and the unfolded state. Previous equilibrium stability studies demonstrated that KCl stabilizes dihydrofolate reductases (DHFRs) from Escherichia coli (ecDHFR, E. coli DHFR) and Haloferax volcanii (hvDHFR1, H. volcanii DHFR encoded by the hdrA gene) with similar efficacies, despite adaptation to disparate physiological ionic strengths (0.2 M versus 2 M). Kinetic studies can provide insights on whether equilibrium effects reflect native state stabilization or unfolded state destabilization. Similar kinetic mechanisms describe the folding of urea-denatured ecDHFR and hvDHFR1: a 5-ms stopped-flow burst-phase species that folds to the native state through two sequential intermediates with relaxation times of 0.1-3 s and 25-100 s. The latter kinetic step is very similar to that observed for the refolding of hvDHFR1 from low ionic strength. The unfolding of hvDHFR1 at low ionic strength is relatively slow, suggesting kinetic stabilization as observed for some thermophilic enzymes. Increased KCl concentrations slow the urea-induced unfolding of ecDHFR and hvDHFR1, but much less than expected from equilibrium studies. Unfolding rates extrapolated to 0 M denaturant, kunf(H2O), are relatively independent of ionic strength, demonstrating that the KCl-induced stabilization of ecDHFR and hvDHFR1 results predominantly from destabilization of the unfolded state. This supports the hypothesis from previous equilibrium studies that haloadaptation harnesses the effects of elevated salt concentrations on the properties of the aqueous solvent to enhance protein stability.  相似文献   

14.
(1) In the pH range between 5.0 and 8.0, the rate constants for the reaction of ferrocytochrome c with both the high- and low-affinity sites on cytochrome aa3 increase by a factor of approx. 2 per pH unit. (2) The pre-steady-state reaction between ferrocytochrome c and cytochrome aa3 did not cause a change in the pH of an unbuffered medium. Furthermore, it was found that this reaction and the steady-state reaction are equally fast in H2O and 2H2O. From these results it was concluded that no protons are directly involved in a rate-determining reaction step. (3) Arrhenius plots show that the reaction between ferrocytochrome c and cytochrome aa3 requires a higher enthalpy of activation at temperatures below 20°C (15–16 kcal/mol) as compared to that at higher temperature (9 kcal/mol). We found no effect of ionic strength on the activation enthalpy of the pre-steady-state reaction, nor on that of the steady-state reaction. This suggests that ionic strength does not change the character of these reactions, but merely affects the electrostatic interaction between both cytochromes.  相似文献   

15.
The ability of G protein‐coupled receptors to regulate osmosensitive uptake of the organic osmolyte, taurine, into human SH‐SY5Y neuroblastoma cells has been examined. When monitored under isotonic conditions and in the presence of physiologically relevant taurine concentrations (1–100 μM), taurine influx was mediated exclusively by a Na+‐dependent, high‐affinity (Km = 2.5 μM) saturable transport mechanism (Vmax = 0.087 nmol/mg protein/min). Reductions in osmolarity of > 20% (attained under conditions of a constant NaCl concentration) resulted in an inhibition of taurine influx (> 30%) that could be attributed to a reduction in Vmax, whereas the Km for uptake remained unchanged. Inclusion of the muscarinic cholinergic agonist, oxotremorine‐M (Oxo‐M), also resulted in an attenuation of taurine influx (EC50~0.7 μM). Although Oxo‐M‐mediated inhibition of taurine uptake could be observed under isotonic conditions (~25–30%), the magnitude of inhibition was significantly enhanced by hypotonicity (~55–60%), a result that also reflected a reduction in the Vmax, but not the Km, for taurine transport. Oxo‐M‐mediated inhibition of taurine uptake was dependent upon the availability of extracellular Ca2+ but was independent of protein kinase C activity. In addition to Oxo‐M, inclusion of either thrombin or sphingosine 1‐phosphate also attenuated volume‐dependent taurine uptake. The ability of Oxo‐M to inhibit the influx of taurine was attenuated by 4‐[(2‐butyl‐6,7‐dichloro‐2‐cyclopentyl‐2,3‐dihydro‐1‐oxo‐1H‐inden‐5‐yl)oxy]butanoic acid, an inhibitor of the volume‐sensitive organic osmolyte and anion channel. 4‐[(2‐Butyl‐6,7‐dichloro‐2‐cyclopentyl‐2,3‐dihydro‐1‐oxo‐1H‐inden‐5‐yl)oxy]butanoic acid also prevented receptor‐mediated changes in the efflux and influx of K+ under hypoosmotic conditions. The results suggest that muscarinic receptor activation can regulate both the volume‐dependent efflux and uptake of taurine and that these events may be functionally coupled.  相似文献   

16.
A new method of isolating nuclei and chromosomes of salivary gland cells is described. — The influence of ionic strength and pH of the medium on the state of decondensation of chromosomal bands is studied. In the isolation medium (a modified Ringer solution), all the bands are in a condensed state; as the ionic strength is increased the bands decondense. This reaction of the bands to increasing ionic strength is dependent on the pH which determines: 1) the range of ionic strengths which causes decondensation of the bands; i.e., the lower the pH, the higher the ionic strength is required for decondensation (at pH 7.3, 150–350 mM NaCl, at pH 4.3, 500–800 mM NaCl), and 2) the extent of structural changes caused by increasing ionic strength; that is, at neutral pH the bands become diffuse (“fading”) and at moderate acidic pH (optimum 4.3) the bands unravel to yield pufflike structures (“swelling”). — All ion species tested induce decondensation of bands, but each one is effective differently; specifically, Mg+ is more effective than Na+ and K+, and ClO4 ? is more effective than Cl?. — “Swelling” as induced at pH 4.3 by high ionic strength cannot be reversed by a mere lowering of ionic strength (to 150 mM NaCl) and a subsequent raise of pH (to 7.5); it can be reversed only by an addition of histones. The various histone fractions act differently on the recondensation process. — “Swelling” is correlated with an increase in template activity as evidenced by an increased incorporation of 3H-UTP, measured in the presence of ATP, CTP, GTP and exogeneous RNA polymerase. — The individual bands differ in their sensitivity to an increasing ionic strength. This differential sensitivity expresses itself only if one of the following conditions is met: 1) a moderately acidic pH (optimum 4.3) or 2) the presence of divalent cations at neutral pH. — In a few bands the sensitivity to an increasing ionic strength is dependent on the ionic species (Na+, K+, Mg++ and Ca++). — It is attempted to explain the above reactions on the basis of the physico-chemical properties of chromosomes.  相似文献   

17.
The Fenton-type reaction between ferrous diethylenetriamine pentaacetic acid (Fe2+-DTPA, 50–200 μM) and H2O2 (20–1000 μM) in phosphate buffer at pH 7.0 results in consumption of dissolved oxygen. This observation differs from many prior reports that oxygen is liberated when more concentrated solutions of H2O2 are decomposed by iron salts. The rate and total quantity of oxygen consumed were dependent upon the concentrations of ferrous chelate, H2O2, and excess DTPA. Evidence is provided that both the ferrous-DTPA chelate and free DTPA can participate in the oxygen-consuming reactions. Oxygen was also consumed during the Fenton reaction between ferrous ions and H2O2 when DTPA and phosphate buffer were omitted. Under these conditions, oxygen evolution was observed at higher H2O2 concentrations (e.g., 400 μM). The consumption of oxygen during the Fenton-type reaction of an iron chelate at neutral pH may be relavant to events that take place in biologic systems.  相似文献   

18.
Calcium binding by rabbit skeletal myosin, thin filaments and myofibrils was measured in solutions with and without 2 mM MgATP and with ionic strengths adjusted with KCl to 0.05, 0.10 and 0.14 M. Free Mg2+ was held constant at 1 mM, pH at 7.0 and temperature at 25 °C. In the presence of MgATP, the relation between free Ca2+ and myofibrillar bound calcium shifted to the left as ionic strength was decreased from 0.14 to 0.05 M. In the absence of MgATP, myofibrillar calcium binding was enhanced over a wide range of free Ca2+ concentration, but calcium binding was no longer a function of ionic strength. Similarly, calcium binding by thin filaments and myosin was unaffected by changes in ionic strength from 0.05 to 0.14 M. In view of evidence that cross-bridge connections between thick and thin filaments increase as ionic strength decreases, our results suggest that these connections enhance myofibrillar calcium binding. These results thus confirm previous data of Bremel and Weber (Bremel, R. D. and Weber, A. (1972) Nature New Biol. 238, 97–101) who first showed that nucleotide-free cross-bridge connections enhance thin filament calcium binding.  相似文献   

19.
The determination of hydrogen (H2) concentration together with the products of microbial reduction reactions in a trichloroethylene dechlorinating system is conducted to delineate the ongoing predominant terminal electron accepting processes (TEAP). Formate was used as electron donor and synthetic Fe minerals or environmental samples were used as the substrate. Iron(III) and Mn(IV) reduction limited microbial dechlorination by the mixed anaerobic culture by decreasing the level of H2 in the system. The H2 measurements indicated that the H2 concentration at which different TEAPs occur can overlap and thus these TEAPs can therefore occur concurrently rather than exclusively. Difference in Fe(III) bioavailability and hence, Fe(III) reduction partially explain this wide range. The distinction between dechlorination and other microbial reduction processes based on H2 threshold values is not feasible under such conditions, though there appears to be a relation between the rates of H2 consuming process and the observed H2 level.  相似文献   

20.
The adsorption of 5-AMP and 5-CMP was studied in saturated solutions of several soluble mineral salts (NaCl, Na2SO4, MgCl2·6H2O, MgSO4·7H2O, CaCl2·2H2O, CaSO4·2H2O, SrCl2·6H2O, SrSO4, and ZnSO4·7H2O) as a function of pH, ionic strength, and surface area of the solid salt. The adsorption shows a pH dependence; this can be correlated with the charge on the nucleotide molecule which is determined by the state of protonation of the N-1 nitrogen of 5-AMP or N-3 nitrogen of 5-CMP and the phosphate oxygens. The adsorption which results from the binding between the nucleotide molecule and the salt surface is proposed as being due to electrostatic forces. It was concluded that the adsorption was reversible in nature. The adsorption shows a strong dependence upon ionic strength and decreases with increasing ionic strength. Surface area is shown to be an important factor in evaluating and comparing the magnitude of adsorption of nucleotides onto various mineral salts. The implications of the results of the study are discussed in terms of the importance of soluble mineral salts as adsorption sites in the characterization of the adsorption reactions of an adsorbed template in biogeochemical cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号