首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fungal degradation of low rank coal has appeared as an alternative technique for exploitation of non-fuel options. A fungal isolate, MW1, was isolated and coal sample was subjected to fungal pretreatment. The residual coal was processed for extraction of humic acid for determining the effect of such pretreatment. Extracted humic acid was analyzed on the basis of elemental composition and spectroscopy. Fungal pretreatment caused improvement in oxygen content, E4/E6 ratio, and absorption bands related to humic materials. Conclusively, pretreatment resulted in improving chemical attributes of humic acid molecule, thus, warranting supplementary high-tech investigations for the optimization of process upscale.  相似文献   

2.
Microbial communities in decommissioned coal mines have the potential to promote methane generation. Here, two 1 m x 10 cm diameter column bioreactors designed to mimic an abandoned coal mine were monitored for a year, with zones of methanogenesis in the bottom, saturated waters and aerobic coal degradation and methane oxidation at the top. The resilience of aerobic methanotrophs to survive periods with low methane and oxygen conditions suggests methanotrophs may be useful in decreasing atmospheric methane fugitive emissions from decommissioned mines. When biogenic methane production from coal did occur, the rate was slow, ≤ 0.073 nmol CH4/g coal/day.  相似文献   

3.
Carbon (C), geologically sequestered in coal, is gradually released to the atmosphere as CH4 and CO2. Recent anthropogenic activity (coal mining) has rapidly increased the rate of C reallocation from coal deposits into the atmosphere, which has deleterious effect on the climate as both gases are effective infrared absorbers. In the current study we demonstrate that the coal bearing sedimentary rocks possess potential of biological methane oxidation. Viable methanotrophic bacteria, capable of methane oxidation at ambient air and a range of methane concentrations were found in coalbearing formations of the Upper Silesian (USCB) and Lublin Coal Basins (LCB). Factors controlling activity of the aerobic methanotrophic bacteria in the deep subsurface such as, depth, methane concentration, available electron acceptors, moisture and nutrients availability were investigated along with paleoenvironmental factors (temperature changes during and after burial and paleohydrological infiltration). The distribution and activity of the methanotrophic bacteria in the deep subsurface were found to be influenced by geological conditions among which evolution of paleotemperatures and paleohydrological conditions play a predominant role. The data presented along with analysis of molecular composition of the coalbed gases in various coal basins worldwide has led to the conclusion that aerobic methanotrophy may be a widespread process, which, to our knowledge, so far has not been included in investigations concerning C cycling in the subsurface.  相似文献   

4.
Pilot-scale fermentation is one of the important processes for achieving industrialization of biogenic coalbed methane (CBM), although the mechanism of biogenic CBM remains unknown. In this study, 16 samples of formation water from CBM production wells were collected and enriched for methane production, and the methane content was between 3.1 and 21.4%. The formation water of maximum methane production was used as inoculum source for pilot-scale fermentation. The maximum methane yield of the pilot-scale fermentation with lump anthracite amendment reached 13.66 μmol CH4/mL, suggesting that indigenous microorganisms from formation water degraded coal to produce methane. Illumina high-throughput sequencing analysis revealed that the bacterial and archaeal communities in the formation water sample differed greatly from the methanogic water enrichment culture. The hydrogenotrophic methanogen Methanocalculus dominated the formation water. Acetoclastic methanogens, from the order Methanosarcinales, dominated coal bioconversion. Thus, the biogenic methanogenic pathway ex situ cannot be simply identified according to methanogenic archaea in the original inoculum. Importantly, this study was the first time to successfully simulate methanogenesis in large-capacity fermentors (160 L) with lump anthracite amendment, and the result was also a realistic case for methane generation in pilot-scale ex situ.  相似文献   

5.
【目的】揭示芦岭煤田微生物群落组成,并分析其潜在的产甲烷类型及产甲烷途径。【方法】采集芦岭煤田的煤层气样品和产出水样品,分别分析样品的地球化学性质特征;利用Illumina HiSeq高通量测序技术分析产出水中的微生物群落结构;采用添加不同底物的厌氧培养实验进一步证实芦岭煤田生物成因气的产甲烷类型。【结果】该地区煤层气为生物成因和热成因的混合成因气;古菌16S rRNA基因分析表明在产出水中含有乙酸营养型、氢营养型和甲基营养型的产甲烷菌。丰度较高的细菌具有降解煤中芳香族和纤维素衍生化合物的潜力。厌氧富集培养结果表明,添加乙酸盐、甲酸盐、H2+CO2为底物的矿井水样均有明显的甲烷产生。【结论】芦岭煤田具有丰富的生物多样性,该地区同时存在三种产甲烷类型。本研究为利用微生物技术提高煤层气的采收率,实现煤层气的可持续开采提供科学依据。  相似文献   

6.
About 7% of the global annual methane emissions originate from coal mining. Also, mine gas has come into focus of the power industry and is being used increasingly for heat and power production. In many coal deposits worldwide, stable carbon and hydrogen isotopic signatures of methane indicate a mixed thermogenic and biogenic origin. In this study, we have measured in an abandoned coal mine methane fluxes and isotopic signatures of methane and carbon dioxide, and collected samples for microbiological and phylogenetic investigations. Mine timber and hard coal showed an in-situ production of methane with isotopic signatures similar to those of the methane in the mine atmosphere. Enrichment cultures amended with mine timber or hard coal as sole carbon sources formed methane over a period of nine months. Predominantly, acetoclastic methanogenesis was stimulated in enrichments containing acetate or hydrogen/carbon dioxide. Molecular techniques revealed that the archaeal community in enrichment cultures and unamended samples was dominated by members of the Methanosarcinales. The combined geochemical and microbiological investigations identify microbial methanogenesis as a recent source of methane in abandoned coal mines.  相似文献   

7.
The activity of methanogens and related bacteria which inhabit the coal beds is essential for stimulating new biogenic coal bed methane (CBM) production from the coal matrix. In this study, the microbial community structure and methanogenesis were investigated in Southern Qinshui Basin in China, and the composition and stable isotopic ratios of CBM were also determined. Although geochemical analysis suggested a mainly thermogenic origin for CBM, the microbial community structure and activities strongly implied the presence of methanogens in situ. 454 pyrosequencing analysis combined with methyl coenzyme-M reductase (mcrA) gene clone library analysis revealed that the archaeal communities in the water samples from both coal seams were similar, with the dominance of hydrogenotrophic methanogen Methanobacterium. The activity and potential of these populations to produce methane were confirmed by the observation of methane production in enrichments supplemented with H2 + CO2 and formate, and the only archaea successfully propagated in the tested water samples was from the genus Methanobacterium. 454 pyrosequencing analysis also recovered the diverse bacterial communities in the water samples, which have the potential to play a role in the coal biodegradation fueling methanogens. These results suggest that the biogenic CBM was generated by coal degradation via the hydrogenotrophic methanogens and related bacteria, which also contribute to the huge CBM reserves in Southern Qinshui Basin, China.  相似文献   

8.
煤层气是煤层中自生自储的以甲烷为主的气体,是一种新型清洁能源和优质化工原料。而生物成因煤层气是可开采的主要煤层气,关于生物成因煤层气的研究在煤层资源利用方面有着重要的意义。本文对生物成因煤层气煤地质微生物、生物煤层气增采实验方法、成气影响因素及生成机理进行了综述,并通过总结前人的研究成果,对生物成因煤层气成气基质类型、本源微生物特别是甲烷菌的代谢过程及条件、成气过程的实验模拟等未来研究方向进行了展望。  相似文献   

9.
Manganese (Mn) oxides participate in a range of interactions with organic carbon (OC) that can lead to either carbon degradation or preservation. Here, we examine the abundance and composition of OC associated with biogenic and environmental Mn oxides to elucidate the role of Mn oxides as a reservoir for carbon and their potential for selective partitioning of particular carbon species. Mn oxides precipitated in natural brackish waters and by Mn(II)‐oxidizing marine bacteria and terrestrial fungi harbor considerable levels of organic carbon (4.1–17.0 mol OC per kg mineral) compared to ferromanganese cave deposits which contain 1–2 orders of magnitude lower OC. Spectroscopic analyses indicate that the chemical composition of Mn oxide‐associated OC from microbial cultures is homogeneous with bacterial Mn oxides hosting primarily proteinaceous carbon and fungal Mn oxides containing both protein‐ and lipopolysaccharide‐like carbon. The bacterial Mn oxide‐hosted proteins are involved in both Mn(II) oxidation and metal binding by these bacterial species and could be involved in the mineral nucleation process as well. By comparison, the composition of OC associated with Mn oxides formed in natural settings (brackish waters and particularly in cave ferromanganese rock coatings) is more spatially and chemically heterogeneous. Cave Mn oxide‐associated organic material is enriched in aliphatic C, which together with the lower carbon concentrations, points to more extensive microbial or mineral processing of carbon in this system relative to the other systems examined in this study, and as would be expected in oligotrophic cave environments. This study highlights Mn oxides as a reservoir for carbon in varied environments. The presence and in some cases dominance of proteinaceous carbon within the biogenic and natural Mn oxides may contribute to preferential preservation of proteins in sediments and dominance of protein‐dependent metabolisms in the subsurface biosphere.  相似文献   

10.
Microbial fuel cells (MFCs) are devices that use living microbes for the conversion of organic matter into electricity. MFC systems can be applied to the generation of electricity at water/sediment interfaces in the environment, such as bay areas, wetlands, and rice paddy fields. Using these systems, electricity generation in paddy fields as high as ~80 mW m?2 (based on the projected anode area) has been demonstrated, and evidence suggests that rhizosphere microbes preferentially utilize organic exudates from rice roots for generating electricity. Phylogenetic and metagenomic analyses have been conducted to identify the microbial species and catabolic pathways that are involved in the conversion of root exudates into electricity, suggesting the importance of syntrophic interactions. In parallel, pot cultures of rice and other aquatic plants have been used for rhizosphere MFC experiments under controlled laboratory conditions. The findings from these studies have demonstrated the potential of electricity generation for mitigating methane emission from the rhizosphere. Notably, however, the presence of large amounts of organics in the rhizosphere drastically reduces the effect of electricity generation on methane production. Further studies are necessary to evaluate the potential of these systems for mitigating methane emission from rice paddy fields. We suggest that paddy-field MFCs represent a promising approach for harvesting latent energy of the natural world.  相似文献   

11.
Combining biological pretreatment with thermal processing may offer an alternative strategy for efficient conversion of lignocellulosic biomass into fuels and chemicals. The thermal decomposition kinetics of biologically pretreated wheat straw by Phanerochaete chrysosporium was investigated in this study using thermogravimetry (TG) - deconvoluted thermogravimetry (DTG) techniques and the Friedman method. This study revealed that biological pretreatment reduced the thermal degradation temperature of the biomass significantly. Relying on the thermal behavior of the biologically pretreated wheat straw, we proposed two biomass degradation phases during the biological degradation of wheat straw. The first phase of biodegradation (within 10 days of biological pretreatment) improved the efficiency of pyrolysis by reducing the temperature demand. In the second phase (after 10 days), although the efficiency of pyrolysis displayed the similar trend as the first phase, it showed a significant increase in activation energy demand. This process is greatly influenced by the residual lignin and cellulose ratios in the biomass. These experimental results will be useful in developing a biological pretreatment based thermochemical conversion process for lignocellulosic biomass.  相似文献   

12.
Thermophilic anaerobic digestion of solid waste for fuel gas production.   总被引:1,自引:0,他引:1  
Anaerobic digestion offers a potential means of converting organic solid waste into fuel gas and thereby provide a supplemental and readily utilizable source of energy. We are particularly interested in the use of thermophilic digestion over a mesophilic operation for it can achieve higher rates of digestion, greater conversion of waste organics to gas, faster solid-liquid separation, and minimization of bacterial and viral pathogen accumulation. Our results comparing mesophilic (37 degree C) and thermophilic (65 degree C) anaerobic digestion of domestic solid waste confirm the increased rate and conversion of waste to methane. In addition, utilizing radioactive labeling of glucose and acetic acid, we have measured the volumetric rates of volatile acid production and disappearance under both mesophilic and thermophilic conditions.  相似文献   

13.
The microbial communities present in two underground coal mines in the Bowen Basin, Queensland, Australia, were investigated to deduce the effect of pumping and mining on subsurface methanogens and methanotrophs. The micro‐organisms in pumped water from the actively mined areas, as well as, pre‐ and post‐mining formation waters were analyzed using 16S rRNA gene amplicon sequencing. The methane stable isotope composition of Bowen Basin coal seam indicates that methanogenesis has occurred in the geological past. More recently at the mine site, changing groundwater flow dynamics and the introduction of oxygen in the subsurface has increased microbial biomass and diversity. Consistent with microbial communities found in other coal seam environments, pumped coal mine waters from the subsurface were dominated by bacteria belonging to the genera Pseudomonas and the family Rhodocyclaceae. These environments and bacterial communities supported a methanogen population, including Methanobacteriaceae, Methanococcaceae and Methanosaeta. However, one of the most ubiquitous micro‐organisms in anoxic coal mine waters belonged to the family ‘Candidatus Methanoperedenaceae’. As the Archaeal family ‘Candidatus Methanoperedenaceae’ has not been extensively defined, the one studied species in the family is capable of anaerobic methane oxidation coupled to nitrate reduction. This introduces the possibility that a methane cycle between archaeal methanogenesis and methanotrophy may exist in the anoxic waters of the coal seam after hydrogeological disturbance.  相似文献   

14.
In forests, bacteria and fungi are key players in wood degradation. Still, studies focusing on bacterial and fungal successions during the decomposition process depending on the wood types (i.e. sapwood and heartwood) remain scarce. This study aimed to understand the effect of wood type on the dynamics of microbial ecological guilds in wood decomposition. Using Illumina metabarcoding, bacterial and fungal communities were monitored every 3 months for 3 years from Quercus petraea wood discs placed on forest soil. Wood density and microbial enzymes involved in biopolymer degradation were measured. We observed rapid changes in the bacterial and fungal communities and microbial ecological guilds associated with wood decomposition throughout the experiment. Bacterial and fungal succession dynamics were very contrasted between sapwood and heartwood. The initial microbial communities were quickly replaced by new bacterial and fungal assemblages in the sapwood. Conversely, some initial functional guilds (i.e. endophytes and yeasts) persisted all along the experiment in heartwood and finally became dominant, possibly limiting the development of saprotrophic fungi. Our data also suggested a significant role of bacteria in nitrogen cycle during wood decomposition.  相似文献   

15.
Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.  相似文献   

16.
AIMS: The ability of Azotobacter vinelandii, a N(2)-fixing bacterium, to biodegrade tetracyanonickelate (TCN) was evaluated. METHODS AND RESULTS: The amounts of TCN were measured spectrophotometrically. Ammonia was determined colorimetrically by the indophenol method. The produced methane from TCN conversion by A. vinelandii was detected by gas chromatography. Results showed that A. vinelandii was able to biodegrade 1 mmol l(-1) of TCN. Ammonia and methane were detected during the process of TCN degradation. Effects of exogenous nitrogen sources on TCN degradation were addressed in this study. Results revealed that the addition of ammonia (1, 5 and 10 mmol l(-1)) into the reaction mixtures caused decrease of TCN degradation rate during a 24-h incubation period. This inhibition was also observed when nitrite (5 and 10 mmol l(-1)) was added, whereas TCN degradation still proceeded after the addition of nitrate at the same concentrations. Furthermore, the rate of TCN utilization was strikingly enhanced when 0.8% of glucose was added. CONCLUSIONS: Azotobacter vinelandii can degrade 1 mmol l(-1) of TCN into ammonia and methane. However, the inhibitory effects of exogenous ammonia and nitrite on TCN degradation by this bacterium were found in this study. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report defining the capability of A. vinelandii to degrade TCN. This bacterium might have potential value in applied strategies for removing metal-cyano wastes. Furthermore, these findings would be helpful in designing a practical system inoculated with A. vinelandii for the treatment of TCN.  相似文献   

17.
Microbial solubilization of coal has been considered as a promising technology to convert raw coal into valuable products. In the present study, initially a total of 50 different aerobic bacterial and fungal isolates have been isolated from soil, coal and water samples of Dulmial Coal Mines, Chakwal, Pakistan, but on the basis of solubilization potential, only four isolates were selected for further study. The intensity of biosolubilization was measured by determining the weight loss of the coal pieces, which was observed to be about 25.93% by Pseudomonas sp. AY2, 36.36% by Bacillus sp. AY3 and 50% by Trichoderma sp. AY6, while Phanerochaete sp. AY5 showed maximum coal solubilization potential i.e. 66.67% in 30 days. UV/Vis spectrum revealed an increase in the pattern of absorbance of all treated samples compared to control referring to solubilization. Fourier transform infrared spectroscopy indicated alterations in the structure of treated coal in comparison to control coal suggesting breakdown in the complex structure of coal. The major absorbance bands in infrared spectroscopy for solubilization product were attributed to carbonyl (1,600 cm?1), hydroxyl (3,450 cm?1), cyclane (2,925 cm?1), ether linkage (1,000–1,300 cm?1), carboxyl (3,300–2,500 cm?1) and side chains of aromatic ring (1,000–500 cm?1). The presence of microorganisms and surface erosion of coal residues compared to control samples were observed by scanning electron microscopy, which suggested that isolated microorganisms were able to survive in coal for a longer period of time. Therefore, the present study concluded that microorganisms isolated from coal mines have excellent potential for coal solubilization which is considered as a crucial step in coal methanogenesis allowing them to be used successfully for in situ methane production to meet future energy demands.  相似文献   

18.
A series of molecular and geochemical studies were performed to study microbial, coal bed methane formation in the eastern Illinois Basin. Results suggest that organic matter is biodegraded to simple molecules, such as H(2) and CO(2), which fuel methanogenesis and the generation of large coal bed methane reserves. Small-subunit rRNA analysis of both the in situ microbial community and highly purified, methanogenic enrichments indicated that Methanocorpusculum is the dominant genus. Additionally, we characterized this methanogenic microorganism using scanning electron microscopy and distribution of intact polar cell membrane lipids. Phylogenetic studies of coal water samples helped us develop a model of methanogenic biodegradation of macromolecular coal and coal-derived oil by a complex microbial community. Based on enrichments, phylogenetic analyses, and calculated free energies at in situ subsurface conditions for relevant metabolisms (H(2)-utilizing methanogenesis, acetoclastic methanogenesis, and homoacetogenesis), H(2)-utilizing methanogenesis appears to be the dominant terminal process of biodegradation of coal organic matter at this location.  相似文献   

19.
The efficiency of two lypolytic enzymes (fungal cutinase, yeast esterase) in the degradation of dipropyl phthalate (DPrP) was investigated. The DPrP-degradation rate of fungal cutinase was surprisingly high, i.e., almost 70% of the initial DPrP (500 mg/l) was decomposed within 2.5 h and nearly 50% of the degraded DPrP disappeared within the initial 15 min. With the yeast esterase, despite the same concentration, more than 90% of the DPrP remained even after 3 days of treatment. During the enzymatic degradation of DPrP, several DPrP-derived compounds were detected and time-course changes in composition were also monitored. The final chemical composition after 3 days was significantly dependent on the enzyme used. During degradation with fungal cutinase, most DPrP was converted into 1,3-isobenzofurandione (IBF) by diester hydrolysis. However, in the degradation by yeast esterase, propyl methyl phthalate (PrMP) was produced in abundance in addition to IBF. The toxic effects of the final degradation products were investigated using various recombinant bioluminescent bacteria. As a result, the degradation products (including PrMP) from yeast esterase severely caused oxidative stress and damage to protein synthesis in bacterial cells, while in the fungal cutinase processes, DPrP was significantly degraded to non-toxic IBF after the extended period (3 days).  相似文献   

20.
Soils are rich in organics, particularly those that support growth of plants. These organics are possible sources of sustainable energy, and a microbial fuel cell (MFC) system can potentially be used for this purpose. Here, we report the application of an MFC system to electricity generation in a rice paddy field. In our system, graphite felt electrodes were used; an anode was set in the rice rhizosphere, and a cathode was in the flooded water above the rhizosphere. It was observed that electricity generation (as high as 6 mW/m2, normalized to the anode projection area) was sunlight dependent and exhibited circadian oscillation. Artificial shading of rice plants in the daytime inhibited the electricity generation. In the rhizosphere, rice roots penetrated the anode graphite felt where specific bacterial populations occurred. Supplementation to the anode region with acetate (one of the major root-exhausted organic compounds) enhanced the electricity generation in the dark. These results suggest that the paddy-field electricity-generation system was an ecological solar cell in which the plant photosynthesis was coupled to the microbial conversion of organics to electricity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号