首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe oxidation is often the first chemical reaction that initiates weathering and disaggregation of intact bedrock into regolith. Here we explore the use of pyrosequencing tools to test for evidence that bacteria participate in these reactions in deep regolith. We analyze regolith developed on volcaniclastic rocks of the Fajardo formation in a ridgetop within the rainforest of the Luquillo Mountains of Puerto Rico. In the 9-m-deep regolith profile, the primary minerals chlorite, feldspar, and pyroxene are detected near 8.3 m but weather to kaolinite and Fe oxides found at shallower depths. Over the regolith profile, both total and heterotrophic bacterial cell counts generally increase from the bedrock to the surface. Like other soil microbial studies, the dominant phyla detected are Proteobacteria, Acidobacteria, Planctomycetes, and Actinobacteria. Proteobacteria (α, β, γ and δ) were the most abundant at depth (6.8–9 m, 41–44%), while Acidobacteria were the most abundant at the surface (1.4–4.4 m, 37–43%). Despite the fact that Acidobacteria dominated surficial communities while Proteobacteria dominated near bedrock, the near-surface and near-bedrock communities were not statistically different in structure but were statistically different from mid-depth communities. Approximately 21% of all sequences analyzed did not match known sequences: the highest fraction of unmatched sequences was greatest at mid-depth (45% at 4.4 m). At the regolith-bedrock interface where weathering begins, several lines of evidence are consistent with biotic Fe oxidation. At that interface, iron-related bacterial activity tests and culturing indicate the presence of iron-related bacteria, and phylogenetic analyses identified sub-phyla containing known iron-oxidizing microorganisms. Cell densities of iron-oxidizers in the deep saprolite were estimated to be on the order of 105 cells g?1. Overall Fe loss was also observed at the regolith-bedrock interface, consistent with bacterial production of organic acids and leaching of Fe-organic complexes. Fe-organic species were also detected to be enriched near the bedrock-regolith interface. In this and other deep weathering profiles, chemolithoautotrophic bacteria that use Fe for energy and nitrate or oxygen as an electron acceptor may play an important role in initiating disaggregation of bedrock.  相似文献   

2.
The Northern Baffin Bay between Greenland and Canada is a remote Arctic area restricted in primary production by seasonal ice cover, with presumably low sedimentation rates, carbon content and microbial activities in its sediments. Our aim was to study the so far unknown subseafloor geochemistry and microbial populations driving seafloor ecosystems. Shelf sediments had the highest organic carbon content, numbers of Bacteria and Archaea, and microcosms inoculated from Shelf sediments showed highest sulfate reduction and methane production rates. Sediments in the central deep area and on the southern slope contained less organic carbon and overall lower microbial numbers. Similar 16S rRNA gene copy numbers of Archaea and Bacteria were found for the majority of the sites investigated. Sulfate in pore water correlated with dsrA copy numbers of sulfate-reducing prokaryotes and differed between sites. No methane was found as free gas in the sediments, and mcrA copy numbers of methanogenic Archaea were low. Methanogenic and sulfate-reducing cultures were enriched on a variety of substrates including hydrocarbons. In summary, the Greenlandic shelf sediments contain vital microbial communities adapted to their specific environmental conditions.  相似文献   

3.
The microbial communities in sulfate-rich, saline formation fluids of a natural gas reservoir in Lower Saxony, Germany were investigated to enhance the knowledge about microbial communities in potential carbon dioxide sequestration sites. This investigation of the initial state of the deep subsurface microbiota is necessary to predict their influence on the long-term stability and storage capacity of such sites. While the bacterial 16S rDNA gene library was comprised of sequences affiliating with the Firmicutes, the Alphaproteobacteria, the Gammaproteobacteria and the Thermotogales, the archaeal 16S rDNA libraries were simply dominated by two phylotypes related to the genera Methanolobus and Methanoculleus. The monitoring of the archaeal communities in different formation fluid samples by T-RFLP and Real-Time-PCR indicated that these two methanogenic genera dominated at all, whereas the proportion of the two groups varied. Thus, methylotrophic and autotrophic methanogenesis seems to be of importance in the reservoir fluids, dependent on the provided reduction equivalents and substrates and it also may influence the fate of CO2 in the subsurface.  相似文献   

4.
Xu J 《Molecular ecology》2006,15(7):1713-1731
Microbial ecology examines the diversity and activity of micro-organisms in Earth's biosphere. In the last 20 years, the application of genomics tools have revolutionized microbial ecological studies and drastically expanded our view on the previously underappreciated microbial world. This review first introduces the basic concepts in microbial ecology and the main genomics methods that have been used to examine natural microbial populations and communities. In the ensuing three specific sections, the applications of the genomics in microbial ecological research are highlighted. The first describes the widespread application of multilocus sequence typing and representational difference analysis in studying genetic variation within microbial species. Such investigations have identified that migration, horizontal gene transfer and recombination are common in natural microbial populations and that microbial strains can be highly variable in genome size and gene content. The second section highlights and summarizes the use of four specific genomics methods (phylogenetic analysis of ribosomal RNA, DNA-DNA re-association kinetics, metagenomics, and micro-arrays) in analysing the diversity and potential activity of microbial populations and communities from a variety of terrestrial and aquatic environments. Such analyses have identified many unexpected phylogenetic lineages in viruses, bacteria, archaea, and microbial eukaryotes. Functional analyses of environmental DNA also revealed highly prevalent, but previously unknown, metabolic processes in natural microbial communities. In the third section, the ecological implications of sequenced microbial genomes are briefly discussed. Comparative analyses of prokaryotic genomic sequences suggest the importance of ecology in determining microbial genome size and gene content. The significant variability in genome size and gene content among strains and species of prokaryotes indicate the highly fluid nature of prokaryotic genomes, a result consistent with those from multilocus sequence typing and representational difference analyses. The integration of various levels of ecological analyses coupled to the application and further development of high throughput technologies are accelerating the pace of discovery in microbial ecology.  相似文献   

5.
The long-term safety of final disposal of spent nuclear fuel in the deep geosphere is dependent on stability of biogeochemical conditions at the disposal site. Microbial processes, such as sulphate reduction and methanogenesis, may have profound effects on site biogeochemistry. In this study, sulphate-reducing bacteria and methane-producing archaea were investigated at depths ranging from 68 to 545 m in crystalline rock fractures at an intended spent nuclear fuel disposal site in Olkiluoto, Finland. Denaturing gradient gel electrophoresis detected diverse sulphate-reducing bacterial communities in all samples. Although the number of dsrB gene copies was below 103 copies ml?1 in all analyzed samples according to real-time quantitative PCR, their abundance was highest in samples that had the highest sulphate concentrations. Several distinct mcrA gene fragments were also recovered from most of the analyzed samples by cloning, although the number of methanogens was lower than that of sulphate-reducing bacteria when measured by mcrA-targeted quantitative PCR. The detected gene fragments were most closely related to sequences obtained from aquatic and deep subsurface environments. Results imply that sulphate reduction, methanogenesis, and anaerobic methane oxidation may all take place in the Olkiluoto deep geobiosphere.  相似文献   

6.
Knowledge on microbial community composition and ecology in highly mineralized (TDS up to 71?g l?1), cold waters (T?<?12?°C) from the zones of restricted water exchange is scarce. Therefore, the aim of our study was to reveal how the particular physicochemical water conditions of these zones affect the community composition. The community members, which could be involved in the sulfur cycling were of particular interest since they may strongly influence wells operation. The pristine, mineral waters of North Poland were extracted from boreholes reaching Cenozoic, Jurassic, and Triassic aquifers at the depth of 46–1248?m below ground surface. Both culture-dependent (culturing on R2A medium) and culture-independent techniques (microscopic methods and high-throughput 16S rDNA amplicon sequencing) were applied. The bacterial communities were characterized by low complexity and strongly varied across the sampling locations. Bacteria potentially involved in the sulfur cycle (sulfate reduction) were common in all mineral waters and were dominant (especially Desulfovibrio) in the deepest waters. The most important geochemical drivers of the observed microbial community composition were TDS including Cl?, Na+, Mg2+, and NO3?. Bacterial isolates belonged mostly to the genus Bacillus. Sequences assigned to Archaea (Methanobacterium) were detected only in the deepest borehole water.  相似文献   

7.
The aim of this study was to evaluate the impact of different grazing pressures on the activity and diversity of soil bacteria. We performed a long-term experiment in Eldorado do Sul, southern Brazil, that assessed three levels of grazing pressure: high pressure (HP), with 4% herbage allowance (HA), moderate pressure (MP), with 12% HA, and low pressure (LP), with 16% HA. Two reference areas were also assessed, one of never-grazed native vegetation (NG) and another of regenerated vegetation after two years of grazing (RG). Soil samples were evaluated for microbial biomass and enzymatic (β-glucosidase, arylsulfatase and urease) activities. The structure of the bacterial community and the population of diazotrophic bacteria were evaluated by RFLP of the 16S rRNA and nifH genes, respectively. The diversity of diazotrophic bacteria was assessed by partial sequencing of the 16S rDNA gene. The presence of grazing animals increased soil microbial biomass in MP and HP. The structures of the bacterial community and the populations of diazotrophic bacteria were altered by the different grazing managements, with a greater diversity of diazotrophic bacteria in the LP treatment. Based on the characteristics evaluated, the MP treatment was the most appropriate for animal production and conservation of the Pampa biome.  相似文献   

8.
AIMS: To understand the composition and structure of microbial communities in different acid mineral bioleaching systems, and to present a more complete picture of microbially mediated acid mine drainage production. METHODS AND RESULTS: In Tong Shankou Copper Mine, China, two samples (named K1 and K2) from two different sites with bioleaching were studied. A bacterial 16S rDNA library and an archaeal 16S rDNA library of the sample from each site were constructed by 16S rDNA polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP) and sequencing. A total of 18 bacterial representative sequences and 12 archaeal representative sequences were obtained. Phylogenetic analysis indicated that 77.09% of the total bacterial clones were affiliated with Proteobacteria, and 21.22% of the total bacterial clones were closely related to Nitrospira. The rest of the bacterial clones were related to Firmicutes (1.68%). Sequences affiliated with the archaea of the Thermoplasma and Ferroplasma lineages were detected abundantly in the two samples. Unexpectedly, sequences affiliated with Sulfolobales and Methanothermus genera were also detected. CONCLUSIONS: The molecular studies appear to be consistent with the environmental conditions existing at the sites, which coincides with previous studies. High concentrations of some elements (such as copper, iron and sulfur) seemed to be the key factors resulting in the diverse distribution of typical iron-oxidizing bacteria such as Leptospirillum species and Acidithiobacillus ferrooxidans. SIGNIFICANCE AND IMPACT OF THE STUDY: Research on micro-organisms present in bioleaching systems especially archaea is not abundant. The acidophiles in the two bioleaching sites obtained from Tong Shankou Copper Mine, China, have not been reported until now. These results may expand our knowledge of the microbial diversity in the acid mineral bioleaching systems.  相似文献   

9.
The Gahai Lake wetland natural conservation area in northwestern China includes peatland that has been accumulating over hundreds of years and is seldom disturbed by industry. Bacteria and archaea in peat soil, which is a reservoir for carbon and water, may influence its ecological function. The objective of this study was to obtain a clearer understanding of peat microbial ecology and its relationship to the environmental conditions of this area. Hence, the microbial community of the peatland ecosystem was investigated by sequencing bacterial and archaeal DNA extracted from samples collected at different peat depths. Results showed that in all samples the dominant bacterial phyla were Proteobacteria (relative abundance 0.39 ± 0.12) and Chloroflexi (0.16 ± 0.09), while the dominant archaeal phyla were Miscellaneous Crenarchaeotic Group (MCG) (0.62 ± 0.21) and Euryarchaeota (0.27 ± 0.16). The diversity and microbial community structure at deeper depths (90 and 120 cm below the peat surface) significantly differ from that at shallower depths (10, 30 and 50 cm deep). In contrast to the shallow layers, the deeper layers became more abundant in the bacterial phyla Chloroflexi, Bacteroidetes, Atribacteria, Aminicenantes, Chlorobi, TA06, Caldiserica and Spirochaetae; and in the archaeal phyla MCG and Miscellaneous Euryarchaeotic Group (MEG). This study revealed a significant shift in microbial community in peat between 50 cm and 90 cm deep, as probably influenced by the oxygen supply at different depths. Furthermore, new insights into the microbial taxa were obtained, thus providing a baseline for future studies of this peat ecosystem.  相似文献   

10.
Abstract

Microbial community structure reflects the surrounding natural environment and changes to that environment. Although the subsurface at 5–100?m depth is important for human activities and there are potential risks of environmental pollution in this region, there have been only a few reports of subsurface microbial community structures in terrestrial areas. We investigated the diversity and community compositions of Bacteria and Archaea in boring cores collected from various depths at three different sites in the southern Kanto Plain, Japan. The results of 16S rRNA gene amplicon sequencing using MiSeq showed that the microbial community composition varied with the geological unit. Proteobacteria (Alphaproteobacteria and Gammaproteobacteria) were dominant members within sediments accumulated during the Pleistocene in the Musashino Upland. In contrast, Acidobacteria and Chloroflexi characteristically appeared in the Holocene layers of the Arakawa Lowland. These data suggest that the subsurface microbial composition is controlled by the geological features of the sediments.  相似文献   

11.
The Japan Trench land slope at a depth of 6,400 m is the deepest cold-seep environment with Calyptogena communities. Sediment samples from inside and beside the Calyptogena communities were collected, and the microbial diversity in the sediment samples was studied by molecular phylogenetic techniques. From DNA extracted directly from the sediment samples, 16S rDNAs were amplified by the polymerase chain reaction method. The sequences of the amplified 16S rDNAs selected by restriction fragment length polymorphism analysis were determined and compared with sequences in DNA databases. The results showed that 33 different bacterial 16S rDNA sequences from the two samples analyzed fell into similar phylogenetic categories, the α-, γ-, δ-, and ɛ-subdivisions of Proteobacteria, Cytophaga, and gram-positive bacteria; some of the 16S rDNA sequences were common to both samples. δ- and ɛ-Proteobacteria-related sequences were abundant in both sediments. These sequences are mostly related to sulfate-reducing or sulfur-reducing bacteria and epibionts, respectively. Eight different archaeal 16S rDNA sequences were cloned from the sediments. The majority of the archaeal 16S rDNA sequences clustered in Crenarchaeota and showed high similarities to marine group I archaeal rDNA. A Methanococcoides burtonii–related sequence obtained from the sediment clustered in the Euryarchaeota indicating that M. burtonii–related strains in the area of Calyptogena communities may contribute to production of methane in this environment. From these results, we propose a possible model of sulfur circulation within the microbial community and that of Calyptogena clams in the cold-seep environment. Received June 15, 1998; accepted November 10, 1998.  相似文献   

12.
Previous studies on microbial prospecting of oil/gas only focused on the anomalies of light hydrocarbon-oxidizing microbes as main exploratory indicators and their exploration applications. In this study, we investigated the responses of microbial communities to light-hydrocarbon microseepage in the Beihanzhuang Oilfield, eastern China using denaturing gradient gel electrophoresis (DGGE) analysis and by comparing the difference of two-type areas with high- and low-flux light-hydrocarbon seepages. The results showed that the high-flux light-hydrocarbon seepage favored the growth of Nocardioides, Aciditerrimonas, sulphate-reducing bacteria (SRBs) related to Desulfosporosinus and Desulfovibrio, and Chloroflexi bacteria (b-7), implying that their anomalies might be adopted as novel subsidiary indicators for microbial prospecting of oil/gas in the Beihanzhuang Oilfield. Based on the newly obtained results, we have proposed a general strategy for microbial prospecting of oil/gas, i.e., to determine the anomalies of light hydrocarbon-oxidizing microbes, to select subsidiary indicators for microbial prospecting of oil/gas based on an assessment of the responses of microbial communities to light-hydrocarbon microseepage, to quantitatively measure subsidiary indicators and delimit their anomalies, to comprehensively interpret all microbial anomalies, and to make a suggestion for oil/gas prospecting. This general strategy with novel indicators may provide a more comprehensive evaluation for light-hydrocarbon microseepage and the corresponding anomalies, thereby reducing the exploration risk of oil/gas.  相似文献   

13.
以苯并(a)芘(50 mg/L)为唯一碳源,对新疆芦草沟煤矿开采区土壤微生物进行3代胁迫培养(每代60 d);采用PCR-DGGE方法了解不同污染程度土样中降解苯并(a)芘的微生物类群和多样性特点;利用高效液相色谱(HPLC)测定胁迫培养每代培养物混合菌群对苯并(a)芘的降解能力。PCR-DGGE结果显示:不同污染程度原始样品与苯并(a)芘胁迫培养第3代培养物的微生物香浓指数(H)、丰度(S)和均匀度(E)有所不同,其中重度污染培养物降解苯并(a)芘的微生物类群最丰富。对优势条带进行克隆,其主要归属于变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和放线菌门(Actinobacteria)。经HPLC检测发现重度污染样品中的群体微生物对苯并(a)芘的降解率明显高于轻度和中度污染样品,达到78.4%。研究表明新疆芦草沟煤矿开采区污染的土壤中可能蕴藏着降解苯并(a)芘的微生物资源。  相似文献   

14.
We investigated the change in bacterial community structure after drilling boreholes, 09-V250-M02 and 09-V250-M03, in the 250-m deep research gallery of the Horonobe Underground Research Laboratory. In the 09-V250-M02 borehole, ?-Proteobacteria were predominantly detected in the clone library analyses of the groundwater samples conducted immediately after drilling. All the ?-Proteobacteria clones were closely related to Arcobacter spp., which are known to be sulfide-oxidizing chemoautotrophic bacteria. After 4 years, the microbial structure drastically changed, and most detected operational taxonomic units were uncultured species such as candidate division OP9 and Chloroflexi relatives, which are frequently detected in deep sea sediments. The results indicated that the microbial community structure was drastically affected by borehole drilling and was concomitant with oxidation perturbation. However, these disturbed microbial communities changed within a few years to a microbial community composed of uncultivated species such as OP9 and Chloroflexi.  相似文献   

15.
Paul E. Kepkay 《Hydrobiologia》1985,128(2):135-142
Aquatic macrophytes in the Concretion Cove area of Lake Charlotte, Nova Scotia, Canada appear to restrict microbial manganese oxidation to the production of dispersed, microscopic oxides within sediments. When macrophyte roots are not present in the sediments, large ferromanganese concretions are found at the sediment surface. Macrophyte roots and the manganese oxidizers may have also played a role in the restriction of nitrification to deeper in the sediments.  相似文献   

16.
A biofilm sample was collected from an anaerobic water and gas-flowing borehole, 1.474 km below land surface in the Evander Au mine, Republic of South Africa. The biofilm was 27 wt% ZnS, which was ~ 2 × 107times more concentrated than the dissolved Zn measured in the borehole water. X-Ray diffraction indicated that the Zn was present in the form of fine grained, 4.7 ± 0.9 nm particles with smaller amounts of pyrite (FeS 2 ). Scanning electron microscopy, coupled with energy-dispersive X-ray spectroscopy confirmed the identity of these minerals in the biofilm. Using transmission electron microscopy, the fine-grained ZnS minerals were found to coat the 1 μ m-diameter rod-shaped bacteria that made up the primary substructure of the biofilm. The FeS 2 was present as framboids (spherical aggregates of 0.5–1 μ m FeS 2 crystals) up to 10 μ m in diameter and as large, 2–3 μ m euhedral crystals that were not nucleated on the bacterial surfaces, but were found within the biofilm. Analyses of 16S rDNA utilizing clone libraries and a phylochip indicates that the ZnS rich biofilm is dominated by methanogens with a significant sulfate-reducing bacterial population and minor sulfide and CH 4 -oxidizing chemolithotrophs. This biofilm community is sustained by sulfate, bicarbonate and H 2 -bearing paleometeoric water.  相似文献   

17.
水圈微生物:推动地球重要元素循环的隐形巨人   总被引:1,自引:0,他引:1  
正生活在水圈环境中的微生物数量巨大、遗传与代谢方式极为多样,它们驱动着地球上重要元素的循环。水圈微生物研究已经成为生命科学与地球科学的研究热点。国家自然科学基金委员会于2017年启动了"水圈微生物驱动地球元素循环的机制"重大研究计划(简称"水圈微生物"计划)。"水圈微生物"计划拟选择典型水圈生境,通过多学科交叉研究,借助新技术、新方法,揭示水圈微生物在物种、群落和生态水平驱动碳氮硫循环的机制及其环境响应,  相似文献   

18.
Li T  Wang P  Wang P X 《农业工程》2008,28(3):1166-1173
Microbial communities were obtained from the surface sediments of the Xisha Trough using the culture-independent technique. The characteristics of the 16S rDNA gene amplified from the sediments indicated that archaeal clones could be grouped into Euryarchaeota and Crenarchaeota, respectively. Two archaeal groups, Marine Crenarchaeotic GroupI and Terrestrial Miscellaneous Euryarchaeotal Group, were the most dominant archaeal 16S rDNA gene components in the sediments. The remaining components were related to the members of Marine Benthic Group B, Marine Benthic Group A, Marine Benthic Group D, Novel Euryarchaeotic Group and C3. The bacterial clones exhibited greater diversity than the archaeal clones with the 16S rDNA gene sequences from the members of Proteobacteria, Planctomycetes, Actinobacteria, Firmicutes, Chloroflexi, Acidobacteria, candidate division OP8, Bacterioidetes/Chlorobi and Verrucomicrobia. Most of these lineages represented uncultured microorganisms. The result suggests that a vast amount of microbial resource in the surface sediments of the South China Sea has not been known.  相似文献   

19.
In recent decades, the decline of coastal water quality has promoted the birth of a new industrialized aquaculture mode in China, which involves the cultivation of organisms using underground seawater extracted from various depths below the intertidal zone. In view of the special physicochemical characteristics of underground seawater, the microbial community in this environment has attracted interest. In this study, the microbial community in the underground seawater of an intertidal area of the Qingdao coast of China was investigated. Compared with the upper coastal water, the underground seawater displayed lower numbers of microorganisms (2.7?±?0.3?×?105 cells mL?1 in underground seawater vs. 5.3?±?0.4?×?105 cells mL?1 in upper coastal seawater) but displayed much higher microbial diversity. At the phyla level, Proteobacteria, Bacteroidetes, Cyanobacteria, and Actinobacteria inhabited both environments, whereas bacteria in the phyla Planctomycetes, Deferribacteres, and Nitrospirae were recovered only from the underground seawater. Eighty-nine percent of the OTUs in the underground seawater were environmental specific. Furthermore, compared with coastal water, underground seawater displayed significant lower (p?<?0.05) concentration of NH3-N, NO2-N, PO4-P, and DOC-C, and contained fewer potentially harmful pathogens (e.g., Verrucomicrobia/Opitutae) and more denitrifying bacteria (e.g., Shewanella denitrificans), thus making it more suitable for aquaculture.  相似文献   

20.
Deep subsurface biofilms are estimated to host the majority of prokaryotic life on Earth, yet fundamental aspects of their ecology remain unknown. An inherent difficulty in studying subsurface biofilms is that of sample acquisition. While samples from marine and terrestrial deep subsurface fluids have revealed abundant and diverse microbial life, limited work has described the corresponding biofilms on rock fracture and pore space surfaces. The recently established Deep Mine Microbial Observatory (DeMMO) is a long‐term monitoring network at which we can explore the ecological role of biofilms in fluid‐filled fractures to depths of 1.5 km. We carried out in situ cultivation experiments with single minerals representative of DeMMO host rock to explore the ecological drivers of biodiversity and biomass in biofilm communities in the continental subsurface. Coupling cell densities to thermodynamic models of putative metabolic reactions with minerals suggests a metabolic relationship between biofilms and the minerals they colonize. Our findings indicate that minerals can significantly enhance biofilm cell densities and promote selective colonization by taxa putatively capable of extracellular electron transfer. In turn, minerals can drive significant differences in biodiversity between fluid and biofilm communities. Given our findings at DeMMO, we suggest that host rock mineralogy is an important ecological driver in deep continental biospheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号