首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have analyzed extragenic suppressors of paralyzed flagella mutations in Chlamydomonas reinhardtii in an effort to identify new dynein mutations. A temperature-sensitive allele of the PF16 locus was mutagenized and then screened for revertants that could swim at the restrictive temperature (Dutcher et al. 1984. J. Cell Biol. 98:229-236). In backcrosses of one of the revertant strains to wild-type, we recovered both the original pf16 mutation and a second, unlinked suppressor mutation with its own flagellar phenotype. This mutation has been identified by both recombination and complementation tests as a new allele of the previously uncharacterized PF9 locus on linkage group XII/XIII. SDS-PAGE analysis of isolated flagellar axonemes and dynein extracts has demonstrated that the pf9 strains are missing four polypeptides that form the I1 inner arm dynein subunit. The primary effect of the loss of the I1 subunit is a decrease in the forward swimming velocity due to a change in the flagellar waveform. Both the flagellar beat frequency and the axonemal ATPase activity are nearly wild-type. Examination of axonemes by thin section electron microscopy and image averaging methods reveals that a specific domain of the inner arm complex is missing in the pf9 mutant strains (see accompanying paper by Mastronarde et al.). When combined with other flagellar defects, the loss of the I1 subunit has synergistic effects on both flagellar assembly and flagellar motility. These synthetic phenotypes provide a screen for new suppressor mutations in other loci. Using this approach, we have identified the first interactive suppressors of a dynein arm mutation and an unusual bypass suppressor mutation.  相似文献   

2.
Three independent recessive mutations at the SPINDLY (SPY) locus of Arabidopsis confer resistance to the gibberellin (GA) biosynthesis inhibitor paclobutrazol. Relative to wild type, spy mutants exhibit longer hypocotyls, leaves that are a lighter green color, increased stem elongation, early flowering, parthenocarpy, and partial male sterility. All of these phenotypes are also observed when wild-type Arabidopsis plants are repeatedly treated with gibberellin A3 (GA3). The spy-1 allele is partially epistatic to the ga1-2 mutation, which causes GA deficiency. In addition, the spy-1 mutation can simultaneously suppress the effects of the ga1-2 mutation and paclobutrazol treatment, which inhibit different steps in the GA biosynthesis pathway. This observation suggests that spy-1 activates a basal level of GA signal transduction that is independent of GA. Furthermore, results from GA3 dose-response experiments suggest that GA3 and spy-1 interact in an additive manner. These results are consistent with models in which the SPY gene product regulates a portion of the GA signal transduction pathway.  相似文献   

3.
Ethylene and gibberellins (GAs) control similar developmental processes in plants. The role of ethylene is at least in part to regulate the accumulation of DELLA proteins, key regulators of plant growth, which suppress the GA response. To expand our knowledge of ethylene-GA crosstalk and to reveal how the modulation of the ethylene and GA pathways affects global plant growth, the gibberellin-insensitive (gai), ethylene-overproducing 2-1 (eto2-1) double mutant, which has decreased GA signalling (resulting from gai) and increased ethylene biosynthesis (resulting from eto2-1), was characterized. Both single mutations resulted in reduced elongation growth. The double mutant showed synergistic responses in root and shoot growth, in induction of floral transition, and in inflorescence length, showing that crosstalk between the two pathways occurs in different plant organs throughout development. Furthermore, the altered ethylene-GA interactions affected root-shoot communication, as evidenced by an enhanced shoot:root ratio in the double mutant. When compared with both single mutants and the wild type, double mutants had enhanced content of active GA(4) at both the seedling and the rosette stages, and, unlike the gai mutant, they were sensitive to GA treatment. Finally, it was shown that synergistic responses in the double mutant were not caused by elevated ethylene biosynthesis but that, in the light, enhanced sensitivity to ethylene may, at least in part, be responsible for the observed phenotype.  相似文献   

4.
Arabidopsis RGL1 encodes a negative regulator of gibberellin responses   总被引:20,自引:0,他引:20       下载免费PDF全文
Wen CK  Chang C 《The Plant cell》2002,14(1):87-100
  相似文献   

5.
Auxin controls numerous plant growth processes by directing cell division and expansion. Auxin-response mutants, including iba response5 (ibr5), exhibit a long root and decreased lateral root production in response to exogenous auxins. ibr5 also displays resistance to the phytohormone abscisic acid (ABA). We found that the sar3 suppressor of auxin resistant1 (axr1) mutant does not suppress ibr5 auxin-response defects, suggesting that screening for ibr5 suppressors might reveal new components important for phytohormone responsiveness. We identified two classes of Arabidopsis thaliana mutants that suppressed ibr5 resistance to indole-3-butyric acid (IBA): those with restored responses to both the auxin precursor IBA and the active auxin indole-3-acetic acid (IAA) and those with restored response to IBA but not IAA. Restored IAA sensitivity was accompanied by restored ABA responsiveness, whereas suppressors that remained IAA resistant also remained ABA resistant. Some suppressors restored sensitivity to both natural and synthetic auxins; others restored responsiveness only to auxin precursors. We used positional information to determine that one ibr5 suppressor carried a mutation in PLEIOTROPIC DRUG RESISTANCE9 (PDR9/ABCG37/At3g53480), which encodes an ATP-binding cassette transporter previously implicated in cellular efflux of the synthetic auxin 2,4-dichlorophenoxyacetic acid.  相似文献   

6.
The Aspergillus nidulans NIMX(CDC2) protein kinase has been shown to be required for both the G(2)/M and G(1)/S transitions, and recent evidence has implicated a role for NIMX(CDC2) in septation and conidiation. While much is understood of its G(2)/M function, little is known about the functions of NIMX(CDC2) during G(1)/S, septation, and conidiophore development. In an attempt to better understand how NIMX(CDC2) is involved in these processes, we have isolated four extragenic suppressors of the A. nidulans nimX2(cdc2) temperature-sensitive mutation. Mutation of these suppressor genes, designated snxA-snxD for suppressor of nimX, affects nuclear division, septation, and conidiation. The cold-sensitive snxA1 mutation leads to arrest of nuclear division during G(1) or early S. snxB1 causes hyperseptation in the hyphae and sensitivity to hydroxyurea, while snxC1 causes septation in the conidiophore stalk and aberrant conidiophore structure. snxD1 leads to slight septation defects and hydroxyurea sensitivity. The additional phenotypes that result from the suppressor mutations provide genetic evidence that NIMX(CDC2) affects septation and conidiation in addition to nuclear division, and cloning and biochemical analysis of these will allow a better understanding of the role of NIMX(CDC2) in these processes.  相似文献   

7.
The plant cytoskeleton plays a pivotal role in determining the direction of cell wall expansion, and ultimately the cell's final shape. However, the mechanisms by which localized expansion events are initiated remain obscure. Mutational analysis of the trichome (plant hair) morphogenic pathway in Arabidopsis has identified at least eight genes that determine trichome branch number. One of these genes, ZWICHEL (ZWI), encodes a novel member of the kinesin superfamily of motor proteins. Mutations in the ZWI gene cause a reduction in the number of trichome branches. To identify additional genes involved in trichome branch initiation, we screened for extragenic suppressors of the zwi-3 mutation and isolated three suppressors that rescued the branch number defect of zwi-3. These suppressors define three genes, named suz, for suppressor of zwichel-3. All of the suppressors were shown to be allele specific. One of the suppressors, suz2, also rescued the trichome branch number defect of another branch mutant, furca1-2. Plants homozygous for suz2 have more than the wild-type number of trichome branches. This suggests that SUZ2 is a negative regulator of trichome branching and may interact with ZWI and FURCA1. The suz1 and suz3 mutants display no obvious phenotype in the absence of the zwi-3 mutation. The suz1 zwi-3 double mutants also exhibited a male-sterile phenotype due to a defect in pollen tube germination and growth, whereas both the suz1 and the zwi-3 single mutants are fertile. The synthetic male sterility of the suz1 zwi-3 double mutants suggests a role for SUZ1 and ZWI in pollen germination and pollen tube growth. DNA sequence analysis of the zwi-3 mutation indicated that only the tail domain of the zwi-3 protein would be expressed. Thus, the suz mutations show allele-specific suppression of a kinesin mutant that lacks the motor domain.  相似文献   

8.
9.
The semidominant gibberellin-insensitive (gai) mutant of Arabidopsis thaliana shows impairment in multiple responses to the plant hormone gibberellin A3, which include effects on seed germination, stem elongation, apical dominance, and rapid flowering in short days. Results presented here show that the gai mutation also interferes with development of fertile flowers in continuous light. Mu-tagenesis of the gai mutant resulted in recovery of 17 independent mutants in which the gibberellin-insensitive phenotype is partially or completely suppressed. Sixteen of the suppressor mutations act semidominantly to restore gibberellin responsiveness. One representative of this class, the gar1 mutation, could not be genetically separated from the gai locus and is proposed to cause inactivation of the gai gene. The exceptional gar2 mutation partially suppresses the gai phenotype, is completely dominant, and is not linked to the gai locus. The gar2 mutation may define a new gene involved in gibberellin signaling. A recessive allele of the spindly (SPY) locus, spy-5, was also found to partially suppress the gai mutant phenotype.  相似文献   

10.
11.
Genetic engineering is an attractive method to obtain dwarf plants in order to eliminate the extensive use of growth retardants in horticultural crop production. In this study, we evaluated the potential of using the Arabidopsis gai (gibberellic acid insensitive) gene to dwarf apple trees. The gai gene under 35S promoter was introduced in the apple rootstock A2 and the cultivars Gravenstein and McIntosh through Agrobacterium-mediated transformation. One transgenic clone was recovered for Gravenstein and McIntosh, and several transgenic clones for A2, confirmed by Southern blot analysis. Two weak bands were detected by Southern blot analysis in all the untransformed controls, possibly indicating the existence of the internal GAI gene in apple. Most of the transgenic plants showed reduced growth in vitro. Growth analyses in the greenhouse showed a clear reduction in stem length, internode length and node number for the dwarf clones. The normal phenotype of some transgenic clones appears to be associated with silencing of the introduced gai gene, confirmed by RT–PCR analysis. In general, transgenic clones showed reduced rooting ability, especially for the extremely compact ones.  相似文献   

12.
J H Yu  S Rosén  T H Adams 《Genetics》1999,151(1):97-105
We showed previously that two genes, fl bA and fadA, have a major role in determining the balance between growth, sporulation, and mycotoxin (sterigmatocystin; ST) production by the filamentous fungus Aspergillus nidulans. fadA encodes the alpha subunit for a heterotrimeric G-protein, and continuous activation of FadA blocks sporulation and ST production while stimulating growth. fl bA encodes an A. nidulans regulator of G-protein signaling (RGS) domain protein that antagonizes FadA-mediated signaling to allow development. To better understand FlbA function and other aspects of FadA-mediated growth control, we have isolated and characterized mutations in four previously undefined genes designated as sfaA, sfaC, sfaD, and sfaE (suppressors of flbA), and a new allele of fadA (fadAR205H), all of which suppress a fl bA loss-of-function mutation ( fl bA98). These suppressors overcome fl bA losses of function in both sporulation and ST biosynthesis. fadAR205H, sfaC67, sfaD82, and sfaE83 mutations are dominant to wild type whereas sfaA1 is semidominant. sfaA1 also differs from other suppressor mutations in that it cannot suppress a fl bA deletion mutation (and is therefore allele specific) whereas all the dominant suppressors can bypass complete loss of fl bA. Only sfaE83 suppressed dominant activating mutations in fadA, indicating that sfaE may have a unique role in fadA- fl bA interactions. Finally, none of these suppressor mutations bypassed fl uG loss-of-function mutations in development-specific activation.  相似文献   

13.
Saccharomyces cerevisiae regulatory genes CAT1 and CAT3 constitute a positive control circuit necessary for derepression of gluconeogenic and disaccharide-utilizing enzymes. Mutations within these genes are epistatic to hxk2 and hex2, which cause defects in glucose repression. cat1 and cat3 mutants are unable to grow in the presence of nonfermentable carbon sources or maltose. Stable gene disruptions were constructed inside these genes, and the resulting growth deficiencies were used for selecting epistatic mutations. The revertants obtained were tested for glucose repression, and those showing altered regulatory properties were further investigated. Most revertants belonged to a single complementation group called cat4. This recessive mutation caused a defect in glucose repression of invertase, maltase, and iso-1-cytochrome c. Additionally, hexokinase activity was increased. Gluconeogenic enzymes are still normally repressible in cat4 mutants. The occurrence of recombination of cat1::HIS3 and cat3::LEU2 with some cat4 alleles allowed significant growth in the presence of ethanol, which could be attributed to a partial derepression of gluconeogenic enzymes. The cat4 complementation group was tested for allelism with hxk2, hex2, cat80, cid1, cyc8, and tup1 mutations, which were previously described as affecting glucose repression. Allelism tests and tetrad analysis clearly proved that the cat4 complementation group is a new class of mutant alleles affecting carbon source-dependent gene expression.  相似文献   

14.
15.
Summary: The her-1 regulatory switch gene in C. elegans sex determination is normally active in XO animals, resulting in male development, and inactive in XX animals, allowing hermaphrodite development. The her-1(n695gf) mutation results in the incomplete transformation of XX animals into phenotypic males. We describe four extragenic mutations that suppress the masculinized phenotype of her-1(n695gf) XX. They define two previously undescribed genes, sup-26 and sup-27. All four mutations exhibit semidominance of suppression and by themselves have no visible effects on sex determination in otherwise genotypically wild-type XX or XO animals. Analysis of interactions with mutations in the major sex-determining genes show that sup-26 and sup-27 influence sex determination in fundamentally different ways. sup-26 appears to act independently of her-1 to negatively modulate synthesis or function of tra-2 in both XX and XO animals. sup-27 may play a role in X-chromosome dosage compensation and influence sex determination indirectly.  相似文献   

16.
A gibberellin insensitive mutant of Arabidopsis thaliana   总被引:10,自引:0,他引:10  
A dwarf mutant of Arabidopsis thaliana (L.) Heynh. was found to be less sensitive to applied gibberellins than the wild type, and this character was controlled by one partially-dominant gene (denoted Gai) located on chromosome 1. This mutant resembled gibberellin-deficient mutants since not only stem growth, but also apical dominanace and seed germination were reduced. However, in contrast to the latter mutants, gibberellin does not reverse these effects in the Gai mutant. The insensitivity of the mutant could be quantified in much more detail in the recombinant of this mutation with the GA deficient mutant ga-1/ga-1 . Endogenous gibberellins of the Gai mutant did not differ from the wild type either in quantity or composition. The data suggest that the gene controls a step involved in gibberellin action.  相似文献   

17.
Peng J  Harberd NP 《The Plant cell》1993,5(3):351-360
The gai mutation of Arabidopsis confers a dwarf phenotype resembling that of mutants defective in gibberellin (GA) biosynthesis. However, gai mutant plants differ from GA biosynthesis mutants because they fail to respond to exogenous GAs and accumulate endogenous GA species to higher (rather than lower) levels than found in wild-type controls. The gai mutation, therefore, identifies a gene that modulates the response of plant cells to GA. We have mapped gai with respect to visible and restriction fragment length polymorphism (RFLP) markers from chromosome 1. To observe the phenotype exhibited by individuals potentially lacking wild-type (GAI) function, we have also isolated novel irradiation-induced derivative alleles of gai. When homozygous, these alleles confer a revertant phenotype that is indistinguishable from the wild type. gai is a semidominant mutation that exerts its effects either because it is a gain-of-function mutation or because it is a loss-of-function or reduced-function mutation. The genetic and physiological properties of the derivative alleles are considered with reference to these alternative modes of dominance of gai. Because these alleles are potential deletion or rearrangement mutations, together with the closely linked RFLP markers identified in the linkage mapping experiments, they provide useful resources for the isolation of the gai locus via a map-based cloning approach.  相似文献   

18.
Identification and characterization of Arabidopsis gibberellin receptors   总被引:3,自引:0,他引:3  
Three gibberellin (GA) receptor genes (AtGID1a, AtGID1b and AtGID1c), each an ortholog of the rice GA receptor gene (OsGID1), were cloned from Arabidopsis, and the characteristics of their recombinant proteins were examined. The GA-binding activities of the three recombinant proteins were confirmed by an in vitro assay. Biochemical analyses revealed similar ligand selectivity among the recombinants, and all recombinants showed higher affinity to GA(4) than to other GAs. AtGID1b was unique in its binding affinity to GA(4) and in its pH dependence when compared with the other two, by only showing binding in a narrow pH range (pH 6.4-7.5) with 10-fold higher affinity (apparent K(d) for GA(4) = 3 x 10(-8) m) than AtGID1a and AtGID1c. A two-hybrid yeast system only showed in vivo interaction in the presence of GA(4) between each AtGID1 and the Arabidopsis DELLA proteins (AtDELLAs), negative regulators of GA signaling. For this interaction with AtDELLAs, AtGID1b required only one-tenth of the amount of GA(4) that was necessary for interaction between the other AtGID1s and AtDELLAs, reflecting its lower K(d) value. AtDELLA boosted the GA-binding activity of AtGID1 in vitro, which suggests the formation of a complex between AtDELLA and AtGID1-GA that binds AtGID1 to GA more tightly. The expression of each AtGID1 clone in the rice gid1-1 mutant rescued the GA-insensitive dwarf phenotype. These results demonstrate that all three AtGID1s functioned as GA receptors in Arabidopsis.  相似文献   

19.
Plant growth is regulated by bioactive gibberellin (GA), although there is an unexplained diversity in the magnitude of the GA responses exhibited by different plant species. GA acts via a group of orthologous proteins known as the DELLA proteins. The Arabidopsis genome contains genes encoding five different DELLA proteins, the best known of which are GAI and RGA. The DELLA proteins are thought to act as repressors of GA-regulated processes, whilst GA is thought to act as a negative regulator of DELLA protein function. Recent experiments have shown that GA induces rapid disappearance of nuclear RGA, SLR1 and SLN1 (DELLA proteins from rice and barley), suggesting that GA signalling and degradation of DELLA proteins are coupled. However, RGL1, another Arabidopsis DELLA protein, does not disappear from the nucleus in response to GA treatment. Here, we present evidence suggesting that GAI, like RGL1, is stable in response to GA treatment, and show that transgenic Arabidopsis plants containing constructs that enable high-level expression of GAI exhibit a dwarf, GA non-responsive phenotype. Thus, GAI appears to be less affected by GA than RGA, SLR1 or SLN1. We also show that neither of the two putative nuclear localisation signals contained in DELLA proteins are individually necessary for nuclear localisation of GAI. The various DELLA proteins have different properties, and we suggest that this functional diversity may explain, at least in part, why plant species differ widely in their GA response magnitudes.  相似文献   

20.
The growth of plants is repressed by DELLA proteins, nuclear regulators whose activities are opposed by the growth-promoting phytohormone gibberellin (GA). Mutations affecting DELLA protein function were previously used by plant breeders to create the high-yielding semidwarf wheat varieties of the green revolution. gai is an Arabidopsis mutant DELLA protein-encoding orthologue of the wheat semidwarfing genes. Here we describe the development of a transgene that confers ethanol-inducible gai expression. Transient induction of gai causes transient growth repression: growth prior to and after treatment is unaffected. Appropriate ethanol treatments result in dwarf plants that produce the same numbers of seeds as untreated controls. This new technology represents a substantial advance in the applicability of genes encoding mutant DELLA proteins to agricultural and horticultural improvement, enhancing the flexibity with which these genes can be used for the sustainable achievement of increased crop plant yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号