首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Key enzymes of the glyoxylate cycle (isocitrate lyase and malate synthetase) were found in the liver and kidney of rats suffering from alloxan diabetes. The activities of these enzymes in the liver were 0.080 and 0.0430 U/mg protein, respectively. Isocitrate lyase activity in the kidney was 0.030 U/mg protein, and that of the malate synthetase was 0.018 U/mg protein. Peroxisomal localization of the enzymes was shown. A novel malate dehydrogenase isoform was found in a liver of rats suffering from the alloxan diabetes. The isocitrate lyase was isolated by selective (NH4)2SO4 precipitation and DEAE-Toyopearl chromatography. The resulting enzyme preparation had specific activity 6.1 U/mg protein, corresponding to 76.25-fold purification with 32.6% yield. The isocitrate lyase was found to follow the Michaelis--Menten kinetic scheme (Km for isocitrate, 0.08 mM) and to be competitively inhibited by glucose 1-phosphate (Ki = 1. 25 mM), succinate (Ki = 1.75 mM), and citrate (Ki = 1.0 mM); the pH optimum of the enzyme was 7.5 in Tris-HCl buffer.  相似文献   

2.
Phosphoenolpyruvate inhibited Escherichia coli NADP-isocitrate dehydrogenase allosterically (Ki of 0.31 mM) and isocitrate lyase uncompetitively (Ki' of 0.893 mM). Phosphoenolpyruvate enhances the uncompetitive inhibition of isocitrate lyase by increasing isocitrate, which protects isocitrate dehydrogenase from the inhibition, and contributes to the control through the tricarboxylic acid cycle and glyoxylate shunt.  相似文献   

3.
In Pseudomonas aeruginosa the initial enzyme of aromatic amino acid biosynthesis, 3-deoxy-D-arabinoheptulosonate 7-phosphate (DAHP) synthase, has been known to be subject to feedback inhibition by a metabolite in each of the three major pathway branchlets. Thus, an apparent balanced multieffector control is mediated by L-tyrosine, by L-tryptophan, and phenylpyruvate. We have now resolved DAHP synthase into two distinctive regulatory isozymes, herein denoted DAHP synthase-tyr (Mr = 137,000) and DAHP synthase-trp (Mr = 175,000). DAHP synthase-tyr comprises greater than 90% of the total activity. L-Tyrosine was found to be a potent effector, inhibiting competitively with respect to both phosphoenolpyruvate (Ki = 23 microM) and erythrose 4-phosphate (Ki = 23 microM). Phenylpyruvate was a less effective competitive inhibitor: phosphoenolpyruvate (Ki = 2.55 mM) and erythrose 4-phosphate (Ki = 1.35 mM). DAHP synthase-trp was found to be inhibited noncompetitively by L-tryptophan with respect to phosphoenolpyruvate (Ki = 40 microM) and competitively with respect to erythrose 4-phosphate (Ki = 5 microM). Chorismate was a relatively weak competitive inhibitor: phosphoenolpyruvate (Ki = 1.35 mM) and erythrose 4-phosphate (Ki = 2.25 mM). Thus, each isozyme is strongly inhibited by an amino acid end product and weakly inhibited by an intermediary metabolite.  相似文献   

4.
Key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were identified in pupas of the butterfly Papilio machaon L. The activities of these enzymes in pupas were 0.056 and 0.108 unit per mg protein, respectively. Isocitrate lyase was purified by a combination of various chromatographic steps including ammonium sulfate fractionation, ion-exchange chromatography on DEAE-Toyopearl, and gel filtration. The specific activity of the purified enzyme was 5.5 units per mg protein, which corresponded to 98-fold purification and 6% yield. The enzyme followed Michaelis-Menten kinetics (Km for isocitrate, 1.4 mM) and was competitively inhibited by succinate (Ki = 1.8 mM) and malate (Ki = 1 mM). The study of physicochemical properties of the enzyme showed that it is a homodimer with a subunit molecular weight of 68 +/- 2 kD and a pH optimum of 7.5 (in Tris-HCl buffer).  相似文献   

5.
Nocardia salmonicolor, grown on acetate, commercial D,L-lactate or hydrocarbon substrates, has high isocitrate lyase activities compared with those resulting from growth on other carbon sources. This presumably reflects the anaplerotic role of the glyoxylate cycle during growth on the former substrates. Amongst a variety of compounds tested, including glucose, pyruvate and tricarboxylic acid cycle intermediates, only succinate and fumarate prevented an increase in enzyme activity in the presence of acetate. When acetate (equimolar to the initial sugar concentration) was added to cultures growing on glucose, there followed de novo synthesis of isocitrated lyase and isocitrate dehydrogenase, with increases in growth rate and glucose utilization, and both acetate and glucose were metabolized simultaneously. A minute amount of acetate (40 muM) caused isocitrate lyase synthesis (a three-fold increase in activity within 3 min of addition) when added to glucose-limited continuous cultures, but even large amounts added to nitrogen-limited batch cultures were ineffective. Malonate, at a concentration that was not totally growth-inhibitory (1mM) prevented the inhibition of acetate-stimulated isocitrate lyase synthesis by succinate, but fumarate still inhibited in the presence of malonate. Phosphoenolpyruvate is a non-competitive inhibitor of the enzyme (apparent Ki 1-7 mM). The results are consistent with the induction of isocitrate or a closely related metabolite, and catabolite repression by a C-4 acid of the tricarboxylic acid cycle, possibly fumarate.  相似文献   

6.
Irreversible inhibition, 99.8% of control values for chloride transport in human red blood cells, was obtained by well-established methods of maximum covalent binding of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The kinetics of the residual chloride transport (0.2%, 106 pmol.cm-2 x s-1) at 38 degrees C, pH 7.2) was studied by means of 36Cl- efflux. The outside apparent affinity, expressed by Ko1/2,c, was 34 mM, as determined by substituting external KCl by sucrose. The residual flux was reversibly inhibited by a reexposure to DIDS, and by 4,4'- dinitrostilbene-2,2'-disulfonate (DNDS), phloretin, salicylate, and alpha-bromo-4-hydroxy-3,5-dinitroacetophenone (Killer III) (Borders, C. L., Jr., D. M. Perez, M. W. Lafferty, A. J. Kondow, J. Brahm, M. B. Fenderson, G. L. Breisford, and V. B. Pett. 1989. Bioorganic Chemistry. 17:96-107), to approximately 0.001% of control cells, which is a flux as low as in lipid bilayers. The reversible DIDS inhibition of the residual chloride flux depended on the extracellular chloride concentration, but was not purely competitive. The half-inhibition concentrations at [Cl(o)] = 150 mM in control cells (Ki,o) and covalently DIDS-treated cells (Ki,c) were: DIDS, Ki,c = 73 nM; DNDS, Ki,o = 6.3 microM, Ki,c = 22 microM; phloretin, Ki,o = 19 microM, Ki,c = 17 microM; salicylate, Ki,o = 4 mM, Ki,c = 8 mM; Killer III, Ki,o = 10 microM, Ki,c = 10 microM.  相似文献   

7.
Derivatives of ferrocene (dicyclopentadienyliron) (Fc) were examined as active site directed inhibitors of type I procollagen N-proteinase, the enzyme that cleaves the NH2-terminal propeptides from type I procollagen. The compounds were shown here to be reversible, competitive inhibitors of the enzyme. The effectiveness of the Fc inhibitors varied with modification of the cyclopentadienyl (cp) rings. The monocarboxylic acid (I) and the 1,1'-dicarboxylic acid (II) derivatives of Fc inhibited 50% of the enzymic activity (I50) at concentrations of 1.0 and 0.5 mM, respectively. The Ki values were 0.3 mM for both I and II. Derivatization of the carbonyl alpha to the cp ring of compound I (FcCOCH2CH2COOH, III) increased the inhibitory activity (I50 = 0.100 mM; Ki = 0.065 mM). Removal of the carbonyl alpha to the cp ring of III did not improve inhibitory activity: FcCH2CH2COOH, I50 = 2 mM; FcCH = CHCOOH, I50 = 1.5 mM. The active inhibitory species apparently contained iron in the 3+ valence state since two ferrocenium derivatives were very effective inhibitors: ferrocenium tetrachloroferrate, IV (I50 = 0.030 mM; Ki = 0.004 mM), and carboxyferrocenium hexafluorophosphate, V (I50 less than 0.1 mM; Ki less than 0.05 mM). In addition, reduction of III with ascorbic acid abolished its inhibitory activity. Compounds I and III stabilized the enzyme to heat denaturation in the absence of exogenous calcium; compound IV did not stabilize the enzyme. Further observations indicated that Fc derivatives were specific inhibitors of procollagen N-proteinase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Analogs 1-8 of diaminopimelic acid (DAP) were synthesized and tested for inhibition of purified meso-DAP D-dehydrogenase from Bacillus sphaericus and of LL-DAP epimerase from Escherichia coli. The dehydrogenase was assayed by monitoring NADPH formation spectrophotometrically at 340 nm. N-Hydroxy DAP 4, N-amino DAP 5, and 4-methylene DAP 6 are substrates of the dehydrogenase with relative rates exceeding those of the meso isomers of the thia analogs 1ab, 2ab, and 3ab. DAP epimerase was assayed by coupling the epimerization of LL-DAP to DL-DAP (Km = 0.26 mM) with the dehydrogenase-catalyzed oxidation of DL-DAP by NADP. Lanthionine isomers 1ab and 1c were stronger inhibitors of the epimerase (Ki = 0.18 mM, Ki' = 0.67 mM, and Ki = 0.42 mM, respectively) than the corresponding meso-sulfoxide 2ab or the meso-sulfone 3ab. Other isomers of 2 and 3, as well as compounds 7 and 8, showed no epimerase inhibition. N-Hydroxy DAP 4 was the most potent competitive inhibitor (Ki = 0.0056 mM) of the epimerase, whereas N-amino DAP 5 is weaker (Ki = 2.9 mM) and 4-methylene DAP 6 is a noncompetitive inhibitor (Ki' = 0.95 mM). Although none of the analogs tested showed time-dependent inactivation of either enzyme, compounds 4, 5, 6, and 7 display substantial antibacterial activities. Possible mechanisms of epimerase inhibition and significance of the DAP pathway as a target for antibiotics are discussed.  相似文献   

9.
Nicotinic acid has been used as a cholesterol-lowering agent for a few decades already, whereas the cytoprotective and antiviral properties of nicotinamide are slowly gaining attention. In both cases however, very high doses are needed to achieve a therapeutic effect, resulting in blood concentrations sometimes as high as 15 mM. Based on their common pyridine functionality, we hypothesized that these two molecules could inhibit human P450 enzymes. In vitro inhibition studies demonstrate that, at their therapeutic concentrations, both nicotinic acid and nicotinamide inhibit CYP2D6 (Ki = 3.8 +/- 0.3 and 19 +/- 4 mM, respectively). Nicotinamide also inhibits CYP3A4 (Ki = 13 +/- 3 mM) and CYP2E1 (Ki = 13 +/- 8 mM). As expected for nitrogen-containing heteroaromatic molecules, spectrophotometric analysis indicates that the inhibition occurs via coordination of the pyridine nitrogen atom to the heme iron.  相似文献   

10.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity in microsomes isolated from cultured lymphoid (IM-9) cells or freshly isolated human leukocytes was markedly decreased by either ascorbic acid or its oxidized derivative, dehydroascorbate. Inhibition of IM-9 leukocyte HMG-CoA reductase activity was log linear between 0.01 and 10 mM ascorbic acid (25 and 81% inhibition, respectively) and 0.1 and 10 mM dehydroascorbate (5 and 75% inhibition, respectively). Inhibition was noncompetitive with respect to HMG-CoA (Km = 10.2 microM (RS); ascorbic acid, Ki = 6.4 mM; dehydroascorbate, Ki = 15 mM) and competitive with respect to NADPH (Km = 16.3 microM; acetic acid, Ki = 6.3 mM; dehydroascorbate, Ki = 3.1 mM). Ascorbic acid and dehydroascorbate are interconverted through the free radical intermediate monodehydroascorbate. Reducing agents are required to convert dehydroascorbate to monodehydroascorbate, but prevent formation of the free radical from ascorbate. In microsomes from IM-9 cells, the reducing agent, dithiothreitol, abolished HMG-CoA reductase inhibition by ascorbate but enhanced inhibition by dehydroascorbate. In addition, the concentration of monodehydroascorbate present in ascorbate solutions was directly proportional to the degree of HMG-CoA reductase inhibition by 1.0 mM ascorbate. Fifty per cent inhibition of enzyme activity occurred at a monodehydroascorbate concentration of 14 microM. These data indicate that monodehydroascorbate mediates inhibition of HMG-CoA reductase by both ascorbate and dehydroascorbate. This effect does not appear to be due to free radical-induced membrane lipid modification, however, since both ascorbate and dehydroascorbate inhibited the protease-solubilized, partially purified human liver enzyme. Since inhibition of HMG-CoA reductase occurs at physiological concentrations of ascorbic acid in the human leukocyte (0.2-1.72 mM), this vitamin may be important in the regulation of endogenous cholesterol synthesis in man.  相似文献   

11.
The recombinant forms of the two human isozymes of glutamate decarboxylase, GAD65 and GAD67, are potently and reversibly inhibited by molecular oxygen (Ki = 0.46 and 0.29 mM, respectively). Inhibition of the vesicle-associated glutamate decarboxylase (GAD65) by molecular oxygen is likely to result in incomplete filling of synaptic vesicles with gamma-aminobutyric acid (GABA) and may be a contributing factor in the genesis of oxygen-induced seizures. Under anaerobic conditions, nitric oxide inhibits both GAD65 and GAD67 with comparable potency to molecular oxygen (Ki = 0.5 mM). Two forms of porcine cysteine sulfinic acid decarboxylase (CSADI and CSADII) are also sensitive to inhibition by molecular oxygen (Ki = 0.30 and 0.22 mM, respectively) and nitric oxide (Ki = 0.3 and 0.2 mM, respectively). Similar inhibition of glutamate decarboxylase and cysteine sulfinic acid decarboxylase by two different radical-containing compounds (O2 and NO) is consistent with the notion that these reactions proceed via radical mechanisms.  相似文献   

12.
A Basu  S Subramanian  C SivaRaman 《Biochemistry》1982,21(18):4434-4437
p-Azidobenzoyl coenzyme A functions as a linear competitive inhibitor for (3S)-citryl-CoA in the citryl-CoA oxaloacetate-lyase reaction catalyzed by the Klebsiella aerogenes deacetylcitrate lyase complex (Ki = 80 microM; (3S)-citryl-CoA Km = 67 microM). Inactivation is irreversible on photolysis of p-azidobenzoyl-CoA in the presence of the deacetylcitrate lyase complex. Mg2+ is not required for the inactivation. Inactivation is blocked by (3S)-citryl-CoA in the presence of ethylenediaminetetraacetic acid. p-Azidobenzoyl-CoA has no effect on the acetyl-CoA:citrate CoA transferase activity of both the deacetylcitrate lyase complex and its isolated transferase subunit. The stoichiometry of the CoA ester binding has been investigated by the use of p-azido[14C]benzoyl-CoA as a photoaffinity reagent. The labeling is exclusively on the lyase beta subunit of the citrate lyase complex.  相似文献   

13.
Clostridium perfringens cells were cultivated on a large scale using an automatic system. 2) N-Acetylneuraminate lyase, which is a cytosolic enzyme, was liberated from the bacteria by cell lysis using lysozyme in hypotonic solution. The enzyme was purified 770-fold by precepitation with ammonium sulfate, filtration on Sephadex A-50 and final preparative electrophoresis in a 7.5% polyacrylamide gel. Yield: 12 mg from 1 kg wet cell paste; specific activity: 167 nkat/mg protein. 3) The enzyme preparation appeared homogeneous in analytical disc electrophoresis, in gel electrophroesis in 0.1% sodium dodecylsulfate or 8m urea and in immunoelectrophoresis. Contaminating enzyme activities were not detected. 4) The isoelectric point of pH 4.7 was found for the enzyme. At 278 nm a molar extinction coefficient of 6.4 x 10(4)M-1 Xcm-1 was determined. The enzyme exhibited a Km value for N-acetylneuraminic acid of 2.8mM at its pH optimum of pH 7.2. The pH dependence of the Km value gives evidence that an ionizing guoup in the active center of the enzyme with a pKe value of 6.4 may be involved in the catalytic reaction. Pyruvate inhibited the cleavage reaction of N-acetylneuraminic acid competitively; Ki = 2.9mM. 5) An average molecular weight of 99200 was determined for the native enzyme using different methods. After denaturation in sokium dodecylsulfate or urea, a mean molecular weight of only 50000 could be demonstrated, indicating the existence of two enzyme subunits. The lyase molecule was shown by electron microscopy, using a negative staining technique, to consist of two hemispherical parts. 6) Two active sites per native enzyme molecule, probably corresponding to one active site per subunit, were found by incubation of the enzyme with radioactive pyruvate followed by borohydride reduction. The results obtained from chemical modification of the lyase with 5-diazonium-1H-tetrazole and iodocaetamide under various conditionsare interpreted as evidence for the presence of two reactive histidine residues in the enzyme molecule. It is probable that one residue per subunit forms the nucleophilic group participating in enzyme catalysis. A model suggesting the mechanism of reversible cleavage of N-acylneuraminic acids by the lyase is presented.  相似文献   

14.
Sialic acids from the liver and serum of guinea-pig are composed of N-acetylneuraminic acid (Neu5Ac; 85% and 61%, respectively), N-acetyl-4-O-acetylneuraminic acid (Neu4,5Ac2; 10% and 32%, respectively) and N-glycolylneuraminic acid (Neu5Gc; 5% and 7%, respectively), besides traces of N-glycolyl-4-O-acetylneuraminic acid in serum. The analysis was carried out using thin-layer chromatography, high-performance liquid chromatography, electron impact ionization mass spectrometry, and different enzymes (sialidase, sialate esterase, and sialate-pyruvate lyase after hydrolysis and purification of the sialic acids by ion-exchange chromatography). We showed that this O-acetylation of sialic acids is due to the activity of an acetyl-coenzyme A:sialate-4-O-acetyltransferase (EC 2.3.1.44), which occurs together with sialyltransferase activity in Golgi-enriched membrane fractions of guinea-pig liver. The enzyme operates optimally at 30°C in 70 mM potassium phosphate buffer at pH 6.7 and in the presence of 90 mM KCl with an apparent KM for AcCoA of 0.6 1M and a Vmax of 20 pmol/mg protein x min. The enzyme is inhibited by coenzyme A in a mixed-competitive manner (Ki = 4.2 M), as well as by para-chloromercuribenzoate, MnCl2, saponin and Triton X-100.  相似文献   

15.
Uptake of the thioether S-(2,4-dinitrophenyl)glutathione (DNPSG) in canalicular plasma membrane vesicles from rat liver is enhanced in the presence of ATP and exhibits an overshoot with a transient 5.5-fold accumulation of DNPSG. Stimulation by ATP is not caused by the generation of a membrane potential, based on responses of the indicator dye oxonol V. ATP-dependent uptake has an apparent Km of 71 microM for DNPSG and a Vmax of 0.34 nmol.min-1.mg of vesicle protein-1. Protein thiol groups are essential for transport activity as indicated by the sensitivity of DNPSG transport to sulfhydryl reagents. There is competitive inhibition with other thioethers, S-hexylglutathione (Ki = 66 microM), the photoaffinity label S-(4-azidophenacyl)glutathione (Ki = 56 microM), as well as with glutathione disulfide (Ki = 0.44 mM) and with the bile acid taurocholate (Ki = 0.61 mM). GSH (2 mM) or cholate (0.4 mM) does not inhibit. Both glutathione disulfide and taurocholate show ATP-dependent transport in the canalicular membrane vesicles which is inhibited by DNPSG. No ATP-dependent transport is found for GSH. Transport of DNPSG is also inhibited competitively by alpha-naphthyl-beta-D-glucuronide (Ki = 0.42 mM) but not by alpha-naphthylsulfate (2 mM), and there is substantial inhibition with the glucuronides from ebselen and p-nitrophenol. The results indicate that the canalicular transport system for DNPSG is directly driven by ATP and that the biliary transport of other classes of compounds may also proceed via this system.  相似文献   

16.
Crystalline L-histidine ammonia-lyase of Achromobacter liquidum was prepared with a 24% recovery of the activity. The specific activity of the pure enzyme (63 mumol of urocanic acid min-1 mg-1) is similar to those so far reported for the enzyme from other sources. The purified enzyme appeared to be homogeneous by analytical disc electrophoresis and isoelectric focusing (pI = 4.95). The molecular weight determined by Sephadex G-200 gel filtration is 200000. The optimum pH is 8.2, and the optimum temperature is 50 degrees C. The enzyme showed strict specificity to L-histidine (Km = 3.6 mM). Several histidine derivatives are not susceptible to the enzyme but do inhibit the enzyme activity competitively; the most effective inhibitors are L-histidine methyl ester (Ki = 3.66 mM) and beta-imidazole lactic acid (Ki = 3.84 mM). L-Histidine hydrazide (Ki = 36 mM) and imidazole (Ki = 6 mM) noncompetitively inhibited the enzyme EDTA markedly inhibited enzyme activity and this inhibition were reversed by divalent metal ions such as Mn2+, Co2+ Zn2+, Ni2+, Mg2+, and Ca2+. These results suggest that the presence of divalent metal ions is necessary for the catalytic activity of histidine ammonia-lyase. Sodium borohydride and hydrogen peroxide inhibited the enzyme activity.  相似文献   

17.
An enzyme which catalyzes the transamination of 4-aminobutyrate with 2-oxoglutarate was purified 588-fold to homogeneity from Candida guilliermondii var. membranaefaciens, grown with 4-aminobutyrate as sole source of nitrogen. An apparent relative molecular mass of 107,000 was estimated by gel filtration. The enzyme was found to be a dimer made up of two subunits identical in molecular mass (Mr 55,000). The enzyme has a maximum activity in the pH range 7.8-8.0 and a temperature optimum of 45 degrees C. 2-Oxoglutarate protects the enzyme from heat inactivation better than pyridoxal 5'-phosphate. The absorption spectrum of the enzyme exhibits two maxima at 412 nm and 330 nm. The purified enzyme catalyzes the transamination of omega-amino acids; 4-aminobutyrate is the best amino donor and low activity is observed with beta-alanine. The Michaelis constants are 1.5 mM for 2-oxoglutarate and 2.3 mM for 4-aminobutyrate. Several amino acids, such as alpha,beta-alanine and 2-aminobutyrate, are inhibitors (Ki = 38.7 mM, Ki = 35.5 mM and Ki = 33.2 mM respectively). Propionic and butyric acids are also inhibitors (Ki = 3 mM and Ki = 2 mM).  相似文献   

18.
Bovine mammary fatty acid synthetase was inhibited by approximately 50% by 40 microM methylmalonyl-CoA; this inhibition was competitive with respect to malonyl-CoA (apparent Ki = 11 microM). Similarly, 6.25 microM coenzyme A inhibited the synthetase by 35% and this inhibition was again competitive (apparent Ki = 1.7 microM). Apparent Km for malonyl-CoA was 29 microM. The short-chain dicarboxylic acids malonic, methylmalonic and ethylmalonic at high concentrations (160-320 microM) and ATP (5 mM) enhanced the synthetase activity by about 50% respectively; the activating effects of methylmalonic acid and ATP on the synthetase were additive. Methylmalonyl-CoA at 50 microM concentration inhibited the partially purified acetyl-CoA carboxylase uncompetitively by 10% and the propionyl-CoA carboxylase activity of the enzyme preparation competitively (apparent Ki = 21 microM) by 40%. Malonyl-CoA also inhibited the acetyl-CoA carboxylase activity competitively (apparent Ki = 7 microM) by 35% and the propionyl-CoA carboxylating activity of the preparation competitively (apparent Ki = 4 microM) by 82%. The possibility that methylmalonyl-CoA may be a causal factor in the aetiology of the low milk-fat syndrome in high yielding dairy cows is discussed.  相似文献   

19.
1. The effects of phenylalanine and its metabolites (phenylacetate, phenethylamine, phenyl-lactate, o-hydroxyphenylacetate and phenylpyruvate) on the activity of 3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) 3-oxo acid CoA-transferase (EC 2.8.3.5) and acetoacetyl-CoA thiolase (EC 2.3.1.9) in brain of suckling rats were investigated. 2. The 3-hydroxybutyrate dehydrogenase from the brain of suckling rats had a Km for 3-hydroxybutyrate of 1.2 mM. Phenylpyruvate, phenylacetate and o-hydroxyphenylacetate inhibited the enzyme activity with Ki values of 0.5, 1.3 and 4.7 mM respectively. 3. The suckling-rat brain 3-oxo acid CoA-transferase activity had a Km for acetoacetate of 0.665 mM and for succinyl (3-carboxypropionyl)-CoA of 0.038 mM. The enzyme was inhibited with respect to acetoacetate by phenylpyruvate (Ki equals 1.3 mM) and o-hydroxyphenylacetate (Ki equals 4.5 mM). The reaction in the direction of acetoacetate was also inhibited by phenylpyruvate (Ki equals 1.6 mM) and o-hydroxyphenylacetate (Ki equals 4.5 mM). 4. Phenylpyruvate inhibited with respect to acetoacetyl-CoA both the mitochondrial (Ki equals 3.2 mM) and cytoplasmic (Ki equals 5.2 mM) acetoacetyl-CoA thiolase activities. 5. The results suggest that inhibition of 3-hydroxybutyrate dehydrogenase and 3-oxo acid CoA-transferase activities may impair ketone-body utilization and hence lipid synthesis in the developing brain. This suggestion is discussed with reference to the pathogenesis of mental retardation in phenylketonuria.  相似文献   

20.
The site of action of synthetic progestins or danazol in the treatment of endometriosis is considered to be mainly the hypothalamo-pituitary level, but the direct action to the uterine endometrium and the ovary is also suggested. We investigated the effect of these synthetic steroids to rat ovarian steroidogenic enzymes. The effect of norethisterone, levonorgestrel, danazol, gestrinone, desogestrel and 3-keto-desogestrel was studied in vitro. The sources of the enzymes were prepared from ovaries of immature rats treated either with pregnant mare serum gonadotropin (PMS) and human chorionic gonadotropin (hCG) for 3 beta-hydroxy steroid dehydrogenase (3 beta-HSD), or with PMS for 17 alpha-hydroxylase and 17,20 lyase. The substrates used were pregnenolone (P5) for 3 beta-HSD, progesterone (P4) for 17 alpha-hydroxylase, and 17 alpha-hydroxy-progesterone (17 alpha-OH-P4) for 17,20 lyase. The substrates were incubated with the enzyme sources and coenzymes, and the products formed were measured. All the steroids inhibited 3 beta-HSD, and the inhibition by gestrinone (Ki = 3.0 microM) and 3-keto-desogestrel (17.5 microM) was particularly marked. Only desogestrel (Ki = 30.3 microM) and danazol (168 microM) inhibited 17 alpha-hydroxylase. All the steroids inhibited 17,20 lyase, and the inhibition by desogestrel (Ki = 0.70 microM), danazol (0.80 microM), and gestrinone (30 microM) was particularly marked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号