首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freshwater ecosystems are strongly influenced by both climate and the surrounding landscape, yet the specific pathways connecting climatic and landscape drivers to the functioning of lake ecosystems are poorly understood. Here, we hypothesize that the links that exist between spatial patterns in climate and landscape properties and the spatial variation in lake carbon (C) cycling at regional scales are at least partly mediated by the movement of terrestrial dissolved organic carbon (DOC) in the aquatic component of the landscape. We assembled a set of indicators of lake C cycling (bacterial respiration and production, chlorophyll a, production to respiration ratio, and partial pressure of CO2), DOC concentration and composition, and landscape and climate characteristics for 239 temperate and boreal lakes spanning large environmental and geographic gradients across seven regions. There were various degrees of spatial structure in climate and landscape features that were coherent with the regionally structured patterns observed in lake DOC and indicators of C cycling. These different regions aligned well, albeit nonlinearly along a mean annual temperature gradient; whereas there was a considerable statistical effect of climate and landscape properties on lake C cycling, the direct effect was small and the overall effect was almost entirely overlapping with that of DOC concentration and composition. Our results suggest that key climatic and landscape signals are conveyed to lakes in part via the movement of terrestrial DOC to lakes and that DOC acts both as a driver of lake C cycling and as a proxy for other external signals.  相似文献   

2.
Understanding the responses of lake systems to past climate change and human activity is critical for assessing and predicting the fate of lake carbon (C) in the future. In this study, we synthesized records of the sediment accumulation from 82 lakes and of C sequestration from 58 lakes with direct organic C measurements throughout China. We also identified the controlling factors of the long‐term sediment and C accumulation dynamics in these lakes during the past 12 ka (1 ka = 1000 cal yr BP). Our results indicated an overall increasing trend of sediment and C accumulation since 12 ka, with an accumulation peak in the last couple of millennia for lakes in China, corresponding to terrestrial organic matter input due to land‐use change. The Holocene lake sediment accumulation rate (SAR) and C accumulation rate (CAR) averaged (mean ± SE) 0.47 ± 0.05 mm yr?1 and 7.7 ± 1.4 g C m?2 yr?1 in China, respectively, comparable to the previous estimates for boreal and temperate regions. The SAR for lakes in the East Plain of subtropical China (1.05 ± 0.28 mm yr?1) was higher than those in other regions (< 0.05). However, CAR did not vary significantly among regions. Overall, the variability and history of climate and anthropogenic interference regulated the temporal and spatial dynamics of sediment and C sequestration for lakes in China. We estimated the total amount of C burial in lakes of China as 8.0 ± 1.0 Pg C. This first estimation of total C storage and dynamics in lakes of China confirms the importance of lakes in land C budget in monsoon‐influenced regions.  相似文献   

3.
1.  As a result of the role that temperature plays in many aquatic processes, good predictive models of annual maximum near-surface lake water temperature across large spatial scales are needed, particularly given concerns regarding climate change. Comparisons of suitable modelling approaches are required to determine their relative merit and suitability for providing good predictions of current conditions. We developed models predicting annual maximum near-surface lake water temperatures for lakes across Canada using four statistical approaches: multiple regression, regression tree, artificial neural networks and Bayesian multiple regression.
2.  Annual maximum near-surface (from 0 to 2 m) lake water-temperature data were obtained for more than 13 000 lakes and were matched to geographic, climatic, lake morphology, physical habitat and water chemistry data. We modelled 2348 lakes and three subsets thereof encompassing different spatial scales and predictor variables to identify the relative importance of these variables at predicting lake temperature.
3.  Although artificial neural networks were marginally better for three of the four data sets, multiple regression was considered to provide the best solution based on the combination of model performance and computational complexity. Climatic variables and date of sampling were the most important variables for predicting water temperature in our models.
4.  Lake morphology did not play a substantial role in predicting lake temperature across any of the spatial scales. Maximum near-surface temperatures for Canadian lakes appeared to be dominated by large-scale climatic and geographic patterns, rather than lake-specific variables, such as lake morphology and water chemistry.  相似文献   

4.
Climate‐related declines in lake area have been identified across circumpolar regions and have been characterized by substantial spatial heterogeneity. An improved understanding of the mechanisms underlying lake area trends is necessary to predict where change is most likely to occur and to identify implications for high latitude reservoirs of carbon. Here, using a population of ca. 2300 lakes with statistically significant increasing and decreasing lake area trends spanning longitudinal and latitudinal gradients of ca. 1000 km in Alaska, we present evidence for a mechanism of lake area decline that involves the loss of surface water to groundwater systems. We show that lakes with significant declines in lake area were more likely to be located: (1) in burned areas; (2) on coarser, well‐drained soils; and (3) farther from rivers compared to lakes that were increasing. These results indicate that postfire processes such as permafrost degradation, which also results from a warming climate, may promote lake drainage, particularly in coarse‐textured soils and farther from rivers where overland flooding is less likely and downslope flow paths and negative hydraulic gradients between surface water and groundwater systems are more common. Movement of surface water to groundwater systems may lead to a deepening of subsurface flow paths and longer hydraulic residence time which has been linked to increased soil respiration and CO2 release to the atmosphere. By quantifying relationships between statewide coarse resolution maps of landscape characteristics and spatially heterogeneous responses of lakes to environmental change, we provide a means to identify at‐risk lakes and landscapes and plan for a changing climate.  相似文献   

5.
An ecosystem is generally sustained by a set of integrated physical elements forming a functional landscape unit—ecotope, which supplies nutrients, microclimate, and exchanges matter and energy with the wider environment. To better predict environmental change effects on ecosystems, particularly in critically sensitive regions such as high altitudes, it is imperative to recognise how their natural landscape heterogeneity works at different scales to shape habitats and sustain biotic communities prior to major changes. We conducted a comprehensive survey of catchment physical, geological and ecological properties of 380 high-altitude lakes and ponds in the axial Pyrenees at a variety of scales, to formulate and test an integrated model encompassing major flows and interactions that drive lake ecosystems. Three composite drivers encompassed most of the variability in lake catchment characteristics. In order of total percentage of variance explained, they were (i) hydrology/hydrodynamics—responsible for type and discharge of inlets/outlets, and for waterbody size; (ii) bedrock geomorphology, summarising geology, slope and fractal order—all dictating vegetation cover of catchment slope and lake shore, and the presence of aquatic vegetation; and (iii) topography, that is, catchment formation type—driving lakes connectivity, and the presence of summer snow deposits. Although driver (i) appeared to be local, (ii) and (iii) showed gradient changes along altitude and latitude. These three drivers differentiated several lake ecotopes based on their landscape similarities. The three-driver model was successfully tested on a riparian vegetation composition dataset, further illustrating the validity and fundamental nature of the concept. The findings inform on the relative contribution of scale-dependent catchment physical elements to lake ecotope and ecosystem formation in high-altitude lakes, which should be considered in any assessment of potentially major deleterious effects due to environmental/climate change.  相似文献   

6.
1.  The δ13C and δ15N signatures of zooplankton vary with dissolved organic carbon (DOC), but inconsistent and limited taxonomic resolution of previous studies have masked differences that may exist among orders, genera or species and are attributable to dietary and/or habitat differences. Here we investigate differences among the isotopic signatures of five zooplankton taxa ( Daphnia , Holopedium , large Calanoida, small Calanoida and Cyclopoida) in Precambrian shield lakes with a sixfold range of DOC concentration.
2.  δ13C signatures of Daphnia , small calanoids and large calanoids became more depleted with increasing lake DOC, whereas Holopedium and cyclopoid δ13C became enriched with increasing DOC concentration.
3.  The variability of δ13C and δ15N isotopic signatures among zooplankton groups was reduced in high-DOC, compared to low-DOC lakes, especially for δ13C. Differences in δ13C and POM-corrected δ15N accounted for up to 33.7% and 19.5% of the variance, respectively, among lakes of varying DOC concentration.
4.  The narrow range of signatures found in higher DOC lakes suggests that different taxa have similar food sources and/or habitats. In contrast, the wide range of signatures in low-DOC lakes suggests that different taxa are exploiting different food sources and/or habitats. Together with the variable trends in zooplankton isotopic signatures along our DOC gradient, these results suggest that food web dynamics within the zooplankton community of temperate lakes will change as climate and lake DOC concentrations change.  相似文献   

7.
Relationships between groundwater and lake ecology are often overlooked, but they may be strong, particularly in seepage lakes. As a result, the nature and degree of groundwater effects on lakes are usually neglected. In this study interactions among rainfall, groundwater and surface water and their limnological effects were traced seasonally for two years of changing rainfall in a Spanish flowthrough, seepage lake complex. Cumulative rainfall dictated recharge of groundwater with delays of nine months. Groundwater discharge, in turn, increased surface discharge downstream. Mediated by the geographical setting of lakes, both fluxes impinged on lake water renewal time, but effects of the latter on limnological variables were much stronger at the district scale than at the single lake scale. These water‐renewal effects included the following: decreasing salinity, total phosphorus concentration and phytoplankton biomass and increasing water transparency and total nitrogen concentration as water renewal shortened, the nitrogen effect arising because of nitrate‐rich water entering the lakes as groundwater levels rose. This complex response of a Mediterranean lake district to water availability may also be expected in cold temperate lakes as climate change effects become stronger. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Freshwater ecosystems are threatened by multiple anthropogenic stressors acting over different spatial and temporal scales, resulting in toxic algal blooms, reduced water quality and hypoxia. However, while catchment characteristics act as a ‘filter’ modifying lake response to disturbance, little is known of the relative importance of different drivers and possible differentiation in the response of upland remote lakes in comparison to lowland, impacted lakes. Moreover, many studies have focussed on single lakes rather than looking at responses across a set of individual, yet connected lake basins. Here we used sedimentary algal pigments as an index of changes in primary producer assemblages over the last ~200 years in a northern temperate watershed consisting of 11 upland and lowland lakes within the Lake District, United Kingdom, to test our hypotheses about landscape drivers. Specifically, we expected that the magnitude of change in phototrophic assemblages would be greatest in lowland rather than upland lakes due to more intensive human activities in the watersheds of the former (agriculture, urbanization). Regional parameters, such as climate dynamics, would be the predominant factors regulating lake primary producers in remote upland lakes and thus, synchronize the dynamic of primary producer assemblages in these basins. We found broad support for the hypotheses pertaining to lowland sites as wastewater treatment was the main predictor of changes to primary producer assemblages in lowland lakes. In contrast, upland headwaters responded weakly to variation in atmospheric temperature, and dynamics in primary producers across upland lakes were asynchronous. Collectively, these findings show that nutrient inputs from point sources overwhelm climatic controls of algae and nuisance cyanobacteria, but highlights that large‐scale stressors do not always initiate coherent regional lake response. Furthermore, a lake's position in its landscape, its connectivity and proximity to point nutrients are important determinants of changes in production and composition of phototrophic assemblages.  相似文献   

9.
10.
The fossil record of diatoms in lake sediments can be used to assess the effects of climate variability on lake ecosystems if ecological relationships between diatom community structure and environmental parameters are well understood. Cyclotella sensu lato taxa are a key group of diatoms that are frequently dominant members of phytoplankton communities in low‐ to moderate‐productivity lakes. Their relative abundances have fluctuated significantly in palaeolimnological records spanning over a century in arctic, alpine, boreal and temperate lakes. This suggests that these species are sensitive to environmental change and may serve as early indicators of ecosystem effects of global change. Yet patterns of change in Cyclotella species are not synchronous or unidirectional across, or even within, regions, raising the question of how to interpret these widespread changes in diatom community structure. We suggest that the path forward in resolving seemingly disparate records is to identify clearly the autecology of Cyclotella species, notably the role of nutrients, dissolved organic carbon and light, coupled with better consideration of both the mechanisms controlling lake thermal stratification processes and the resulting effects of changing lake thermal regimes on light and nutrients. Here we begin by reviewing the literature on the resource requirements of common Cyclotella taxa, illustrating that many studies reveal the importance of light, nitrogen, phosphorus, and interactions among these resources in controlling relative abundances. We then discuss how these resource requirements can be linked to shifts in limnological processes driven by environmental change, including climate‐driven change in lakewater temperature, thermal stratification and nutrient loading, as well as acidification‐driven shifts in nutrients and water clarity. We examine three case studies, each involving two lakes from the same region that have disparate trends in the relative abundances of the same species, and illustrate how the mechanisms by which these species abundances are changing can be deciphered. Ultimately, changes in resource availability and water clarity are key factors leading to shifts in Cyclotella abundances. Tighter integration of the autecology of this important group of diatoms with environmental change and subsequent alterations in limnological processes will improve interpretations of palaeolimnological records, and clarify the drivers of seemingly disparate patterns in fossil records showing widespread and rapid changes across the northern hemisphere.  相似文献   

11.
1. Within a lake district of relatively homogeneous geomorphology, the responses of lakes to climate are influenced by the complexity of the hydrogeologic setting, position in the landscape, and lake‐specific biological and physical features. We examined lake chemical responses to drought in surface water‐ and groundwater‐dominated districts to address two general questions. (1) Are spatial patterns in chemical dynamics among lakes uniform and synchronous within a lake district, suggesting broad geomorphic controls; variable in a spatially explicit pattern, with synchrony related to landscape position, suggesting hydrologic flowpath controls; or spatially unstructured and asynchronous, suggesting overriding control by lake‐specific factors? (2) Are lake responses to drought a simple function of precipitation quantity or are they dictated by more complex interactions among climate, unique lake features, and hydrologic setting? 2. Annual open‐water means for epilimnetic concentrations of chloride, calcium, sulfate, ANC, DOC, total nitrogen, silica, total phosphorus, and chlorophyll a measured between 1982 and 1995 were assembled for lakes in the Red Lake and ELA districts of north‐western Ontario, the Muskoka – Dorset district in south‐central Ontario, and the Northern Highland district of Wisconsin. Within each district, we compared responses of lakes classified by landscape position into highland or lowland, depending on relative location within the local to regional hydrologic flow system. Synchrony, defined as a measure of the similarity in inter‐annual dynamics among lakes within a district, was quantified as the Pearson product‐moment correlation (r) between two lakes with observations paired by year. To determine if solute concentrations were directly related to interannual variations in precipitation quantity, we used regression analysis to fit district‐wide slopes describing the relationship between each chemical variable and annual (June to May) and October to May (Oct–May) precipitation. 3. Among lakes in each of the three Ontario districts, the pattern of chemical response to interannual shifts in precipitation was spatially uniform. In these surface water‐ dominated districts, solute concentrations were generally a simple function of precipitation. Conservative solutes, like calcium and chloride, tended to be more synchronous and were negatively related to precipitation. Solutes such as silica, total phosphorus, and chlorophyll a, which are influenced by in‐lake processes, were less synchronous and relationships with precipitation tended to be positive or absent. 4. In the groundwater‐dominated Northern Highland lakes of Wisconsin, we observed spatial structure in drought response, with lowland lakes more synchronous than highland lakes. However, there was no evidence for a direct relationship between any solute and precipitation. Instead, increases in the concentration of the conservative ion calcium during drought were not followed by a symmetrical return to pre‐drought conditions when precipitation returned to normal or above‐average values. 5. For calcium, time lags in recovery from drought appeared related to hydrologic features in a complex way. In the highland Crystal Lake, calcium concentrations tracked lake stage inversely, with a return to pre‐drought concentrations and lake stage five years after the drought. This pattern suggests strong evaporative controls. In contrast, after five years of normal precipitation, calcium in the lowland Sparkling Lake had not returned to pre‐drought conditions despite a rebound in lake stage. This result suggests that calcium concentrations in lowland lakes were controlled more by regional groundwater flowpaths, which track climatic signals more slowly. 6. Temporal dynamics driven by climate were most similar among lakes in districts that have a relatively simple hydrology, such as ELA. Where hydrologic setting was more complex, as in the groundwater‐dominated Northern Highland of Wisconsin, the expression of climate signals in lakes showed lags and spatial patterns related to landscape position. In general, we expect that landscape and lake‐specific factors become increasingly important in lake districts with more heterogeneous hydrogeology, topography or land use. These strong chemical responses to climate need to be considered when interpreting the responses of lakes to other regional disturbances.  相似文献   

12.
1. Surface-sediment assemblages of subfossil chironomid head capsules from fifty-four primarily shallow and nutrient-rich Danish lakes were analysed using multivariate numerical techniques. The species data, comprising forty-one chironomid taxa, were compared to environmental monitoring data in order to establish a relationship between chironomid faunal composition and lake trophic state.
2. The subfossil assemblages were compared to the chironomid bathymetric distributions along transects from four lakes. Correspondence analysis and similarity coefficients showed that the subfossil assemblages, sampled in the lake centre, reflect the chironomid communities in the littoral at a depth of 2–7 m.
3. Two-way indicator species analysis (TWINSPAN) was used to classify the Danish lakes into five groups defined by trophic state, lake depth and pH. Eighteen chironomid taxa showed significant differences in abundance among the five groups. Canonical correspondence analysis (CCA) showed the chlorophyll a concentration ([Chl a ]) and Secchi depth to be the variables best correlated to the faunal data, and fourteen taxa were significantly correlated to [Chl a ].
4. The strong correlation between chironomid data and the ln-transformed ([Chl a ]) was used to create a weighted averaging (WA) model to infer lake trophic state. Several models were tested by cross validation (leave-one-out jack-knifing), and a simple WA model using inverse de-shrinking had a RMSEPjack of 0.65 (ln units) and a r 2jack of 0.67.
5. The results can be used in the assessment and reconstruction of lake trophic state for long-term monitoring and palaeoecological investigations of shallow, temperate lakes in the mesotrophic to hypertrophic nutrient range.  相似文献   

13.
1.  Persistent organic pollutants (POPs) can be trapped by and accumulate in cold regions. To understand POP accumulation in temperate high mountain lakes, we collected samples of snow from the catchments of several high mountain lakes in Europe.
2.  Organochlorine compounds (OCs) are regularly found in snow collected in European high mountain sites. Polychlorobiphenyls (PCBs) were found in all samples examined. Hexachlorocyclohexanes (HCHs) are also common whereas DDTs and hexachlorobenzene were found less frequently.
3.  Comparison of the concentrations of these pollutants in snow with OC levels in the waters of these lakes or atmospheric deposition during cold periods shows that the snowpack constitutes a significant seasonal PCB reservoir in all catchments and that snow trapping is a major mechanism for the incorporation of HCHs in the lakes situated in the coldest sites, e.g. Gossenköllesee in the Alps.
4.  Correlation of the concentrations of the PCB congeners in snow versus mean annual winter temperature shows higher accumulation at lower temperatures. The less volatile PCBs exhibit higher temperature dependences than the more volatile congeners. This trend differs from altitudinal dependences observed in other sites such as Canada and may be related to the specific range of winter temperature in each area of study.  相似文献   

14.
Aim  To investigate the influence of Holocene climatic and human-induced changes on a region of high biodiversity in southern Peruvian Amazonia.
Location  Four palaeoecological records from separate lakes within a lake district close to the modern city of Puerto Maldonado, Peru.
Results  The lakes provide a palaeoecological record spanning the last 8200 years. A mid-Holocene dry event is documented in all of the records that extend back > 6000 years. The dry event appears to have lasted from c . 7200 yr bp until c . 3300 yr bp . The onset of wetter conditions coincides with the formation of the youngest of the four lakes. The earliest occupation of these sites is inferred from the presence of charcoal at 7200 yr bp , and the first crop pollen is found at 3630 yr bp . Lakes that were regularly occupied were colonized soon after they formed. A reduction in charcoal concentration and the absence of crop pollen after c . 500  bp in all lakes is consistent with site abandonment following conquest.
Main conclusions  The mid-Holocene dry event is suggested to be part of a time-transgressive drying that tracked from north to south in both the Andes and the Amazon lowlands. The last millennium may represent the period of highest sustained lake levels within the Holocene. The proximity of the four lakes allows a landscape-scale analysis of the spatial extent of human disturbance centred on a known site of human occupation and reveals the highly localized nature of pre-Columbian anthropogenic disturbance in Amazonian landscapes. Inferences regarding widespread pre-Columbian landscape modification by indigenous peoples must take into account key site attributes, such as seasonality and proximity to rivers.  相似文献   

15.
SUMMARY 1. Pelagic and epipelic microalgal production were measured over a year in a pre-defined area (depth 0.5 m) in each of two lakes, one turbid and one with clear water. Further estimates of epiphytic production within reed stands were obtained by measuring production of periphyton developed on artificial substrata.
2. Total annual production of phytoplankton and epipelon was 34% greater in the turbid lake (190 g C m−2 year−1) than in the clearwater lake (141 g C m−2 year−1). However, the ratio of total production to mean water column TP concentration was two fold greater in the clearwater lake.
3. Phytoplankton accounted for the majority of the annual production (96%) in the turbid lake, while epipelic microalgal production dominated (77%) in the clear lake. The relative contribution of epipelic algae varied over the year, however, and in the turbid lake was higher in winter (11–25%), when the water was relatively clear, than during summer (0.7–1.7%), when the water was more turbid. In the clearwater lake, the relative contribution of epipelon was high both in winter, when the water was most clear, and in mid-summer, when phytoplankton production was constrained either by nutrients or grazing.
4. Compared with pelagic and epipelic primary production, epiphytic production within a reed stand was low and did not vary significantly between the lakes.
5. The study supports the theory of a competitive and compensatory trade-off between primary producers in lakes with contrasting nutrient concentrations, resulting in relatively small differences in overall production between clear and turbid lakes when integrating over the season and over different habitats.  相似文献   

16.
1. Global change models predict the greatest impact in climate to occur in the northern polar region. Change in temperature will alter individual metabolism and has the potential to change community structure to an unknown degree.
2. The temperature-dependent energy budget of Arctic Daphnia middendorffiana was investigated by measuring respiration rates, ingestion rates and assimilation rates. The scope for growth and reproduction was determined and compared with data from the literature for a clone of Daphnia pulicaria collected in the temperate zone.
3. A difference was observed between the Arctic species and the temperate zone clone in both temperature tolerance, and the energy available for growth and reproduction at various temperatures. A low availability of energy for growth and reproduction indicated that life history patterns as well as physiological mechanisms are important in allowing D. middendorffiana to exist successfully in Arctic environments.
4. The lower available energy for growth compared to Daphnia clones from temperate zones may be detrimental to D. middendorffiana , which might have to compete with species expanding their range under the predicted temperature increase for Arctic regions.  相似文献   

17.
Omnivory does not prevent trophic cascades in pelagic food webs   总被引:2,自引:0,他引:2  
1. Strong trophic cascades have been well documented in pelagic food webs of temperate lakes. In contrast, the limited available evidence suggests that strong cascades are less typical in tropical lakes.
2. To measure the effects of omnivorous tilapia on planktonic communities and water transparency of a small man-made tropical lake, we performed a 5-week in situ enclosure experiment with five densities of fish randomly allocated to 20 enclosures. Zooplankton and Phytoplankton biomasses as well as water transparency were measured weekly.
3. Results show that omnivorous tilapia significantly decreased the abundance of large Cladocerans, increased the abundance of small algae (greatest axial linear dimension <50  μ m) and decreased water transparency as predicted by trophic cascade theory.
4. Therefore, omnivory was not a sufficient factor to prevent a trophic cascade in this pelagic community, although the cascade effect was weaker than reported from many north temperate, nutrient-rich lakes.  相似文献   

18.
Small lakes dominate a random sample of regional lake characteristics   总被引:1,自引:0,他引:1  
1. Lakes are a prominent feature of the Northern Highland Lake District (NHLD) of Wisconsin, covering 13% of the landscape. Summarising the physical, chemical, or biological nature of NHLD lakes at a regional scale requires a representative sample of the full size distributions of lakes. In this study, we selected at random 168 lakes from the full size distribution of lakes in the NHLD and sampled each lake for a broad suite of limnological variables.
2. Most lakes were small. The median lake area was 1.1 ha, however, half of the surface area of water was in a relatively small number of lakes larger than 162 ha. Smaller lakes tended to be low in dissolved inorganic carbon (DIC) and high in dissolved organic carbon (DOC). Inclusion of small lakes (<4 ha) in the survey resulted in an acid neutralising capacity (ANC) median (76.5  μ Eq L−1) much lower than previous estimates, and a DOC median (10.1 mg L−1) about 50% higher than it would have been without the smaller lakes. Unlike DOC, total P tended to be evenly distributed across lake sizes.
3. The implications of these findings are that regional summaries of lake characteristics for the NHLD are influenced by the inclusion of small lakes in the sample, even though most of the water surface area is in lakes larger than 162 ha. Excluding small lakes introduces bias in the estimates of organic carbon and inorganic carbon values, for example. Similar biases may be introduced for lake characteristics at the global scale if small lakes are not sampled, because the size distribution of lakes globally is dominated in number by small lakes.  相似文献   

19.
1. A survey of c. 350 remote high altitude and high latitude lakes from 12 different mountain regions across Europe was undertaken to explore ecosystem variability, climate forcing, environmental conditions and pollution threats at a scale not previously attempted.
2. Lakes were sampled for a range of contemporary and sub-fossil organisms including planktonic crustaceans, rotifers, littoral invertebrates, chironomids, diatoms and cladocerans. Survey and cartographic data were used to determine environmental characteristics at each site. Organic pollutants and trace metal concentrations were measured in the lake sediment.
3. A number of separate studies were undertaken which examined the environmental characteristics of the surveyed lakes (climate forcing and chemical composition), distribution of biota relative to local, regional and biogeographical factors and pollution threats (acidification, heavy metals and persistent organic pollutants) to these sensitive ecosystems.
4. There is a strong regional element to the way that environmental factors combine (including climate and pollution threats) and the biota responds in mountain lakes across Europe. From a management perspective it is clear that lake classification and the development of useful typologies and assessments of reference conditions should be undertaken at regional rather than pan-European scales.
5. There are some common features across lake districts related to the timing of industrialisation, but the studies carried out on metals, organic pollutants and nitrate deposition indicate that each lake district has distinct pollution threats. Climate warming already affects most of the lake districts and there are considerable uncertainties as to how this will modify conditions in remote European mountain systems.
6. The lake district concept goes beyond a geographical construct and merits further theoretical and experimental development as an ecological concept.  相似文献   

20.
Climate change might have profound effects on the nitrogen (N) dynamics in the cultivated landscape as well as on N transport in streams and the eutrophication of lakes. N loading from land to streams is expected to increase in North European temperate lakes due to higher winter rainfall and changes in cropping patterns. Scenario (IPCC, A2) analyses using a number of models of various complexity for Danish streams and lakes suggest an increase in runoff and N transport on an annual basis (higher during winter and typically lower during summer) in streams, a slight increase in N concentrations in streams despite higher losses in riparian wetlands, higher absolute retention of N in lakes (but not as percentage of loading), but only minor changes in lake water concentrations. However, when taking into account also a predicted higher temperature there is a risk of higher frequency and abundance of potentially toxic cyanobacteria in lakes and they may stay longer during the season. Somewhat higher risk of loss of submerged macrophytes at increased N and phosphorus (P) loading and a shift to dominance of small-sized fish preying upon the key grazers on phytoplankton may also enhance the risk of lake shifts from clear to turbid in a warmer North European temperate climate. However, it must be emphasised that the prediction of N transport and thus effects is uncertain as the prediction of regional precipitation and changes in land-use is uncertain. By contrast, N loading is expected to decline in warm temperate and arid climates. However, in warm arid lakes much higher N concentrations are currently observed despite reduced external loading. This is due to increased evapotranspiration leading to higher nutrient concentrations in the remaining water, but may also reflect a low-oxygen induced reduction of nitrification. Therefore, the critical N as well as P loading for good ecological state in lakes likely has to be lower in a future warmer climate in both north temperate and Mediterranean lakes. To obtain this objective, adaptation measures are required. In both climate zones the obvious methods are to change agricultural practices for reducing the loss of nutrients to surface waters, to improve sewage treatment and to reduce the storm-water nutrient runoff. In north temperate zones adaptations may also include re-establishment of artificial and natural wetlands, introduction of riparian buffer zones and re-meandering of channelised streams, which may all have a large impact on, not least, the N loading of lakes. In the arid zone, also restrictions on human use of water are urgently needed, not least on the quantity of water used for irrigation purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号