首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
gamma-Endorphin is a naturally occurring biologically active peptide that is produced by an endopeptidase activity cleaving its precursor beta-endorphin. This enzyme was termed gamma-endorphin generating enzyme (gamma-EGE). In order to quantitate gamma-EGE activity by means of a simple and sensitive assay two synthetic peptides derived from the sequence surrounding the gamma-EGE cleavage site in beta-endorphin were tested as substrates. One of these peptides Ac-Val-Thr-Leu-Phe-Lys-NHCH3 fulfilled all criteria for a suitable gamma-EGE substrate. The peptide was exclusively cleaved at the correct bond for gamma-EGE upon incubation with brain synaptic membranes, and this cleavage was inhibited by the naturally occurring substrate beta-endorphin. The peptide was insensitive to cleavage by exopeptidases and cathepsin D. Addition of a 14C-labeled methyl group at the lysine residue of this peptide by reductive methylation did not alter its properties as a substrate for gamma-EGE activity. The use of the 14C-labeled peptide allowed sensitive quantitation of its radioactive products after simple separation by hydrophobic chromatography on minicolumns containing polystyrene beads. gamma-EGE activity increased linearly with a protein concentration and incubation time. This assay can be used for reliable quantitation of gamma-EGE activity and permits investigations on the regulation of gamma-endorphin production.  相似文献   

2.
During the resolution of inflammatory responses, neutrophils rapidly undergo apoptosis. A direct and fast activation of caspase-8 by cathepsin D was shown to be crucial in the initial steps of neutrophil apoptosis. Nevertheless, the activation mechanism of caspase-8 remains unclear. Here, by using site-specific mutants of caspase-8, we show that both cathepsin D-mediated proteolysis and homodimerization of caspase-8 are necessary to generate an active caspase-8. At acidic pH, cathepsin D specifically cleaved caspase-8 but not the initiator caspase-9 or -10 and significantly increased caspase-8 activity in dimerizing conditions. These events were completely abolished by pepstatin A, a pharmacological inhibitor of cathepsin D. The cathepsin D intra-chain proteolysis greatly stabilized the active site of caspase-8. Moreover, the main caspase-8 fragment generated by cathepsin D cleavage could be affinity-labeled with the active site probe biotin-VAD-fluoromethyl ketone, suggesting that this fragment is enzymatically active. Importantly, in an in vitro cell-free assay, the addition of recombinant human caspase-8 protein, pre-cleaved by cathepsin D, was followed by caspase-3 activation. Our data therefore indicate that cathepsin D is able to initiate the caspase cascade by direct activation of caspase-8. As cathepsin D is ubiquitously expressed, this may represent a general mechanism to induce apoptosis in a variety of immune and nonimmune cells.  相似文献   

3.
Cathepsin D is membrane-associated in macrophage endosomes   总被引:27,自引:0,他引:27  
Previously we identified an acid protease activity which was located in the endosomes of rabbit alveolar macrophages (Diment, S., and Stahl, P.D. (1985) J. Biol. Chem. 260, 15311-15317). In this study, the endosomal protease is identified as cathepsin D by immunoprecipitation with polyclonal antibodies raised against rabbit cathepsin D and by NH2-terminal sequence. In order to elucidate the mechanism for targeting of cathepsin D to endosomes, we first examined the membrane association of cathepsin D with light (rho = 1.05 g/ml) and heavy density (rho = 1.1 g/ml) vesicles from Percoll density gradients. After sequential washes, 8.4 and 21.9% of cathepsin D activity remained associated with heavy and light density vesicles, respectively. This membrane-associated cathepsin D could not be solubilized in either buffer at pH 5.0 containing mannose 6-phosphate and EDTA or in buffer at pH 10.6. Solubilization required the detergent Triton X-100. To determine whether membrane-associated cathepsin D was found in endosomes, the enzyme was radioiodinated within endosomes and lysosomes with internalized lactoperoxidase. The membrane-associated form was detected in endosomes, but much less in lysosomes. Biosynthetic studies combined with the same extraction procedure revealed that macrophage cathepsin D is first synthesized as an inactive membrane-associated precursor. The precursor is processed to an active, membrane-associated form and then to the active soluble form found in lysosomes. Our studies provide evidence that 1) cathepsin D is in endosomes of macrophages; 2) cathepsin D is transported to endosomes as a membrane-associated form; and 3) the membrane-associated form is a biosynthetic precursor for the soluble form found in endosomes and lysosomes.  相似文献   

4.
The novel synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphtalene carboxylic acid (AHPN/CD437) has been proven to be a potent inducer of apoptosis in a variety of tumor cell types. However, the mechanism of its action remains to be elucidated. Recent studies suggest that the lysosomal protease cathepsin D, when released from lysosomes to the cytosol, can initiate apoptosis. In this study, we examined whether cathepsin D and free radicals are involved in the CD437-induced apoptosis. Exposure of human leukemia HL-60 cells to CD437 resulted in rapid induction of apoptosis as indicated by caspase activation, phosphatidylserine exposure, mitochondrial alterations and morphological changes. Addition of the antioxidants alpha-tocopherol acetate effectively inhibited the CD437-induced apoptosis. Measurement of the intracellular free radicals indicated a rise in oxidative stress in CD437-treated cells, which could be attenuated by alpha-tocopherol acetate. Interestingly, pretreatment of cells with the cathepsin D inhibitor pepstatin A blocked the CD437-induced free radical formation and apoptotic effects, suggesting the involvement of cathepsin D. However, Western blotting revealed no difference in cellular quantity of any forms of cathepsin D between control cells and CD437-treated cells, whereas immunofluorescence analysis of the intracellular distribution of cathepsin D showed release of the enzyme from lysosomes to the cytosol. Labeling of lysosomes with lysosomotropic probes confirmed that CD437 could induce lysosomal leakage. The CD437-induced relocation of cathepsin D could not be prevented by alpha-tocopherol acetate, suggesting that the lysosomal leakage precedes free radical formation. Furthermore, a retinoic acid nuclear receptor (RAR) antagonist failed to block these effects of CD437, suggesting that the action of CD437 is RAR-independent. Taken together, these data suggest a novel lysosomal pathway for CD437-induced apoptosis, in which lysosomes are the primary target and cathepsin D and free radicals act as death mediators.  相似文献   

5.
Apoptosis was inhibited in rat cardiomyocytes pretreated with the aspartic protease inhibitor pepstatin A and subsequently exposed to naphthazarin (5,8-dihydroxy-1,4-naphthoquinone). Cathepsin D was released from lysosomes to the cytosol upon exposure to naphthazarin, and the enzyme activity decreased simultaneously. Later, cathepsin D reappeared in granules of increased size, and enzyme activity was restored. Activation of caspase-3-like proteases was detected, and the number of cells showing apoptotic morphology increased with time. Pepstatin A pretreatment did not prevent release of cathepsin D from lysosomes but did significantly inhibit subsequent naphthazarin-induced caspase activation and apoptotic morphology. This suggests that cathepsin D exerts its apoptosis-stimulating effect upstream of caspase-3-like activation.  相似文献   

6.
Apoptosis was induced in human foreskin fibroblasts by the redox-cycling quinone naphthazarin (5,8-dihydroxy-1,4-naphthoquinone). Most of the cells displayed ultrastructure typical of apoptosis after 8 h of exposure to naphthazarin. Apoptosis was inhibited in fibroblasts pretreated with the cathepsin D inhibitor pepstatin A. Immunofluorescence analysis of the intracellular distribution of cathepsin D revealed a distinct granular pattern in control cells, whereas cells treated with naphthazarin for 30 min exhibited more diffuse staining that corresponded to release of the enzyme from lysosomes to the cytosol. After 2 h, release of cytochrome c from mitochondria to the cytosol was indicated by immunofluorescence. The membrane-potential–sensitive probe JC-1 and flow cytometry did not detect a permanent decrease in mitochondrial transmembrane potential (ΔΨm) until after 5 h of naphthazarin treatment. Our findings show that, during naphthazarin-induced apoptosis, lysosomal destabilization (measured as release of cathepsin D) precedes release of cytochrome c, loss of ΔΨm, and morphologic alterations. Moreover, apoptosis could be inhibited by pretreatment with pepstatin A.  相似文献   

7.
Rabbit cardiac cathepsin D exists as multiple isomeric forms of Mr = 48,000 within cardiac tissue. Their mechanism of formation and their functional role in cardiac protein degradation are unknown. We have previously demonstrated that cathepsin D is initially synthesized as an Mr = 53,000 precursor that is processed by limited proteolysis within cardiac lysosomes to the Mr = 48,000 active forms of the enzyme. To determine if the multiple forms of active cathepsin D originate from a common precursor, isolated perfused Langendorff rabbit hearts were labeled in pulse (15 or 30 min) and pulse-chase (30 or 150 min) experiments with [35S]methionine. Newly synthesized cathepsin D was isolated by butanol/Triton X-100 extraction and immunoadsorption with anti-cathepsin D IgG-Sepharose, and the isomeric forms were separated by two-dimensional electrophoresis and fluorography. After 15- and 30-min pulse perfusions, 35S-labeled cathepsin D appeared as a single precursor form (Mr = 53,000, pI = 6.6). After 30-min pulse and 30-min chase, the precursor was modified to yield multiple precursor forms, all with molecular weight 53,000, but with differing pI values (6.6-6.0). After 30-min pulse and 150-min chase perfusion, multiple forms of both precursor and proteolytically processed active cathepsin D (Mr = 48,000, pI = 6.2-5.6) were detected. The 35S-labeled, proteolytically processed forms of active cathepsin D co-migrated with the major cathepsin D forms present in cardiac tissue. Subcellular fractionation and perfusions in the presence of chloroquine demonstrated that the multiple precursor forms of cathepsin D originated in a nonlysosomal intracellular compartment. Thus, the multiple forms of active cathepsin D originate from a common high molecular weight precursor, and their synthesis occurs prior to the limited proteolysis of the precursor in cardiac lysosomes.  相似文献   

8.
Apoptosis was induced in human foreskin fibroblasts by the redox-cycling quinone naphthazarin (5,8-dihydroxy-1,4-naphthoquinone). Most of the cells displayed ultrastructure typical of apoptosis after 8 h of exposure to naphthazarin. Apoptosis was inhibited in fibroblasts pretreated with the cathepsin D inhibitor pepstatin A. Immunofluorescence analysis of the intracellular distribution of cathepsin D revealed a distinct granular pattern in control cells, whereas cells treated with naphthazarin for 30 min exhibited more diffuse staining that corresponded to release of the enzyme from lysosomes to the cytosol. After 2 h, release of cytochrome c from mitochondria to the cytosol was indicated by immunofluorescence. The membrane-potential-sensitive probe JC-1 and flow cytometry did not detect a permanent decrease in mitochondrial transmembrane potential (delta psi(m)) until after 5 h of naphthazarin treatment. Our findings show that, during naphthazarin-induced apoptosis, lysosomal destabilization (measured as release of cathepsin D) precedes release of cytochrome c, loss of delta psi(m), and morphologic alterations. Moreover, apoptosis could be inhibited by pretreatment with pepstatin A.  相似文献   

9.
Mása M  Maresová L  Vondrásek J  Horn M  Jezek J  Mares M 《Biochemistry》2006,45(51):15474-15482
Propeptide blocks the active site in the inactive zymogen of cathepsin D and is cleaved off during zymogen activation. We have designed a set of peptidic fragments derived from the propeptide structure and evaluated their inhibitory potency against mature cathepsin D using a kinetic assay. Our mapping of the cathepsin D propeptide indicated two domains in the propeptide involved in the inhibitory interaction with the enzyme core: the active site "anchor" domain and the N-terminus of the propeptide. The latter plays a dominant role in propeptide inhibition (nanomolar Ki), and its high-affinity binding was corroborated by fluorescence polarization measurements. In addition to the inhibitory domains of propeptide, a fragment derived from the N-terminus of mature cathepsin D displayed inhibition. This finding supports its proposed regulatory function. The interaction mechanisms of the identified inhibitory domains were characterized by determining their modes of inhibition as well as by spatial modeling of the propeptide in the zymogen molecule. The inhibitory interaction of the N-terminal propeptide domain was abolished in the presence of sulfated polysaccharides, which interact with basic propeptide residues. The inhibitory potency of the active site anchor domain was affected by the Ala38pVal substitution, a propeptide polymorphism reported to be associated with the pathology of Alzheimer's disease. We infer that propeptide is a sensitive tethered ligand that allows for complex modulation of cathepsin D zymogen activation.  相似文献   

10.
G E Conner  G Richo 《Biochemistry》1992,31(4):1142-1147
Procathepsin D is the intracellular aspartyl protease precursor of cathepsin D, a major lysosomal enzyme. Procathepsin D is rapidly processed inside the cell, and, thus, examination of its proteolyic activation and structure has been difficult. To study this proenzyme, a nonglycosylated form of the human fibroblast procathepsin D was expressed in Escherichia coli, refold in vitro, and purified by affinity chromatography on pepstatinyl agarose. Sequence analysis of the refolded, autoactivated enzyme allowed determination of the autoproteolytic cleavage site. The sequence surrounding this cleavage site between residues LeuP26 and IleP27 (in the "pro" region) resembled the first cleavage site found during activation of other aspartyl proteases. Thus, the autoactivated procathepsin D is analogous to the pepsin activation intermediate, which has been termed pseudopepsin. The enzymatic activity, thermal and pH stability, and fluorescence spectra of pseudocathepsin D were compared to mature, predominantly two-chain, cathepsin D isolated from human placenta. The results indicated that pseudocathepsin D and mature enzyme have a similar Km toward a peptide substrate and cleave a protein substrate at identical sites. Temperature stability of the recombinant enzyme was similar to that of the tissue-derived enzyme. However, the recombinant enzyme had increased stability at low pH when compared to the glycosylated tissue-derived two-chain cathepsin D. Fluorescence spectra of the recombinant and tissue-derived enzymes were identical. Thus, the absence of asparagine-linked oligosaccharides and the presence of the remaining segment of propeptide did not significantly alter the structural and enzymatic properties of the enzyme.  相似文献   

11.
The uncovering ratio of phosphate groups in lysosomal enzymes is defined as the percentage of phosphomonoester groups in the oligosaccharide side chains based on the sum of phosphomonoester and phosphodiester groups. Using a new procedure for the specific and complete hydrolysis of uncovered phosphomonoester groups in denatured immunoprecipitates of human cathepsin D, we show that the uncovering ratio varies between different forms of the enzyme and may be used as an indicator of the maturation of its carbohydrate side chains. The uncovering ratio in the total (cellular and secreted) cathepsin D from U937 promonocytes is greater than 95%. It is only slightly decreased in cells incubated in the presence of 1 alpha,25-dihydroxycholecalciferol, in which the rate of synthesis of cathepsin D is several times higher than in the control cells. In U937 cells and also in fibroblasts, the uncovering is nearly complete in intermediate and mature forms of the intracellular cathepsin D but less extensive in the intracellular and secreted precursor. In both cell types, incubation with 10 mM NH4Cl results in a decrease in the uncovering ratio of total cathepsin D. However, the activity of the uncovering enzyme, N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase, as determined with UDP-N-acetylglucosamine is not affected with up to 60 mM NH4Cl. Our results suggest that NH4Cl, in addition to its known effects on the acidic-pH-dependent functions of lysosomal compartments and of mannose-6-phosphate receptors, impairs the processing or transport of lysosomal enzyme precursors at, or proximally to, the site of the uncovering of their mannose-6-phosphate residues.  相似文献   

12.
 Previous studies implicated cathepsin D as one commonly recognized target of tumor-reactive immunoglobulins from ovarian cancer patients. These immunoglobulins are shown to be immunoreactive with both the 52-kDa procathepsin D and the 32-kDa mature cathepsin D derived from the UL-1 ovarian cancer cell line. Whether the carbohydrate domains or the core protein were associated with its immunogenicity was analyzed with cathepsin D isolated from tunicamycin-treated UL-1 cells. No significant difference was detected in the immunoreactivity of patient serum with the glycosylated and deglycosylated forms of the cathepsin D, suggesting that patient humoral responses are directed primarily against the core protein. To define the antigenic epitopes of cathepsin D, tryptic fragments were prepared from UL-1-derived procathepsin D. The epitopes of the core protein recognized by sera from more than one patient were identified using a peptide-specific enzyme-linked immunosorbent assay and microsequencing of positive immunoreactive peptides. This protocol identified four epitopes: two peptides within the pro-peptide, a third at the carboxy terminus and the fourth at the glycosylation site of the mature enzyme. This approach to the identification of specific antigenic epitopes may be useful in defining effective targets for directed active immunotherapy against cancer. Received: 8 September 1997 / Accepted: 21 October 1997  相似文献   

13.
Human cathepsin X is one of many proteins discovered in recent years through the mining of sequence databases. Its sequence shows clear homology to cysteine proteases from the papain family, containing the characteristic residue patterns, including the active site. However, the proregion of cathepsin X is only 38 residues long, the shortest among papain-like enzymes, and the cathepsin X sequence has an atypical insertion in the regions proximal to the active site. This protein was recently expressed and partially characterized biochemically. Unlike most other cysteine proteases from the papain family, procathepsin X is incapable of autoprocessing in vitro but can be processed under reducing conditions by exogenous cathepsin L. Atypically, the mature enzyme is primarily a carboxypeptidase and has extremely poor endopeptidase activity. We have determined the three-dimensional structure of the procathepsin X at 1.7 A resolution. The overall structure of the mature enzyme is characteristic for enzymes of the papain superfamily, but contains several novel features. Most interestingly, the short proregion binds to the enzyme with the aid of a covalent bond between the cysteine residue in the proregion (Cys10p) and the active site cysteine residue (Cys31). This is the first example of a zymogen in which the inhibition of enzyme's proteolytic activity by the proregion is achieved through a reversible covalent modification of the active site nucleophile. Such mode of binding requires less contact area between the proregion and the enzyme than observed in other procathepsins, and no auxiliary binding site on the enzyme surface is used. A three-residue insertion in a highly conserved region, just prior to the active site cysteine residue, confers a significantly different shape on the S' subsites, compared to other proteases from papain family. The 3D structure provides an explanation for the rather unusual carboxypeptidase activity of this enzyme and confirms the predictions based on homology modeling. Another long insertion in the cathepsin X amino acid sequence forms a beta-hairpin pointing away from the active site. This insertion, thought to be an equivalent of cathepsin B occluding loop, is located on the side of the protein, distant from the substrate binding site.  相似文献   

14.
The total cooling ef rats down to the rectal temperature 30 degrees and 20 degrees C does not change significantly the ratio of the relative specific activity of cathepsin D in subcellular fractions of the rat brain. The gel chromatographic analysis of heterogeneity of cathepsin D molecular forms in subcellular fractions established the presence of a high-molecular (in the fractions of lysosome and microsome mitochondria) and a low-molecular (in the fractions of lysosome and cytosol mitochondria) enzyme forms. Under hypothermia (20 degrees C) in the brain cytosol fraction there arises a minor zone of the cathepsin D activity corresponding to the high-molecular enzyme form.  相似文献   

15.
Precursors of cathepsin D and beta-hexosaminidase were isolated from secretions of human fibroblasts and their activity was studied with natural substrates. The immunoprecipitated precursor of cathepsin D, Mr 53000, was inactive with radioactive hemoglobin as substrate. At pH 3.8-4.2 an activation of the precursor took place, which was correlated by a reduction in size to Mr 51500. The observed cleavage of cathepsin D precursor in vitro resembles the autocatalytic activation of pepsinogen. The precursor of beta-hexosaminidase A is able to cleave the natural substrate GM2 ganglioside. This reaction, like that of the mature enzyme, depends on the presence of a protein activator, which interacts with the substrate and the enzyme.  相似文献   

16.
The lysosomal aspartic protease cathepsin D (cath-D) is overexpressed and hyper-secreted by epithelial breast cancer cells. This protease is an independent marker of poor prognosis in breast cancer as it is correlated with the incidence of clinical metastasis. In normal cells, cath-D is localized in intracellular vesicles (lysosomes and endosomes). In cancer cells, overexpressed cath-D accumulates in cells, where it may affect their degradative capacities, and the pro-enzyme is hyper-secreted in the tumor micro-environment. In addition, during apoptosis, lysosomal cath-D is released into the cytosol, where it may interact with and/or cleave pro-apoptotic, anti-apoptotic, or nuclear proteins. Several studies have shown that cath-D affects various different steps in tumor progression and metastasis. Cath-D stimulates cancer cell growth in an autocrine manner, and also cath-D plays a crucial paracrine role in the tumor micro-environment by stimulating fibroblast outgrowth and tumor angiogenesis. A mutant D231N-cath-D, which is devoid of catalytic activity, remained mitogenic, indicating an additional action of cath-D by protein–protein interaction. Targeting cath-D in cancer may require the use of inhibitors of its catalytic activity, but also the development of new tools to inhibit its protein binding functions. Thus, elucidation of the mechanism of action of cath-D is crucial if an appropriate strategy is to be developed to target this protease in cancer. The discovery of new physiological substrates of cath-D using proteomic approaches can be expected to generate new critical targets. The aim of this review is to describe the roles of the cath-D protease in cancer progression and metastasis, as well as its function in apoptosis, and to discuss how it can be targeted in cancer by inhibiting its proteolytic activity and/or its binding protein activity.  相似文献   

17.
LEI (Leukocyte Elastase Inhibitor), the precursor of the pro-apoptotic molecule L-DNase II, belongs to the ovalbumin subgroup of serpins. Several serpins can inhibit apoptosis: the viral serpin Crm A inhibits Fas or TNFalpha-induced apoptosis, and overexpression of PAI-2 or PI-9 protects cells from TNFalpha or granzyme B induced apoptosis. We have previously shown that LEI overexpression protects cells from etoposide-induced apoptosis. The molecular reason of this anti-apoptotic activity is now investigated. We show that, in BHK-21 and HeLa cells, LEI anti-protease activity is essential for its anti-apoptotic effect. The protease inhibited is cathepsin D, released from the lysosome during etoposide treatment. Cathepsin D enhances caspase activity in the cell by cleaving procaspase-8 and LEI overexpression slows down this cleavage, protecting cells from apoptosis. This let us presume that high expression of LEI in tumor cells may reduce the efficiency of etoposide as a chemotherapeutic agent.  相似文献   

18.
Lysosomal cathepsin B has been implicated in parasitic, inflammatory and neoplastic diseases. Most of these pathologies suggest a role for cathepsin B outside the cells, although the origin of extracellular active enzyme is not well defined. The activity of extracellular cathepsin B is difficult to assess because of the presence of inhibitors and inactivation of the enzyme by oxidizing agents. Therefore, we have developed a continuous assay for measurement of cathepsin B activity produced pericellularly by living cells. The kinetic rate of Z-Arg-Arg-NHMec conversion was monitored and the assay optimized for enzyme stability, cell viability and sensitivity. To validate the assay, we determined that human liver cathepsin B was stable and active under the conditions of the assay and its activity could be inhibited by the selective epoxide derivative CA-074. Via this assay, we were able to demonstrate that active cathepsin B was secreted pericellularly by viable cells. Both preneoplastic and malignant cells secreted active cathepsin B. Pretreatment of cells with the membrane-permeant proinhibitor CA-074Me completely abolished pericellular and total cathepsin B activity whereas pretreatment with the active drug CA-074 had no effect. Immunoprecipitation and immunoblotting experiments suggested that the active enzyme species was 31-kDa single-chain cathepsin B. Exocytosis of cathepsin B was not related to secretion of proenzyme or secretion from mature lysosomes. Our results suggest an alternative pathway for exocytosis of active cathepsin B.  相似文献   

19.
A procedure is described that allows the characterization of the molecular forms of beta-hexosaminidase and cathepsin D in controls and pathological specimens of human serum and human urine. The following observations were made. (1) In human serum, beta-hexosaminidase (alpha- and beta-chain) and cathepsin D are present predominantly in their high-molecular-weight precursor forms. In human urine, these enzymes exist as both precursor and mature forms. (2) Cathepsin D precursor from serum and urine differs in the number of oligosaccharides that are sensitive to endo-beta-N-acetylglucosaminidase H. Therefore the urine enzyme is not likely to originate from the serum. (3) The presence exclusively of precursors of beta-hexosaminidase and of cathepsin D in the sera of patients with hepatitis suggests that in hepatitis secretion of lysosomal enzymes is elevated, rather than the enzymes leaking from damaged cells. (4) In the urine of patients with nephrotic syndrome, beta-hexosaminidase and cathepsin D are present in grossly elevated amounts, but do not differ in the polypeptide patterns from controls. (5) In urine from a patient with mucolipidosis II, the elevated activity of beta-hexosaminidase is accounted for mainly by the precursor forms. Mature beta-chain of beta-hexosaminidase is lacking, and incompletely processed beta-hexosaminidase polypeptides are present. Both the precursor and the mature forms of cathepsin D are increased. They contain only complex oligosaccharides.  相似文献   

20.
Endothelin converting enzyme activities in the soluble fraction of cultured bovine aortic endothelial cells were characterized. The two major endothelin converting enzyme activities were eluted from a hydrophobic chromatography column and the elution profile of the endothelin converting enzyme activities was the same as that of cathepsin D activities. These activities had a same pH optimum at pH 3.5 and were effectively inhibited by pepstatin A. Furthermore, anti-cathepsin D antiserum absorbed these activities as well as cathepsin D activity. Immunoblotting analysis using the antiserum showed the major active fractions have immunostainable components of identical molecular weights with cathepsin D. From these results, we concluded that the major endothelin converting activities in the soluble fraction of endothelial cells are due to cathepsin D. In addition to these cathepsin D activities, a minor endothelin converting enzyme activity with an optimum pH at 3.5 was found, which does not have angiotensin I generating (cathepsin D) activity from renin substrate and needs much higher concentrations of pepstatin A to inhibit the activity than cathepsin D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号