首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacteriophage P1 Cre recombinase catalyzes site-specific recombination between 34-base-pair loxP sequences in a variety of topological contexts. This reaction is widely used to manipulate DNA molecules in applications ranging from benchtop cloning to genome modifications in transgenic animals. Despite the simple, highly symmetric nature of the Cre-loxP system, there is strong evidence that the reaction is asymmetric; the 'bottom' strands in the recombining loxP sites are preferentially exchanged before the 'top' strands. Here, we address the mechanistic basis for ordered strand exchange in the Cre-loxP recombination pathway. Using suicide substrates containing 5'-bridging phosphorothioate linkages at both cleavage sites, fluorescence resonance energy transfer between synapsed loxP sites and a Cre mutant that can cleave the bridging phosphorothioate linkage but not a normal phosphodiester linkage, we showed that preferential formation of a specific synaptic complex between loxP sites imposes ordered strand exchange during recombination and that synapsis stimulates cleavage of loxP sites.  相似文献   

2.
Conservative site-specific recombinases of the integrase family carry out recombination via a Holliday intermediate. The Cre recombinase, a member of the integrase family, was previously shown to initiate recombination by cleaving and exchanging preferentially on the bottom strand of its loxP target sequence. We have confirmed this strand bias for an intermolecular recombination reaction that used wild-type loxP sites and Cre protein. We have examined the sequence determinants for this strand preference by selectively mutating the two asymmetric scissile base-pairs in the lox site (those immediately adjacent to the sites of cleavage by Cre). We found that the initial strand exchange occurs preferentially next to the scissile G residue. Resolution of the Holliday intermediate thus formed takes place preferentially next to the scissile A residue. Lys86, which contacts the scissile nucleotides in the Cre-lox crystal structures, was important for establishing the strand preference in the resolution of the loxP-Holliday intermediate, but not for the initiation of recombination between loxP sites.  相似文献   

3.
Many natural DNA site-specific recombination systems achieve directionality and/or selectivity by making recombinants with a specific DNA topology. This property requires that the DNA architecture of the synapse and the mechanism of strand exchange are both under strict control. Previously we reported that Tn3 resolvase-mediated synapsis of the accessory binding sites from the Tn3 recombination site res can impose topological selectivity on Cre/loxP recombination. Here, we show that the topology of these reactions is profoundly affected by subtle changes in the hybrid recombination site les. Reversing the orientation of loxP relative to the res accessory sequence, or adding 4 bp to the DNA between loxP and the accessory sequence, can switch between two-noded and four-noded catenane products. By analysing Holliday junction intermediates, we show that the innate bias in the order of strand exchanges at loxP is maintained despite the changes in topology. We conclude that a specific synaptic structure formed by resolvase and the res accessory sequences permits Cre to align the adjoining loxP sites in several distinct ways, and that resolvase-mediated intertwining of the accessory sequences may be less than has been assumed previously.  相似文献   

4.
By placing loxP adjacent to the accessory sequences from the Xer/psi multimer resolution system, we have imposed topological selectivity and specificity on Cre/loxP recombination. In this hybrid recombination system, the Xer accessory protein PepA binds to psi accessory sequences, interwraps them, and brings the loxP sites together such that the product of recombination is a four-node catenane. Here, we investigate communication between PepA and Cre by varying the distance between loxP and the accessory sequences, and by altering the orientation of loxP. The yield of four-node catenane and the efficiency of recombination in the presence of PepA varied with the helical phase of loxP with respect to the accessory sequences. When the orientation of loxP was reversed, or when half a helical turn was added between the accessory sequences and loxP, PepA reversed the preferred order of strand exchange by Cre at loxP. The results imply that PepA and the accessory sequences define precisely the geometry of the synapse formed by the loxP sites, and that this overcomes the innate preference of Cre to initiate recombination on the bottom strand of loxP. Further analysis of our results demonstrates that PepA can stimulate strand exchange by Cre in two distinct synaptic complexes, with the C-terminal domains of Cre facing either towards or away from PepA. Thus, no specific PepA-recombinase interaction is required, and correct juxtaposition of the loxP sites is sufficient to activate Cre in this system.  相似文献   

5.
The Cre protein of bacteriophage P1 is a tyrosine recombinase and catalyzes recombination via formation of a covalent protein-DNA complex and a Holliday junction intermediate. Several co-crystal structures of Cre bound to its target lox site have provided novel insights into its biochemical activities. We have used these structures to guide the mutagenesis of several Cre residues that contact the lox spacer region and/or are involved in intersubunit protein-protein interactions. None of the mutant proteins had significant defects in DNA binding, DNA bending, or strand-specific initiation of recombination. We have identified novel functions of several amino acids that are involved in three aspects of the Cre reaction. 1) Single mutation of several NH2-terminal basic residues that contact the spacer region of loxP caused the accumulation of Holliday junction (HJ) intermediates but only a modest impairment of recombination. These residues may be involved in the isomerization of the Holliday intermediate. 2) We identified three new residues (Arg-118, Lys-122, and Glu-129) that are involved in synapsis. Cre R118A, K122A, and E129Q were catalytically competent. 3) Mutations E129R, Q133H, and K201A inactivated catalysis by the protein. The function of these Cre residues in recombination is discussed.  相似文献   

6.
The bacteriophage P1 recombinase Cre mediates site-specific recombination between loxP sites. The loxP site consists of two 13 base-pair inverted repeats separated by an eight base-pair spacer region. When DNA containing the loxP site is incubated with Cre, specific cleavages occur within the spacer region, creating a six base-pair staggered cut. The cuts are centered on the axis of dyad symmetry of the loxP site, resulting in a 5' protruding terminus: 5' A decreases T-G-T-A-T-G C 3' T A-C-A-T-A-C increases G. At the point of cleavage, Cre becomes covalently attached to a 3' PO4, and produces a free 5' OH. A series of experiments were carried out in which a radioactively labeled loxP site is recombined with an unlabeled loxP site to locate the point at which strand exchange takes place during recombination. The points of strand exchange coincide with the sites at which Cre cleavage of the DNA backbone had been detected.  相似文献   

7.
Flp and Cre-mediated recombination on symmetrized FRT and loxP sites, respectively, in circular plasmid substrates yield both DNA inversion and deletion. However, upon sequestering three negative supercoils outside the recombination complex using the resII-resIII synapse formed by Tn3 resolvase and the LER synapse formed by phage Mu transposase in the case of Flp and Cre, respectively, the reactions are channeled towards inversion at the expense of deletion. The inversion product is a trefoil, its unique topology being conferred by the external resolvase or LER synapse. Thus, Flp and Cre assign their symmetrized substrates a strictly antiparallel orientation with respect to strand cleavage and exchange. These conclusions are supported by the product profiles from tethered parallel and antiparallel native FRT sites in dilution and competition assays. Furthermore, the observed recombination bias favoring deletion over inversion in a nicked circular substrate containing two symmetrized FRT sites is consistent with the predictions from Monte Carlo simulations based on antiparallel synapsis of the DNA partners.  相似文献   

8.
In Cre-loxP recombination system, Cre recombinase binds cooperatively to two 13bp inverted repeats in a 34bp loxP and catalyzes strand exchange in the 8bp spacer region. Up to date, spacer sequences within the recombined loxP sites derived from two loxP sties that have different 8bp spacer regions have never been analyzed. In the present study, we analyzed the spacer sequences within the recombined products, resulted from intramolecular recombination between heterologous loxP sites including M2, M3, M7, M11, and 2272 in vivo and in vitro. From the analyses, it was found that loxP sites with aberrant 8bp spacers can be generated from Cre-mediated recombination between heterologous loxP sites at significantly high frequency, proposing the possibility that recombination between heterologous loxP sites would have not undergone typical formula of Cre-loxP recombination.  相似文献   

9.
Cre initiates recombination by preferentially exchanging the bottom strands of the loxP site to form a Holliday intermediate, which is then resolved on the top strands. We previously found that the scissile AT and GC base pairs immediately 5' to the scissile phosphodiester bonds are critical in determining this order of strand exchange. We report here that the scissile base pairs also influence the Cre-induced DNA bends, the position of which correlates with the initial site of strand exchange. The binding of one Cre molecule to a loxP site induces a approximately 35 degrees asymmetric bend adjacent to the scissile GC base pair. The binding of two Cre molecules to a loxP site induces a approximately 55 degrees asymmetric bend near the center of the spacer region with a slight bias toward the scissile A. Lys-86, which contacts the scissile nucleotides, is important for establishing the bend near the scissile GC base pair when one Cre molecule is bound but has little role in positioning the bend when two Cre molecules are bound to a loxP site. We present a model relating the position of the Cre-induced bends to the order of strand exchange in the Cre-catalyzed recombination reaction.  相似文献   

10.
We have examined the linking-number changes that occur during phage P1 Cre-mediated recombination in vitro between two loxP sites. Such recombination reactions can be divided into three types: intramolecular inversion, in which recombination occurs between two loxP sites in opposite orientations on the same DNA substrate; intramolecular excision, where recombination occurs between two loxP sites that are in the same orientation on the DNA substrate; and intermolecular recombination, which occurs between two loxP sites on separate DNA molecules. Our results indicate that inversion changes the linking number of the substrate DNA by two topological turns. With a negatively supercoiled substrate, the product is changed by +2 turns. A relaxed substrate yields products that have been changed by either +2 or -2 turns. For intermolecular reactions, the sum of the linking numbers of each of the two starting circles is equal to the linking number of the dimer circle generated by recombination, and no change occurs in linking number. For intramolecular excision reactions, the data are most consistent, with no change in linking number during recombination. These results are discussed in terms of models for alignment and synapsis of the recombining sites and the mechanism of strand exchange.  相似文献   

11.
The role of the loxP spacer region in P1 site-specific recombination.   总被引:30,自引:7,他引:23       下载免费PDF全文
The lox-Cre site-specific recombination system of bacteriophage P1 is comprised of a site on the DNA where recombination occurs called loxP, and a protein, Cre, which mediates the reaction. The loxP site is 34 base pairs (bp) in length and consists of two 13 bp inverted repeats separated by an 8 bp spacer region. Previously it has been shown that the cleavage and strand exchange of recombining loxP sites occurs within this spacer region. We report here an analysis of various base substitution mutations within the spacer region of loxP, and conclude the following: Homology is a requirement for efficient recombination between recombining loxP sites. There is at least one position within the spacer where a base change drastically reduces recombination even when there is homology between the two recombining loxP sites. When two loxP sites containing symmetric spacer regions undergo Cre-mediated recombination in vitro, the DNA between the sites undergoes both excision and inversion with equal frequency.  相似文献   

12.
The site-specific recombinase Cre must employ control mechanisms to impose directionality on recombination. When two recombination sites (locus of crossing over in phage P1, loxP) are placed as direct repeats on the same DNA molecule, collision between loxP-bound Cre dimers leads to excision of intervening DNA. If two sites are placed as inverted repeats, the intervening segment is flipped around. Cre catalyzes these reactions in the absence of protein co-factors. Current models suggest that directionality is controlled at two steps in the recombination pathway: the juxtaposition of loxP sites and the single-strand-transfer reactions within the synaptic complex. Here, we show that in Escherichia coli strain 294-Cre, directionality for recombination is altered when the expression of Cre is increased. This leads to deletion instead of inversion on substrates carrying two loxP sites as inverted repeats. The nucleotide sequence composition of loxP sites remaining in aberrant products indicates that site alignment and/or DNA strand transfer in the in vivo Cre-loxP recombination pathway are not always tightly controlled.  相似文献   

13.
Site-specific recombination by the Cre recombinase takes place at a simple DNA site (loxP), requires no additional proteins and gives topologically simple recombination products. In contrast, cer and psi sites for Xer recombination contain approximately 150 bp of accessory sequences, require accessory proteins PepA, ArgR and ArcA, and the products are specifically linked to form a four-noded catenane. Here, we use hybrid sites consisting of accessory sequences of cer or psi fused to loxP to probe the function of accessory proteins in site-specific recombination. We show that PepA instructs Cre to produce four-noded catenane, but is not required for recombination at these hybrid sites. Mutants of Cre that require PepA and accessory sequences for efficient recombination were selected. PepA-dependent Cre gave products with a specific topology and displayed resolution selectivity. Our results reveal that PepA acts autonomously in the synapsis of psi and cer accessory sequences and is the main architectural element responsible for intertwining accessory site DNA. We suggest that accessory proteins can activate recombinases simply by synapsing the regulatory DNA sequences, thus bringing the recombination sites together with a specific geometry. This may occur without the need for protein-protein interactions between accessory proteins and the recombinases.  相似文献   

14.
Bacteriophage lambda integrase (Int) catalyzes site-specific recombination between pairs of attachment (att) sites. The att sites contain weak Int-binding sites called core-type sites that are separated by a 7-bp overlap region, where cleavage and strand exchange occur. We have characterized a number of mutant Int proteins with substitutions at positions S282 (S282A, S282F, and S282T), S286 (S286A, S286L, and S286T), and R293 (R293E, R293K, and R293Q). We investigated the core- and arm-binding properties and cooperativity of the mutant proteins, their ability to catalyze cleavage, and their ability to form and resolve Holliday junctions. Our kinetic analyses have identified synapsis as the rate-limiting step in excisive recombination. The IntS282 and IntS286 mutants show defects in synapsis in the bent-L and excisive pathways, respectively, while the IntR293 mutants exhibit synapsis defects in both the excision and bent-L pathways. The results of our study support earlier findings that the catalytic domain also serves a role in binding to core-type sites, that the core contacts made by this domain are important for both synapsis and catalysis, and that Int contacts core-type sites differently among the four recombination pathways. We speculate that these residues are important for the proper positioning of the catalytic residues involved in the recombination reaction and that their positions differ in the distinct nucleoprotein architectures formed during each pathway. Finally, we found that not all catalytic events in excision follow synapsis: the attL site probably undergoes several rounds of cleavage and ligation before it synapses and exchanges DNA with attR.  相似文献   

15.
Cre recombinase catalyzes the cleavage and religation of DNA at loxP sites. The enzyme is a homotetramer in its functional state, and the symmetry of the protein complex enforces a pseudo-palindromic symmetry upon the loxP sequence. The Cre-lox system is a powerful tool for many researchers. However, broader application of the system is limited by the fixed sequence preferences of Cre, which are determined by both the direct DNA contacts and the homotetrameric arrangement of the Cre monomers. As a first step toward achieving recombination at arbitrary asymmetric target sites, we have broken the symmetry of the Cre tetramer assembly. Using a combination of computational and rational protein design, we have engineered an alternative interface between Cre monomers that is functional yet incompatible with the wild-type interface. Wild-type and engineered interface halves can be mixed to create two distinct Cre mutants, neither of which are functional in isolation, but which can form an active heterotetramer when combined. When these distinct mutants possess different DNA specificities, control over complex assembly directly discourages recombination at unwanted half-site combinations, enhancing the specificity of asymmetric site recombination. The engineered Cre mutants exhibit this assembly pattern in a variety of contexts, including mammalian cells.  相似文献   

16.
A mutational analysis of the bacteriophage P1 recombinase Cre   总被引:12,自引:0,他引:12  
Bacteriophage P1 encodes a 38,600 Mr site-specific recombinase, Cre, that is responsible for reciprocal recombination between sites on the P1 DNA called loxP. Using in vitro mutagenesis 67 cre mutants representing a total of 37 unique changes have been characterized. The mutations result in a wide variety of phenotypes as judged by the varying ability of each mutant Cre protein to excise a lacZ gene located between two loxP sites in vivo. Although the mutations are found throughout the entire cre gene, almost half are located near the carboxyl terminus of the protein, suggesting a region critical for recombinase function. DNA binding assays using partially purified mutant proteins indicate that mutations in two widely separated regions of the protein each result in loss of heparin-resistant complexes between Cre and a loxP site. These results suggest that Cre may contain two separate domains, both of which are involved in binding to loxP.  相似文献   

17.
The Cre/loxP system has been used in transgenic models primarily to excise DNA flanked by loxP sites for gene deletion. However, the insertion reaction is more difficult to control since the excision event is kinetically favored. Mutant loxP sites favoring integration were identified using a novel, bacterial screening system. Utilizing lambda integrase, mutant loxP sites were placed at the E. coli attB site and the excision-insertion ratios of incoming DNA plasmids carrying a second, complementary mutant loxP site were determined. Comparison of 50 mutant loxP sites combinations to the native loxP site revealed that mutations to the inner 6 bp of the Cre binding domain severely inhibited recombination, while those in the outer 8 bps were more tolerated. The most efficient loxP combinations resulted in 1421-fold and 1529-fold increases in relative integration rates over wild-type loxP sites. These loxP mutants could be exploited for site-directed "tag and insert" recombination experiments.  相似文献   

18.
Mlynárová L  Libantová J  Vrba L  Nap JP 《Gene》2002,296(1-2):129-137
Heterospecific lox sites are mutated lox sites that in the presence of Cre recombinase recombine with themselves but not or much less with wildtype loxP. We here show that in Escherichia coli both lox511 and lox2272 sites become highly promiscuous with respect to loxP when in the presence of Cre one of the recombination partners is present in a larger stretch of an inverted repeat of non-lox DNA. In such a palindromic DNA configuration, also the occurrence of other DNA repeat-mediated recombination events is somewhat increased in the presence of Cre. The results indicate that in recombinase mediated cassette exchange or other double lox applications based on the exclusivity of heterospecific lox sites, or in research combining Cre-lox approaches with hairpin RNA for gene silencing, the presence of duplicated DNA around lox sites has to be taken into account. It is proposed that the presence of palindromic non-lox DNA interferes with the homology search of the Cre enzyme prior to the actual recombination event.  相似文献   

19.
Bacteriophage P1 encodes a site-specific recombination system that consists of a site (loxP) at which recombination occurs and a gene, cre, whose protein product is essential for recombination. The loxP-Cre recombination event can be studied in greater detail by the use of an in vitro system that efficiently carries out recombination between two loxP sites. This paper presents a purification and characterization of the Cre protein (Mr = 35,000), which is the only protein required for the in vitro reaction. No high energy cofactors are needed. The purified Cre protein binds to loxP-containing DNA and makes complexes that are resistant to heparin. Cre efficiently converts 70% of the DNA substrate to products and appears to act stoichiometrically. The action of Cre on a loxP2 supercoiled substrate containing two directly repeated loxP sites results in product molecules that are topologically unlinked. Several models to account for the ability of Cre to produce free supercoiled products are discussed.  相似文献   

20.
Cre recombinase uses two pairs of sequential cleavage and religation reactions to exchange homologous DNA strands between 34 base-pair (bp) LoxP recognition sequences. In the oligomeric recombination complex, a switch between "cleaving" and "non-cleaving" subunit conformations regulates the number, order, and regio-specificity of the strand exchanges. However, the particular sequence of events has been in question. From analysis of strand composition of the Holliday junction (HJ) intermediate, we determined that Cre initiates recombination of LoxP by cleaving the upper strand on the left arm. Cre preferred to react with the left arm of a LoxP suicide substrate, but at a similar rate to the right arm, indicating that the first strand to be exchanged is selected prior to cleavage. We propose that during complex assembly the cleaving subunit preferentially associates with the LoxP left arm, directing the first strand exchange to that side. In addition, this biased assembly would enforce productive orientation of LoxP sites in the recombination synapses. A novel Cre-HJ complex structure in which LoxP was oriented with the left arm bound by the cleaving Cre subunit suggested a physical basis for the strand exchange order. Lys86 and Lys201 interact with the left arm scissile adenine base differently than in structures that have a scissile guanine. These interactions are associated with positioning the 198-208 loop, a structural component of the conformational switch, in a configuration that is specific to the cleaving conformation. Our results suggest that strand exchange order and site alignment are regulated by an "induced fit" mechanism in which the cleaving conformation is selectively stabilized through protein-DNA interactions with the scissile base on the strand that is cleaved first.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号